
 IRAF TUTORIAL SESSIONS

 Exercise 1.

This is a short exercise that should help acquaint you with the basics
of IRAF.

Starting up IRAF can be a bit complicated (you have to be in the right
directory, using the right kind of terminal window, etc.) but on our
local machines here there is a script to take care of all of this for
you - just type "xiraf" and it should start up iraf in a new window,
as well as opening an image display program called ds9. (If this is
the first time you've run iraf, it will ask you about creating a
login.cl [which is the main iraf user preferences file] - just hit
return to accept the default action.)

In this, as in the other exercises, the commands after the prompt
(either % or cl>) are meant to be typed by the user; the #-sign
indicates a comment.

The exercise uses two images, with file names im010.fits and
im011.fits, which you may already find in your ~/iraf directory
(which is the directory you're already in by default if you started
IRAF as indicated above). If they aren't there, you can copy them to
your current directory with

 cl> cp /data/astro121/iraf_intro/im*.fits .

Notice that there is a period at the end of that command, separated
from the filename by a space - that looks like punctuation, but in
fact it is part of the command, since '.' is linux-speak for 'the
current directory'. Also, if you know a little unix/linux, you may
recognize that this is just the standard linux cp command - we have IRAF
configured locally to pass a common subset of linux commands directly
out to the shell to be executed. For those that aren't pre-defined,
you can always execute a linux command from within IRAF by preceding it
with a !, as in

 cl> ! emacs file.log & # Starts an emacs window under linux.

Our local installation of IRAF is configured to work directly with
FITS files by default, where "FITS" stands for Flexible Image
Transport System, a standard astronomical image format. Older
versions of IRAF (V2.10.4 and earlier, or anything earlier than the
end of 1997) worked with a different format where each file was split
into a separate header and pixel files. If you encounter files with
extensions .imh and .pix, these are IRAF formatted image header and
pixel files, respectively.

 cl> dir # list the files in the current directory
 # and make sure you have the .fits files.

The next step is to familiarize yourself a bit with some of the basic
operations of IRAF. Tasks with similar/related functionality are grouped
together in packages. Tasks, and sometimes packages, have parameter files
that control their operation.

 cl> diskspace # show the available diskspace
 cl> path # show the current working directory
 cl> dir # list the files in your current directory
 cl> dir *.fits # list just the fits files in your directory
 cl> dir uparm # list the files in the uparm directory - a
 place where parameter files are stored
 cl> dir l+ # do a long directory listing
 cl> package # show what packages are currently loaded
 cl> help images # help for the package "images"
 cl> phelp imheader # help for task "imheader" using a more
 sophisticated pager - it lets you:
 <space bar> # go to next page of help
 b # go back one page
 ? # view options
 q # quit the help for this task
 cl> lpar imh # this doesn't work (try it!) - task names
 and parameters need enough characters
 specified to be identifiable
 cl> lpar imheader # note query and hidden parameters - query
 parameters are listed first with hidden
 parameters following in parentheses
 cl> unlearn imhead # unlearn parameters - go back to defaults
 cl> imhead im010 # short header listing - what does it tell you?
 cl> imhead # by default imheader will list all images with
 the extensions listed in the parameter imlist
 cl> imhead im010 l+ # Long version of the output - shows all
 header fields

 cl> epar imhead # modify the task so it always types the long
 header listing - choose yes for the parameter
 entry for "longheader" followed by a return

 :q # exit eparam mode and "save" the new parameters
 [exiting with crtl-C does NOT update the
 parameter file] You can also exit and
 save with ctrl-D.

 cl> lpar imhead # was the edited parameter saved?
 cl> imhead im011 | page
 cl> dir uparm # what is the uparm directory used for? Can you
 find the parameter file for "imheader"? The
 name is a combination of the package (imutil)
 and task name, i.e. imlimhear.par.
 cl> unlearn imhead # go back to the default parameter setting
 cl> dir uparm # what just happened?
 cl> imhead im010 l+ | page
 # note the keyword "exptime"
 cl> unlearn hselect
 cl> lpar hselect

 cl> hselect im*.fits $I,exptime yes
 # see the help for hselect - it allows us
 to look at selected keywords from image
 headers
 # What does $I do?
 # What does the "yes" argument do?
 cl> unlearn hedit
 cl> lpar hedit
 cl> hedit im* notice "test data" add+
 # add a keyword plus value to the headers of
 the two images - hit return after each query
 cl> imhead im010 l+ # do you see the new keyword?
 cl> hselect im* $I,notice yes

