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FIGURE 2.5 This painting shows how our galaxy's structure affects
our view from Earth.

decades ago, when new technologies allowed us to peer
through the clouds by observing forms of light that are invisi-
ble to our eyes (such as radio waves and X rays [Section 5.2]).

THINK ABOUT IT

-écnsider a distant galaxy located in the same direction from Earth
as the center of our own galaxy (but much farther away). Could
we see it with our eyes? Explain.

The Local Sky The celestial sphere provides a useful way
of thinking about the appearance of the universe from Earth.
But it is not what we actually see when we go outside. Picture
yourself standing in a flat, open field. The sky appears to take
the shape of a dome, making it easy to understand why peo-
ple of many ancient cultures imagined that we lived on a flat
Earth under a great dome encompassing the world. We see
only half of the celestial sphere at any particular moment
from any particular location, while the other half is blocked
from view by the ground. The half of the celestial sphere that
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FIGURE 2.6 From any place on Earth, the local sky looks like a
dome (hemisphere). This diagram shows key reference points in the
local sky. It also shows how we can describe any position in the local sky
by its altitude and direction.

you see at any time represents what we call your local sky—
the sky as seen from wherever you happen to be standing.

Figure 2.6 shows key reference features of the local sky.
The boundary between Earth and sky defines the horizon.
The point directly overhead is the zenith. The meridian is an
imaginary half circle stretching from the horizon due south,
through the zenith, to the horizon due north.

We can pinpoint the position of any object in the local sky
by stating its direction along the horizon (sometimes stated as
azimuth, which is degrees clockwise from due north) and its
altitude above the horizon. For example, Figure 2.6 shows a
person pointing to a star located in the direction of southeast
at an altitude of 60°. Note that the zenith has altitude 90° but
no direction, because it is straight overhead.

Angular Sizes and Distances Our lack of depth per-
ception on the celestial sphere means we have no way to judge
the true sizes or separations of the objects we see in the sky.
However, we can describe the angular sizes or separations of
objects even without knowing how far away they are.

The angular size of an object is the angle it appears to
span in your field of view. For example, the angular sizes of
the Sun and Moon are each about 3° (Figure 2.7a). Notice
that angular size does not by itself tell us an object’s true
size, because angular size also depends on distance. The Sun
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Stretch out your arm
as shown here.

¢ You can estimate angular sizes or
distances with your outstretched hand.

FIGURE 2.7 We measure angular sizes or angular distances, rather than actual sizes or distances, when

we look at objects in the sky.
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MATHEMATICAL INSIGHT 2.1

Angular Size, Physical Size, and Distance

If you hold a quarter in front of your eye, it can block your entire field
of view. But as you move it farther away, it appears to get smaller and
blocks less of your view. Figure la summarizes the idea by showing
the quarter in cross section, so we can see how its angular diameter
decreases with distance.

It’s useful to have a formula telling us how an object’s angular
size depends on its physical size and distance, and we can find the
formula with a little mathematical trick that works when the angular
size is small. In Figure 1b, we’ve made the quarter from Figure 1a
look like a tiny piece of a circle going all the way around your eye.
The radius of the circle is the distance from your eye to the quarter,
the angle from your eye is the quarter’s angular size, and we’ve
labeled the quarter’s actual diameter as its physical size. Now, notice
that as long as the angular size is relatively small (less than a few
degrees), we can pretend that the quarter’s physical size (diameter) is
a small piece of the circle we’ve drawn. This is the trick we needed:
The quarter’s angular size is now the same fraction of the full 360°
circle as its physical size is of the circle’s physical circumference.
Since the circumference of this circle is 277 X (distance), we can write

what we’ve found as
angular size physical size

360° " 24 X distance

Multiplying both sides by 360° and rearranging a bit, we have a formula
that allows us to determine angular size when we know physical size and
distance:

360°

angular size = physical size X ———————
2 PRy 27 X distance

This formula is sometimes called the small-angle formula, since it is
valid only when the angular size is small.

In astronomy, we generally measure an object’s angular size and
often have a way of determining its distance (well discuss distance
measurement techniques in later chapters). We can therefore rearrange
the formula to calculate physical size. You should confirm that a little
algebra tells us that —

291 X distance
360°

The context of a problem will tell you which form of the formula
to choose.

physical size = angular size X

EXAMPLE 1: The angular diameter of the Moon is about 0.5°
and the Moon is about 380,000 km away. Estimate the Moon’s actual
diameter.

SOLUTION:

Step 1 Understand: We are asked to find the Moon’s actual diame-
ter given its angular diameter and distance. The formula below tells
us how to find physical size from angular size and distance; we can
use this formula once we realize that, in this case, the “size” is a
diameter.

