

Emma Wollman Advisor: David Cohen

Hot Stars Massive Stars Early-type Stars

• Short-lived (~ 1-10 million yrs)

• Found near birth-place (nebulae)

• Responsible for metal production

 Produce supernovae (neutron stars, black holes) HD 93129 A (O3) $M = 94.8 M_{\odot}$ $L = 1.5e6 L_{\odot}$ $T = 7.4 T_{\odot}$ $R = 22.5 R_{\odot}$

Stellar Winds

• Net momentum transfer from starlight to material at the star's surface

•• More luminosity \rightarrow stronger wind

• Hot star mass-loss rates ~ 1-10 ${
m M}_{\odot}$ / 10⁶ yr

• Mass-loss rate determines the fate of the star

X-ray Production

• Winds are unstable.

• High temperature plasma in a small fraction of the wind emits x-rays.

 \triangleleft

 \triangleleft

 \triangleleft

Model Fitting

HD 93129 (O3) $\tau_* = 2.44 \pm ^{1.44}_{1.30}$ $\zeta \text{ Ori (O9.7)}$ $\tau_* = 0.08 \pm_{0.08}^{0.24}$

Mg XII @ 8.421 angstroms

Model Fitting

 ζOri $\tau_* = 0.38 \pm_{0.11}^{0.13}$

Wavelength Dependence

Conclusions

- The x-ray line profile model produces statistically good fits to the data.
- Spectral modeling of the x-rays suggests that current mass-loss rates should be revised downwards.
- au_* values are more consistent with a wavelengthdependent model than with a constant value.

Hot Stars Massive Stars Early-type Stars

Mintaka (O9.5 II) M = 24.2 M_☉ L = 2.6e5 L_☉ T = 30,600 K R = 17.7 R_☉

δ

3

Alnilam (B0 I) $M = 25.0 \text{ M}_{\odot}$ $L = 5.4e5 \text{ L}_{\odot}$ T = 27,500 K $R = 32.4 \text{ R}_{\odot}$

Alnitak (O9.7 I) $M = 27.8 M_{\odot}$ $L = 3.7e5 L_{\odot}$ T = 30,500 K $R = 22.1 R_{\odot}$

