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o
FIGURE 10.1.L Zoning in a numerical stellar model. The star is assumed to be constructed of
spherically symmetric mass shells, with the physical parameters associated with each zone being

specified by the stellar structure equations, the constitutive relations, the boundary conditions, ¿¡¿

the star's mass and composition. In research-quality codes some quantities are specified in the middle

of mass shells (e.g., P andT), whereas others are associated with the interfaces between shells (e.g.,

r, Mr, and Lr).

occur close to the surface, while nuclear reactions occur near the center. By integrating

in both directions, it is possible to decouple these processes somewhat, simplifying the

problem.
Simultaneously matching the surface and central boundary conditions for a desired stellar

model usually requires several iterations before a satisfactory solution is obtained. If the

surface-to-center and center-to-surface integrations do not agree at the fitting point, the

starting conditions must be changed. This is accomplished in a series of attempts, called

iterations,where the initial conditions of the next integration are estimated from the outcome

of the previous integration. A process of successive iterations is also necessary if the stm

is integrated from the surface to the center or from the center to the surface; in these cases

the fitting points are simply the center and surface, respectively.

A very simple stellar structure code (called StatStar) is presented in Appendix L.

StatStar integrates the stellar structure equations developed in this chapter in their time-

independent form from the outside ofthe star to the center using the appropriate constitutive

relations; it also assumes a constant (or homogeneous) composition throughout. Many of

the sophisticated numerical techniques present in research codes have been neglected so

that the basic elements of stellar model building can be more easily understood, as have

the detailed calculations of the pressure equation of state and the opacity. The complex

formalism of the mixing-length theory has also been left out in favor of the simplifyin$

assumption of adiabatic convection. Despite these approximations, very reasonable models

may be obtained for stars lying on the main sequence of the H-R diagram.

Polytropic Models and the Lane-Emden Equation

As we mentioned previously, it is not generally possible to solve the system of stellar

structure equations and their associated constitutive relations analytically; we must employ

numerical solutions to "build" stellar models. However, under very special and restricdve
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10.5 Stellar Model Building 33s

situations, it is possible to find analytic solutions to a subset of the equations. The f,rst
work in this area was carried out by J. Homer Lane (1819-1880), who wrote a paper on
the equilibrium of stellar conflgurations in the American Journal of Science in 1869. That
work was later extended significantly by Robert Emden (1862-1940). Today, the famous
equation that helps us describe analytical stellar models is referred to as the Lane-Emden
equation.

To understand the motivation of developing the Lane-Emden equation, note that careful
inspection of the stellar structure equations shows that the mechanical equations of stellar
structure (Eqs. 10.6 and 10.7) could be solved simultaneously without reference to the
energy equations (10.36, and either 10.68 or 10.89) if only a simple relationship exisred
between pressure and density. Of course, as we have seen, such a simple relationship does
not generally exist; normally, temperature and composition must also enter into the pressure
equation of state, often in a complicated way. However, under certain circumstances, such
as for an adiabatic gas (see Eq. 10.86), the pressure can be written explicitiy in terms of the
density alone. Hypothetical stellar models in which the pressure depends on density in the
form P - Kpv are known as polytropes. The development of polytropic models is well
worth the effort since their relative simplicity allows us to gain some insight into stellar
structure without all of the complications inherent in full-blown numerical models.

To derive the Lane-Emden equation, we begin with the equation for hydrostatic equi-
librium, Eq. (10.6). Rewriting the equation and taking the radial derivative of both sides
gives

d / r2 dP\ dM.
*\;d,):-o *'

We immediately see that Eq. (10.7) can be used to eliminate the mass gradient. Substituting,
we get

d /r2dP\ ^

¡ \¡ d, ) 
: -G(4n r" P)

or

I d /r2 dP\
,, A (; d, ): -4tGP' (10'108)

As an aside, it is worth pointing out here that Eq. (10.108) is actually a slightly camou-
flaged form of a very well-studied differential equation known as Poisson's equation.lt is
left as an exercise to show that Eq. (10.10s) can be rewritten in the form

ry
:d

1 d

d, - 4nGp, (10.10e)

-"''
,'t 

dÕt \dr)12

which is the spherically symmetric form of Poisson's equation for the gravitational potential
energy per unit mass, Õ, = U, f m.27

