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Figure 9.1 IntensitY 1¡

is the amount of electromagnetic radiation energy having a, wavelength between

À and À+dÀ that passes in time dú through the area dA into a solid angle dA --
sin|d,0d,þ. The specific intensity therefore has units of erg s-1 cm-3 sr-1.2

The Planck function B^, Eq. (3.20), is an example of the specifrc intensity for

the special case of blackbody radiation. In general, however, the energy of the

Iight need not vary with wavelength in the same way as it does for blackbody

rad,iation. Later we will see under what circumstances v/e may set Ix: Bx.

Imagine a light ray of intensity 1.r as it propagates through a vacuum'

Becausu ,I¡ is defined in the limit d,Q -- 0, the energy of the ray does not spread

out (or al,o"rg"). The intensity is therefore constant along any ray traveling

through empty sPace

In general, the sPecific intensity ,[¡ varies with direction' The mean in-

of the radiation is found by integrating the specific intensity over all

d.irections and dividing the result by hr sr, the solid angle enclosed by a sphere,

to obtain an average value of 1¡. In spherical coordinates, this average value

is3

(/.r) = * 11¡ 
dcr : h |;1,":r'r¡ sin e d0 dó' (e'1)

For an isotropic radiation field (one with the same intensity in all directions),

(/r) : .I¡. Blackbody radiation is isotropic and has (/¡) - B¡.

To determine how much energy is contained within the radiation fi'eid, we

can use a "trap" consisting of a small cylinder of length dL, open at both ends,

with perfectly reflecting walls inside; see Fig. 9,2. Light entering the trap at

2Recall from Section 3.5 that erg cm-3 indicates an energy per unit area per

length interval, erg cm-2 cffi-l, not an energy per unit volume'
ãM*.ry texts refer to the average intensity as J¡ instead of (/¡)

unit wave-
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Figure 9.2 Cylindrical "trap" for measuring energy density u¡

one end travels and (possibly) bounces back and forth until it exits the other
end of the trap. The energy inside the trap is the same as what would be
present at that location if the trap were removed. The radiation that enters
the trap at an angle d travels through the trap in a time d,t - d,Llþcosd).
Thus the amount of energy inside the trap with a wavelength between À and
À + dÀ that is due to the radiation that enters at angre 0 is

E^ d^ : Ix d,À dt d,Acos d dQ : Ixd,À dA dA 
q.
c

The quantity dAdL ís just the volume of the trap, so the specific energy
density (energy per unit volume having a wavelength between À and À + dt)
is found by dividing E¡il,by dL dA, integrating over all solid angles, and using
Eq. (e.1):

u¡d,À:: I r¡aÀd,e -: Ir- lr":or^ À sin 0 d0 dó : 
+(rÀ) dÀ. (s.2)

For an isotropic radiation field, u¡d),: (4nlc)IsdÀ, and for blackbody radia-
tion,

u¡d,),:T"^d,À-ffid^ (e.B)

At times it may be more useful to express the energ"y density in terms of the
frequency, u, of. the light:

u, d,u :9s, d,u - 4*)4 o, (e.4)
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Thus u, d,u is the enelgy per unit volume with a frequency between u and

u*du.
The total energy d.ensity, u, is found by integrating over all wavelengths:

lo*
u uxd,\.

For blackbody radiation (/.r : Br)' Eq' (3'25) shows that

4tr

c
B^g) d^

4oTa
eT4, (e.5)u

lo* c

where a:4olc is known as the radi,ati,on constant, and has the value

a : 7 .566 x 10-15 erg cm-3 lK-A.

Another quantity of interest is F¡, the radiative flux. Fxd'\ is the net

energy having a wavelength between À and À + d^ that passes each second

through a unit area in the direction of the z-axis:

F^d,^: | ,^dÀ cos 0 d,{'t : I'; Ir":rI¡d,).cos 
á sin 0 d0 dÓ. (9'6)

The factor of cos g determines the z-component of a light ray and allows the

cancellation of oppositely directed rays. For an isotropic radiation field there

is no net transport of energy' and so -F.r : 0'

Both the radiative flux and the specific intensity describe the light received

from a celestial source, and the read.er may rñ¡onder which of these quantities

is actually measured by a telescope's photometer, pointed at the source of

light. The answer depends on whether the source is resolved by the telescope.