What have you learned about parameters? What is the difference between
query and hidden parameters? What is the uparm directory? Do you
understand the different syntaxes that we have been using in task executions?
If you have questions see the Beginner's Guide mentioned below in the
References section.

A Short Exercise

There are 2 images in your directory, im010 and im011, of the same
field, but one frame has been slightly shifted from the other. We want
to shift the second frame so it aligns with the first frame, and then
average these two frames together.

 cl> dir im*.fits # note the two frames
 cl> imhead im*.fits # check to see if they are the same field
 cl> unlearn display
 cl> lpar display # look at the parameters for the display task
 cl> display im010 1 # load the first image into the image display

Let us diverge for a moment. This is probably a good time to acquaint
yourself with the image display program ds9, if you have not used it
before. You should know how to zoom, pan, window, and blink. Most
options can be done with the mouse. Notice the pull down menus at the
top of the window. Pull each menu down and review the selections -
use the left mouse button to pull down the menus. At the center of
the window are some point and click options - clicking in the top row
of buttons changes what buttons are available in the second row for
doing various tasks (e.g. clicking the "Zoom" button displays "+",
"-", "to fit", etc.). At the top of the window are rough coordinates
of the current cursor position as well as an estimate of the pixel
value at that cursor position. The two boxes in the upper right
corner are "panner" boxes - one shows you what part of the image you
are currently looking at (right now we are displaying the full image),
and one shows you a zoomed-in view under the current mouse position.

The lookup table can be modified by moving the cursor up and down in
the window (contrast) or left and right (brightness) while holding
down the right mouse button. Try it. (You can always get back to
default settings by clicking "Frame", and then "reset".)

Panning (changing which part of the image you're displaying) is done
with the middle mouse button. Move the cursor to an interesting part
of the image - click once with the middle mouse button and that part
of the image will be centered. You can also drag the blue box in the
top panner window to move the region displayed. To zoom in, choose
the Zoom button, then click "+" or "-" to zoom in or out; you can also
zoom in and out with the scroll wheel on the mouse. Play with this
until you understand how it works. Go back to the unzoomed image when
you are finished.

We want to blink this field and that of im011. So we will need to load
the second image into the second frame buffer - you have 4 frame buffers
available for images.

 cl> display im011 2

Now try to match the lookup tables of both images. Adjust the contrast
and brightness for the second image that you should be looking at now.
(Remember, just click and drag with the right mouse button.) Twiddle
things until you have black stars on a white sky background. Now look
at Frame 1 again (push "Frame", then "next"). Go back to frame 2, and
select "Frame -> Match -> Colorbar" from under the "Frame" menu. Now
go to frame 1 - they should have the same contrast and brightness now.
Then blink between the two frames by pressing the "Blink" button. (You
can stop the blinking by clicking "single", or you can blink manually
by just repeatedly clicking "Next".) Notice the small shift between
the frames? Stop the blink mode by pressing the "single" button.

Play a bit with ds9 until you feel comfortable with it. It has many more
features that we will not cover here - see the documentation online,
or under the "Help" menu in ds9.

Now back to our original problem of computing and correcting for these
shifts.