2TPoisson's equation shows up frequently in physics. For example, Gauss' Laq one of Maxwell's equations of
electromagnetic theory, can be reformulated into Poisson's equation by replacing the electric fleld vector with the
negative of the gradient of the electrostatic potential.
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To solve Eq. (10.108), we now employ the relationship P(p) : Kpr , where K and

y > O are constants. This functional form of the pressure equation is known generally as ¿

potytropic equation of state. Substituting, taking the appropriate derivative, and simplifying,

we have

vKd
dr

y-z dP

drr2
p : -4nGp

It is customary to rewrite the expression slightly by letting 7
historically referred to as the po lytropic index. Then

: (n * 1)/n, where n is

(#) :, *1,' ou-','' #): -4n Gp

In order to simplify the last expression somewhat, it is now useful to rewrite the equa-

tion in a dimensionless form. Expressing the density in terms of a scaling factor and a

dimensionless function D (r), let

p(r)= p"lDn(r)f", where0< Dn <1.

(As you might suspect, p" will turn out to be the central density of the polytropic stellar

model.) Again substituting and simplifying, we arrive at

[.,.,,(#)] å *lr*)--Di
Careful study of our last equation reveals that the collective constant in square brackets

has the units of distance squared. Defining

i.=[ø.r(#)]"'
and introducing the dimensionless independent variable f via

r = )rnÇ,

we finally arrive at

(10.110)

which is the famous Lane-Emden equation.

Solving Eq. (10.110) for the dimensionless function D,(Ð in terms of f for a specific

polytropiJindìx n leads directly to the profile of density with radius P,?).The polytropic
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equation of state PnQ) : Kpf,+tlt" provides the pressure profile. In addition, if the ideal
gas law and radiation pressure are assumed for constant composition (Eq. 10.20), then the
temperature profile, Z(r), is also obtained.

In order to actually solve this second-order differential equation, it is necessary to im-
pose two boundary conditions (which effectively specify the two constants of integration).
Assuming that the "surface" of the star is that location where the pressure goes to zero (and
correspondingly the density of the gas also goes to zero), then

Dr(€ò : 0 specifies the surface at f - fr,

where f1 is the location of the frrst zero of the solution.
Next consider the center of the star. If r : ô represents a distance infinitesimally close

to the center of the star, then the mass contained within a volume of radius ð is given by

u,:! oñ

where B is the average density of the gas within the radius ð. Substituting into the equation
for hydrostatic equilibrium, Eq. (10.6), we have

dP : -.M'P - -4ndr 12 ZGP'ô-+Oasô-+0'

Since P - KpØ+t¡¡n, this implies that

da

*-oasr-+o'
which immediately leads to the central boundary condition

dDn

É:oat6':o'
In addition, in order for p, to represent the central density of the star, it is also necessary
that D, (0) : 1 (this condition isn't strictly a boundary condition, it simply normalizes the
density scaling function, Dn).

With the boundary conditions specified, it is now possible to compute the total mass of
a star of a specific polytropic index. From Eq. (10.7),

I,^
M :4n r2 p dr,

where .it : Ànft represents the radius of the star. Rewriting in terms of the dimensionless
quantities yields

rql
M : 4tr I x?,€'p"oi d(L,Ë),

Jo
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Do, Dt, and D5 are shown in Fig. L0.12.

This discussion of polytropes was originally motivated by the equation of state

adiabatic gas. For the case of an ideal, monatomic gas, T :513' which implies that n --
1.5. In addition, as we shall see later, in Chapter 16 (see Eq. 16.12), certain extremely

compressed stars in their final stage of evolutionknown as white dwarfs can also be described

or

r€t
¡4 : 4nL3,p, I E'Di d€.

Jo

Although this expression could be integrated directly with knowledge of D"(€), it can also

be rewritten directly by noting, from the Lane-Emden equation and the central boundary

condition, that

€,D'l: _*lr#l
gives

M : -4n),?,0"* ft1r,,
where (d D,ld€)lqr means that the derivative of Dn is evaluated at the surface.

Although the Läne-Emden equation is compact and elegant, it is important to bear in

mind its many limitations. Recall that Eq. (10.110) contains no information about either

energy transport or energy generation within a star; the equation only describes hydrostatic

equilibrium and mass conservation, and then only within the highly idealized class of

polytropic equations of state. Nevertheless, the Lane-Emden equation is capable of giving

us some important insights into the structures of stars.