Figor" g.A(a) shows a source of light, uniform over its entire surface,4 that is

resolved by the telescope; the angle d subtended by the source as a whole is

much larger than |min, the smallest angle resolvable according to Rayleigh's

criterion. In this case, what is being measured is the speci,fic i,ntens'ity, lhe

amount of energy passing through the aperture area into the solid angle f)-in

defined by p*ir,. For example, at a wavelength of 5010 Ä., th" measured value

of the specific intensity at the center of the sun's disk is

lsoro : 4.03 x 101a erg s-1 cm-3 sr-1'

Now imagine that the source is moved twice as far away. According to the

inverse square law for light, Eq. (3.2), there will be only (Ll2)2 : Ll4 as much

aThe assumption of a uniform light source precludes dimming effects

ening, which will be discussed later

such as limb dark-
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Figure 9.3 The measurement of (a) the specific intensity for a resolved
source and (b) the radiative flux for an unresolved source.

energy received from each square centimeter of the source. If the source is
still resolved, however, then the amount of source area that contributes energy
to the solid angle 0*i' has increased by a factor of 4, resulting in the so,n-Le

amount of energy reaching each square centimeter of the detector. The specific
intensity of light rays from the source is thus measured. tô be constant.s

However, it is the radi,at'iue flun that is measured for an unresolved source.
As the source recedes farther and farther, it will eventually subtend an angle
0 smaller than îmin, and it can no longer be resolved by the telescope. When
0 1 O^in, the energy received from the ent'ire source will disperse throughout
the diffraction pattern (the Airy disk and rings; recall Section 6.1) determined
by the telescope's aperture. Because the light arriving at the detector leaves
the surface of the source at all angles lsee Fig. 9.3(b)], the detector is effectively
integrating the specific intensity over all directions. This is just the definition of
the radiative flux, Eq. (9.6). As the distance r to the source increases further,
the amount of energy falling within the Airy disk (and consequently the value
of the radiative flux) decreases as If r2, as expected.

A photon of energy -E carries a momentum of p: Elc and thus can exert
a radiation pressure. This radiation pressure can be derived in the same

5Thi" argument has been encountered previously in the statement in Section 6.1 that the
image and object intensities of a resolved object are the same.

Aperture
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Figure 9.4 Radiation pressure produced by incident photons from the

solid angle df).

way that gas pressure is found for molecules bouncing off a wall. Figure 9'4

shows photons refi.ected at an angle 0 from a perfectly reflecting surface of area

d,A irúo a solid angle dQ. Because the angle of incidence equals the angle of

refl,ection, the solid angles shown for the incident and reflected photons are

the same size and inclined by the same angle I on opposing sides of the z-axis.

The change in the z-component of the momentum of photons with wavelengths

between À and À + dÀ that are reflected from the area dA in a time interval dú

is,

dp¡dÀ: lþr)n".r- (pr)i,,itidl dÀ: lt^:ot' - (-Er cosd)l ,^erJuz,-t c \ c ))-"

- 
2 Ex coso 

d,À : ? ,^ o^dt dA 
"o"2 

o d,Q,.cc
Dividing dpxby dt and dA gives (de¡ldt)ldA. B:ut from Newton's second and

third laws, -d,p¡ldt is the force exerted by the photons on the arca dA.6 Thus

the radiation pressure is the force per unit area, (dp¡ldt)ldA, produced by

the photons within the solid angle dO. Integrating over the hemisphere of all

incident directions results in Pr.¿,.1dÀ, the radiation pressure exerted by those

photons having a wavelength between À and À + dÀ:

2f - ' 
r2r tr/2

prad.Àd,À:- I I¡d,),"o"2TaA:i I l' I¡d),"or20sinld,gdþ.-rau'/\ cJhemisphere " cJó:oJo:o

6We will ignore the minus sign, which merely says that the force is in the -z-direction
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Just as the pressure of a gas exists throughout the volume of the gas and
not just at the container walls, the radiation pressure of a "photon gas" exists
everywhere in the radiation field. Imagine removing the reflecting surface dA
in Fig. 9.4 and replacing it with a mathematical surface. The incident photons
will now keep on going through d,4.; instead of reflected photons, photons will
be streaming through dA from the other side. Thus, for an'isotrop,ic rad'iat'ion

field,, there will be no change in the expression for the radiation pressure if
the leading factor of 2 (which originated in the change in momentum upon
reflection of the photons) is removed and the angular integration is extended
over all solid angles:

Prad,À

Pr"d

d^:! [ I¡d,À co"2 o de
C .,/sphere

lr^ 1,":
I^d,^ 

"or2 
0 sinl d,0 d,þ

0

Aq¡:;;r^d^. (e.B)

However, it may be that the radiation field is not isotropic. In that case,

Eq. (9.7) for the radiation pressure is stil valid but the pressure depends on
the orientation of the mathematical surface dA.

The total radiation pressure produced by photons of oll wavelengths is
found by integrating Eq. (9.8):

1

c

Io*
Pt"a Prr¿,,r dÀ

For blackbody radiation, it is left as a problem to show that

* Ir* 
Bx(D d,À: + : Lora : 1

-u
3

Thus the blackbody radiation pressure is one-third of the energy density.
(For comparison, the pressure of an ideal monatomic gas is two-thirds of its
energy density.)

9.2 Stellar Opacity

The classification of stellar spectra is an ongoing process. Even the most basic
task, such as finding the surface temperature of a particulan star, is complicated
by the fact that stars are not actually blackbodies. The Stefan-Boltzmann re-
lation, in the form of Eq. (3.17), defines a star's effective temperature, but some


