The source of anomalously hard x-rays in M17’s central O4-O4 binary

James MacArthur\(^1\), David H. Cohen\(^1\), Marc Gagne\(^2\), Leisa K. Townsley\(^3\)

\(^1\)Swarthmore College, \(^2\)West Chester University, \(^3\)Pennsylvania State University

Background

- Name: CEN 1 or Kleinmann’s Anonymous Star
- Location: O4+O4 binary at the center of M17
- Separation: 1.8\(^\circ\) (2900 AU at 1.6 kpc)
- Extinction: \(A_v \approx 10\) (component A), 13 (component B)

Motivation

CEN 1A and 1B have extremely hard x-ray spectra and high luminosities. Component A is time variable (see time variability section). We want to know:

- What mechanism produces the extreme x-ray emission?
- How are strong x-rays from O-stars produced by colliding wind binaries (CWB), or magnetically channeled wind shock (MCWS) systems?

Hard x-ray emission

Strong x-rays from O-stars come from colliding wind binaries (CWB), or magnetically channeled wind shock (MCWS) systems.

Line diagnostics

- **CEN 1B**
 - \(L_x \approx 2 \times 10^{33}\)
 - \(T_\text{eff} \approx 10 \text{ keV}\)

- **CEN 1A**
 - \(L_x \approx 1 \times 10^{33}\)
 - \(T_\text{eff} \approx 3 \text{ keV}\)

f/i ratio theory

Helium-like emission complexes (S XV, Si XIII, etc) are subject to alterations of their forbidden-to-intercombination line ratios due to UV photoexcitation of electrons out of the metastable upper level of the forbidden line. Low f/i ratios are thus diagnostic of close proximity to the UV-bright photospheres of O stars.

New Chandra grating data

The two sources are separated by only 3.5 pixels, which necessitates custom spectral extraction regions (on right). Spectra were successfully extracted for both components, shown below.

Results

CEN 1 completely dominates x-ray emission in M-17, though component B \((L_x \approx 2 \times 10^{33}\), \(T_\text{eff} \approx 10 \text{ keV}\)) is slightly harder and more luminous than A \((L_x \approx 10^{33}\), \(T_\text{eff} \approx 3 \text{ keV}\), during its low state). Component A is found to increase in luminosity by a factor of three. The Si XIII f/i ratio is unaltered for B \((>2)\) but reduced for A. Line widths are very large - larger than those seen in single O stars, and comparable to the wind terminal velocities.

Discussion

The very broad lines in CEN 1A and 1B are consistent with the CWB hypothesis; this system contains at least four stars. This interpretation is consistent with recent detection of Paschen line splitting in both components A (on right) and B, indicating that they are both spectroscopic binaries. The high f/i ratio for component B indicates emission far from the star, again consistent with the CWB hypothesis. Component A’s low f/i ratio needs more detailed modeling, though it indicates emission only a few R\(_*\) out. This could suggest an asymmetry in wind momenta or a small binary separation during the observation.

Time variability

In this most recent Chandra observation, we see no significant time variability (right, 0\(^\text{th}\) order light curves). However, in 2006 CEN 1A brightened by a factor of 3 [below] in a manner indicative of a CWB periastron approach.

Acknowledgments

We thank the Provost’s Office at Swarthmore College and acknowledge support from Chandra grant GO9-0019 to West Chester University and Swarthmore College.

\(\eta\) Car