 cl> display im010 1 # redisplay im010
 cl> unlearn imexamine
 cl> lpar imexamine # we want to compute the shifts using this
 task interactively
 cl> imexamine # move the cursor into the ds9 window -
 notice that it has changed to a blinking
 circle - imexamine has put us into
 "interactive image cursor mode"

 a. put the cursor on some stars and press the "a" key -
 information will be printed in the xgterm window: the
 x-coord and y-coord values are on the first line with
 additional information on the second line - see the help
 page for imexamine for details

 b. with the cursor in the image window type "?" to see the
 cursor help - exit cursor help with "q" in the xgterm window

 c. what we would like to do is select 3 relatively bright
 stars and measure their positions in both frames and then
 compute the differences - we will use the average of the
 differences to shift the second frame so it aligns with the
 first

 mark 3 stars with the "a" key - space them over the image

 d. with the cursor in the image window, type "d" - you will be
 queried in the xgterm window for the next image - enter
 "im011" and frame "1"

 measure the same three stars in this image

 e. quit "imexamine" with "q" in the ds9 window

Compute the average shift, i.e. what shift do we want to apply to the
second image so that it aligns with the first? The shifts that I computed
are -0.53 and -1.68 - do you agree?

 cl> lpar help
 cl> help imshift sec=description # look at just one part of the
 help page for the task that
 we want to use
 cl> help imshift sec=example
 cl> unlearn imshift
 cl> lpar imshift
 cl> imshift im011 shift011 ??? ??? # shift im011 with the
 appropriate values
 cl> dir # Note that you have
 created a new image!

Now, blink im010 and shift011 and see if we did a good job. Do you
remember how to do this? Congratulate yourself if things look ok!!

Let's try a little image arithmetic now. We have two frames, im010
and shift011, that we want to average. Let's do it two ways.

 cl> unlearn imsum imarith

 a. cl> lpar imsum
 cl> imsum im010,shift011 aver1 pixt=r calct=r option=average v+
 <or try "epar imsum", modify all of the parameters, and then
 type ":go" >

 [Note the concern here about the pixel type, both for the calculation
 and for the output image.]

 b. cl> lpar imarith
 cl> imarith im010 + shift011 aver2 pixt=r calct=r v+
 <try "epar imarith", edit all parameters, type ":go">
 cl> imarith aver2 / 2 aver2 # notice we are overwriting
 the input image

 c. [Hopefully the results are the same for both operations.]

 cl> unlearn imstatistics
 cl> lpar imstat
 cl> imstat aver*.fits

Notice that when you change hidden parameters on the command line that
they are NOT "learn"ed! How do you "learn" parameters?

History

IRAF can redirect terminal output to a file, as well as pipe output
from one task into the input of another task. There is also a history
and recall mechanism.

 cl> history # prints history tree
 cl> ^ # recall and execute last command, can also
 include number to execute any task in tree
 cl> e lpar # recall last lpar command - allows you to
 edit command line before executing
 with "return" -
 use the arrow keys to move cursor, delete
 or insert to the left of the cursor
 cl> e # recall last command - use up/down arrows
 to go up/down history tree
 cl> history 100 # look at last 100 commands
 cl> history 100 > hfile # redirect output to a file
 cl> page hfile # page the file
 cl> history 100 | page # alternate method avoiding intermediate
 file

What is the difference between ">" and "|" ?

More on Plotting

Let's explore plotting in IRAF a bit. Some plot tasks are interactive and
others are not. You can always replot whatever was in the last plot buffer
and play with it.

 cl> phelp plot # list help for "plot" package
 cl> contour shift011 # make a contour plot of your shifted
 image - if it is not already the frame
 that you are looking at in the ds9
 window, re-display it. Compare the plot
 with the displayed image

 cl> surface shift011 # draw a surface plot of the same image

 cl> implot shift011 # this is an interactive plotting task
 that is useful for inspecting 2-d
 images - type "?" - note the cursor

 commands (small letters and :
 commands) - these will differ from
 task to task (if they are
 interactive) - they are NOT global

 c - column plot, column read from cursor position

 :l 100 - plot line 100

 :c 150 200 - plot average of columns 150-200
 :.write meta # save plot in file

 (Spend some time becoming familiar with "implot" - you
 will use it often - try the global keys as well.)

 How can you expand the plot other than with "Z"? look at
 the "e" key - put both cursors at the lower left corner of
 a box defining the region you wish to zoom, press "e",
 then move both cursors to the upper right corner of the
 box and press "e" again

 :l 100 - to get the full plot size back

 q # exit

 cl> implot dev$wpix # plot the image that is distributed
 with the IRAF system

 :w world # this image has RA and DEC information
 stored in its header; use it for the
 x axis. (Why doesn't the y axis
 display this way as well?)