Step 2 Solve: We now use the formula to calculate the Moon’s
physical size (diameter) from the given values of its angular size
and distance:
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~ 3300 km

Step 3 Explain: We have found that the Moon’s diameter is about
3300 kilometers. We can check that our answer makes sense by
comparing it to the value for the Moon’s diameter given in
Appendix E. Our estimate of 3300 kilometers is fairly close to the
Moon’s actual diameter of 3476 kilometers, which we could find
by using more precise values for the Moon’s angular diameter
and distance.

EXAMPLE 2: Suppose the two headlights on a car are separated by
1.5 meters and you are looking at the car from a distance of 500 meters.
What is the angular separation of the headlights?

SOLUTION:

Step 1 Understand: In this case we are asked about “separation”
between two lights rather than size, but the idea is the same, We
simply replace size with separation in the formulas below and we
have all the information we need to solve the problem.

Step 2 Solve: Because we know the physical separation and
distance in this case, we use the formula in the first form that we
found above.

360°
angular physical separation X

separation m
360°
=15m X ————=0.17°
277(500 m)

Step 3 Explain: We have found that the angular separation of the
two headlights is 0.17°. However, remember that it is more common
to express fractions of a degree in arcminutes or arcseconds. There
are 60 arcminutes in 1° so our answer of 0.17° is equivalent to 0.7° X
60 arcmin/1° = 10.2 arcminutes. In other words, the angular separa-
tion of the headlights is about 10 arcminutes, which is about  of the
30 arcminute (0.5°) angular diameter of the full moon.




// E

L. 60"

50"

40"

30"

~— 20"
10"

Not to scale!

o

FIGURE 2.8 We subdivide each degree into 60 arcminutes and
each arcminute into 60 arcseconds,

is about 400 times larger in diameter than the Moon, but it
has the same angular size in our sky because it is also about
400 times farther away.

The angular distance between a pair of objects in the sky
is the angle that appears to separate them. For example, the
angular distance between the “pointer stars” at the end of the
Big Dipper’s bowl is about 5° (Figure 2.7b). You can use your
outstretched hand to make rough estimates of angles in the
sky (Figure 2.7c).

For more precise astronomical measurements, we subdivide
each degree into 60 arcminutes and subdivide each arcminute
into 60 arcseconds (Figure 2.8). We abbreviate arcminutes with
the symbol ' and arcseconds with the symbol ". For example, we
read 35°27'15" as “35 degrees, 27 arcminutes, 15 arcseconds.”

THINK ABQUT IT

i

uChildren often try to describe the sizes of objects in the sky
(such as the Moon or an airplane) in inches or miles, or by
holding their/fingers apart and saying “it was THIS big" Can we
really describe objects in the sky in this way? Why or why not?

Why do starsrise and set?

If you spend a few hours out under a starry sky, you'll notice
that the universe seems to be circling around us, with stars
moving gradually across the sky from east to west. Many
ancient people took this appearance of movement at face

north celestial pole

south celestial pole

FIGURE 2.9 Earth rotates from west to east (black arrow), making the
celestial sphere appear to rotate around us from east to west (red arrows).

- COMMON MiSCONCEPTI_O_N_%_____.__,?,_‘ —
The Moon lllusion

You’ve probably noticed that the full moon appears to be
larger when it is near the horizon than when it is high in
your sky. However, this apparent size change is an illusion. if you
measure the angular size of the full moon on a particular night,
you'll find that it is about the same whether the Moon is near
the horizon or high in the sky. The Moon's angular size in the
sky depends only on its true size and its distance from Earth.
Although this distance varies over the course of the Moon's
monthly orbit, it does not change enough to cause a noticeable
effect on a single night. You can confirm that the Moon's angu-
lar size remains the same by measuring it. You may also be able
to make the illusion go away by viewing the Moon upside down
between your legs when it is on the horizon.

value, concluding that we lie at the center of a universe that
rotates around us each day. Today we know that the ancients
had it backward: It is Earth that rotates, not the rest of the
universe, and that is why the Sun, Moon, planets, and stars all
move across our sky each day.

We can picture the movement of the sky by imagining the
celestial sphere rotating around Earth (Figure 2.9). From this
perspective you can see how the universe seems to turn around
us: Every object on the celestial sphere appears to make a
simple daily circle around Earth. However, the motion can
look a little more complex in the local sky, because the horizon
cuts the celestial sphere in half. Figure 2.10 shows the idea for a
location in the United States. If you study the figure carefully,
you'll notice the following key facts about the paths of various
stars (and other celestial objects) through the local sky:

Stars relatively near the north celestial pole remain perpet-
ually above the horizon. They never rise or set but instead
make daily counterclockwise circles around the north celes-
tial pole. We say that such stars are circumpolar.

o north celestial pole
This star’s |
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: 58,
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never, seen. :
"""""" ; e Other stars rise in
V/ the east and set
in the west.
south celestial pole
FIGURE 2.10 The local sky for a location in the United States
(40°N). The horizon slices through the celestial sphere at an angle to
the equator, causing the daily circles of stars to appear tilted in the local
sky. Note: It may be easier to follow the star paths in the local sky if you
rotate the page so that the zenith points up.
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