The¡e are only three analytic solutions to the Lane-Emden equation, namely n :0' \,

and 5. The n: 0 solution is given by

r2Do(6):|-r, with6r:J6'
6

It is left as an exercise for you to derive the n :0 solution. The solution for n : 1 is the

well-known "sinc" function

sin IDr(å): 
î, 

withf¡ - n,

and the n : Ssolution is given by

Ds(Ë) : [1 + E" l3]-'/', with Ç1 -+ oo.

In the latter case you are asked to verify that although the radius of the star is inf,nite, the

total mass of the star is actually finite. This is not the case for values of n > 5. Thus, the

physical limits of n are constrained to the range 0 < n < 5. Graphical representations of
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FIGURE 10.12 The analytic solutions to the Lane-Emden equation: De(f ), D(€), and D5(f )

by polytropes of index 1.5 (technically these are non-relativistic, completely degenerate
stars). Although the important n : 1.5 case cannot be solved analytically, it can be solved
numerically.

Another important polytropic index is the n :3 "Eddington standard model" associated
with a star in radiative equilibrium. To see how this model corresponds to radiative equi-
librium, consider a polytrope that is supported by both an ideal gas and radiation pressure
(see Eq. 10.20). If the total pressure at a certain location in the star is represented by P, and
the contribution to that pressure due to an ideal gas is given by

Pr - PkT : þP, (10.111)o 
þmn

where 0 < þ < 1, then the contribution due to radiation pressure is

1.t
P, : 

laTa 
: (I - þ)P. (10.112)

Since we are looking for a polytropic equation of state that can be expressed independent
of temperature, we can combine the last two expressions to eliminate Z. Solving for Z in
Eq. (10.111) and substituting into Eq. (1O.II2), we obtain

I / þPp.mp\a=at,_41 :(l _p)P.
3 \ pk / 

\ '-l-.

This leads immediately to an expression for the total pressure in terms of the density, namely

p : Kpa/3 (10.113)
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where

-=lryl'''(#^)^''
Since y - 4l3,this implies thatn :3.28

Certainly the two most physically significant polytropic models correspond to n : 1.5

and n :3. Although neither model can be solved analytically, the use of computers ¡1¿

numerical integration algorithms allow us to explore their structure and behavior relatively

easily. Careful study of these polytropes can yield important insights into the structures of
more realistic, although significantly more complex stellar models.

l0.6rTHE MAIN SEQUENCE

The analysis of stellar spectra tells us that the atmospheres of the vast majority of all stars are

composed primarily of hydrogen, usually aboutT}Vo by mass (X - 0.7), whereas the mass

fraction of metals varies from near zero to approximately 3Vo (0 < Z < 0'03). Assuming

that the initial composition of a star is homogeneous (meaning that the composition is the

same throughout), the first set of nuclear fusion reactions ought to be those that convert

hydrogen into helium (the pp chains and/or the CNO cycle). Recall that these reactions

occur at the lowest temperatures because the associated Coulomb barrier is lower than

that for the burning of more massive nuclei. Consequently, the structure of a homogeneous,

hydrogen-rich star ought to be strongly influenced by hydrogen nuclearburning deep within

its interior.
Because of the predominance of hydrogen that initially exists in the core, and since

hydrogen burning is a relatively slow process, the interior composition and structure of the

star will change slowly. As we saw in Example L0.3.2, a rough estimate of the hydrogen-

burning lifetime of the Sun is 10 billion years. Of course, the surface conditions will not be

completely static. By the Vogt-Russell theorem, any change in composition or mass requires

a readjustment of the effective temperature and luminosity; the observational characteristic

ofthe star must change as a consequence ofthe ccntral nuclear reactions. As long as changes

in the core are slow, so are the evolutionary changes in the observed surface features.2g

Since most stars have similar compositions, the structures of stars ought to vary smoothly

with mass. Recall from Examples 10.1.1 and 10.2.1 that as the mass increases, the central

pressure and the central temperature should increase. Therefore, for stars of low mass,

ln" pp chain will dominate since less energy is required to initiate these reactions than

the reactions of the CNO cycle. For high-mass stars, the CNO cycle will likely dominate

because of its very strong temperature dependence'

28We will learn in Chapter 16 that stars supported solely by a fully relativistic, completely degenerate gas can also

be described by a polytropic index of 3; see Eq. (16.15).
29Some short-period surface changes can occur that are essentially decoupled from

core. Stellar pulsations require speciflc conditions to exist, but their timescales are

nuclear timescale. These oscillations will be discussed in Chapter 14.

the long-term variations in the

usually much shorter than the