 :f %H # convert to hh:mm:ss
 :.write meta
 c # place the cursor on the middle of the
 galaxy and type "c" to get a column plot

 :f %h # convert to dd:mm:ss
 :.write meta
 q # exit

We have saved several plots in a file called meta. Let's look at those
plots now.

 cl> unlearn gkimosaic gkidir
 cl> gkidir meta # list plot file
 cl> lpar gkimosaic
 cl> gkimos meta # plot the meta file
 q # to quit plot mode

Now let's print out one of the plots. Choose one of them (use the
gkidir or gkimosaic commands again to look them over). Note its frame
number (as given by gkidir) and then plot it using

 cl> gkiextract meta 1 | stdplot

Here I chose frame 1 - use a different one if you wish. In general,
you can print from within most plotting tasks by hitting the "=" key
(or by typing :.snap), which takes a snapshot of the graphics window
and sends it to the printer. Type "help cursor" for more info on this
and other graphics cursor commands.

For the next few minutes it may be profitable to spend a bit more time
familiarizing yourself with the task IMEXAMINE, since it is such a
powerful tool.

 cl> display dev$pix 1 # this is the IRAF distributed
 image, M51. Wpix and pix are
 the same image but wpix has the
 world coordinate information in
 its header

 [window the image until it looks good]

 cl> imexamine

 [put the cursor on the star at 224, 131]
 ? # list cursor options - type "q" in
 the text window to exit list
 z # print out pixel values around
 cursor
 m # print statistics within box

 [move the cursor to a glob on a spiral arm
 s # surface plot
 :epar # edit the parameters for the last
 plot - you must type this from the
 ds9 window although the command
 will appear in the graphics window -
 exit epar mode in the xgterm window
 with :q

 l # plot a line
 g # go to "interactive graphics
 cursor mode" - the global cursor
 keys can now be used to fuss
 with the graphics plot
 :naverage 10 # average 10 lines - since the graphics
 window is now the active window type
 this command in it

 i # go back to "interactive image
 cursor mode"

 [try other options]
 q # quit the task - you can quit
 in either interactive mode

One last thing: a pretty picture. Let's overlay a grid in the ds9
window on the image dev$wpix.

 cl> display dev$wpix 1 xmag=0.8 ymag=0.8
 cl> wcslab dev$wpix 1 # invert the image to black
 background and window - if nothing
 happens when the prompt returns type
 "gflush"

What did the xmag and ymag parameters do?

Print a copy of your image by choosing "Print" from the "File" menu in
ds9.

If you are finished with this exercise you may want to clean your directory
up a bit with the deletion commands.

 cl> dir
 cl> delete hfile,meta # deletes ordinary files
 cl> imdelete *.fits ver+ # deletes image files - you may
 want to keep im*.fits around
 but we will not be using them
 again

Why there is a special IMDELETE command for the IRAF images? This is
actually a holdover from using IRAF format images which were stored in
two separate files, header and pixels. The IMDELETE command would
delete both files at once. With FITS files, everything is in one
file, so you could also just say

 cl> delete *.fits
or
 cl> rm *.fits # Actually passes it out to the shell

It's best to use the ver+ option (notice that this is how you "turn
on" yes/no parameters without editing the parameter file) when you
delete *.anything so that you don't accidentally wipe out a bunch of
files! To set this as the default, you can type "epar imdelete",
change "verify" to "yes", and save the parameters; the same for the
"delete" command. The parameter files are saved in your "uparm"
directory for your next IRAF session.

 cl> logout

You should always log out of IRAF first before shutting down the window
environment with the mouse. Then log off the linux system, if you wish.

 % logout

 References

A Beginner's Guide to Using IRAF, by Jeannette Barnes, August 1993.

DS9 version 1.9.7.1 documentation

(Note: this exercise was written by Jeannette Barnes of NOAO and
modified by Eric Jensen to reflect the use of FITS files as
the default image format and DS9 [rather than ximtool] as the image
display program.)

Last update Feb 2014.

