Astronomy 145 class notes Spring 1890

4. SHOCKS: STRONG NONLINEAR WAVES
IN THE INTERSTELLAR MEDIUM

The problem for this section of the course is: “A supernova explodes, releasing
10%! erg. What is the temperature behmd the shock as a function of time?” (Spitzer,
pp. 246-260)

We have talked about stars and seen that massive stars end their (obvious) lives
in explosions of “supernovae” that eject matter into the interstellar medium. Now,
we will examine what happens to the interstellar medium when these explosions hit
it. This is the problem of the motion of a disturbance in the interstellar medium:
how can we solve it7 We will need the equations of fluid dynamics (ignoring magnetic
fields: although these fields may be important, wé can obta.m the essential properties
of supernovae without this complication).

What is flutd dynamics?

We describe a fluid by its density, p, velocity, u, and pressure, P (or another
thermodynamic variable ... entropy per unit mass, temperature, ...). p, u, and P are
five variables, so we will need five equations. These are:

mass conservation (equation of continuity) scalar
momentum conservation (Euler equation: a force/acceleration equation) vector
energy /entropy conservation (equation of state) scalar

and provide 1 + 3 4+ 1 equations, as required. They are the dynam:cal counterparts of
the static equations of stellar structure.
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4.1. FLUID DYNAMICAL EQUATIONS

We will derive these equations in one dimension (which is what we will be
interested in most of the time) and quote results for three dimensions. We will use a
simple physical method of getting the equations; far more sophisticated and complicated
methods exist.

4.1.1. Mass Conservation

P{xd—dx}
px+dx
U, (x+dx)

o

in dt, the mass flowing into the cylinder = [¢(z) }u.(2)] dA:df]
out of the cylinder = [p(z + dz)u(z + dz)]dAdt .

Therefore, the mass change in the cylinder in df
. wszdt {puxiz—puzlz-i—dz}
' e}
= —dAdt. e (puz).dz .
But the mass in the cylinder is dA dz p. Hence, the rate of change of mass in the cylinder
is
dp 0
d-Adz = —~dAdz 22 (prz)

i.e., /

= g(’“‘z) -0 . (one-dimensional)

In three dimensions, this becomes

9p

= +V.(pu)=0 . (three-dimensional)
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4.1.2. Momentum Equation

+dx

£x+d
ux x+dx)

Nt
(\-A-’\

in dt, the momentum flowing into the cylinder = p(z)u.(z) . [us(z) . dA dt]
out of the cylinder = p(z + dz) u.(z + dz) . [u.(z + dz) .dA dt] .

Uy

Therefore, the net momentum change in the cylinder

= [pui|z ——puil'z;'_d;] dAdi
5 - _
= —dAdt — (pul) dz E

at z at “

The net pressure force on the cylinder

d
= P(z)dA — P(z +dz)dA = _B_i dAdz
(rate of change of momentum in cylmder) (force) + (rate of change of momentum
caused by momentum flux), i.e., T
at (puz) ( :B)
ie., -
dp Quz 3(puz) du, OP
“a P - " ez "™ 9z
but
% = (pus)
at ] el
Therefore,
duz Oty Qf
ot = Pz T Bz °
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oT

P) (Bu.z +ug au”) =’ —Q . (one-dimensional)
z

In three dimensions, this is

ot

[6_11 + (u.V)u ] —VP . (three-dimensional)

Where the vector operation

_ Ovz vz szl "Quy vy va
(u.V)v:(u=-£+uya—y+uzaz,u,,a +u ya +u 275,

Bz

We often write

so that these equations would become 3-%_,_ ) ;;_)

2X
Du., P Du
Dt =~ oz . gy~ VE @
D d
What is the difference between — a.nd EE?

D = convective derivative — rate of change of something as seen by an observer
moving with the fluid. L
Fri partial derivative — rate of change of something as seen by an observer at

rest watching the fluid flow past.

Page 4.4



Astronomy 145 class notes Spring 1990
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Consider a quantity Q. An observer at = sees @ in a fluid opposite him change

d . ;
at a rate —Q An observer moving with the fluid, i.e., at speed u., sees a change in
Q due to a change with time and due to the fact that at dt later, he is looking at the
fluid at a different point: = + dz, where dz = u dt. In other words, the change seen by
moving observer is

9Q 99, _ (99 99
dt6t+azd$_(6£+3:nuz)dt"
i.e.,
Dg _oQ 99
Dt — ot )

The extension to three dimensions is obvious.

4.1.3. Energy/Entropy Equation

P £x+dxg
ﬂ:((;-t(}c}ltx)

g
plx
U(x

Define e = internal energy /unit mass, and ¢ = energy input/unit mass/unit time.
Then,
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1
in dt, the energy flowing into the cylinder = uzp (e + Eui) dAdt

1
out of the cylinder = uzp (e + 2 - dAdt
z+dz

Thus,

work done on gas in cylinder = (force on cylinder) X
(distance moved by point of application of force)

= Pug|_ dtdA

dtdA .

work done by gas in cylinder = P"’==|x+d=

A final contribution to the changing enefgy“ content of the cylinder is the energy
generated inside the volume, pe.dA dz.di. '

So, the total energy change in the cylinder is

5 ,
g [puz (e + lui)] dAdzdt — el (Puz) dAdzdt + pe.dAdzdt
Oz 2 ~ Oz

and this must equal

. [,o (e e %uz)] dAdzdt .

ot |
Hence,
3 1, 7] 1, : ;
o7 [Plet gua || =5 [ots (W +ouz || +pe (one-dimensional)
(7] 1, 1, : ;
3 |° e+ 2t + V. |pu|w+ -é-u =pe . . (three-dimensional)

Where I have introduced w, the enthalpy per unit mass: w =e+ -1-;-.

It is convenient to simplify this! Work with the one-dimensional equation.
Expanding, it becomes
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Ou, opP
+Pa +uzax = p€ ,
— de 3 8 aP
de Ou, 2 OUg Ug ar
pop TP P gy TPt g T T =R
i.e.,

Je Jde Jur
(af’ Yz g )+Pa TP

But the mass conservation equation

implies that

Az p\at ‘@ p Dt
. " Ouy
Therefore, eliminating E
De PDp_
Dt p Dt P
or
De P Dp_
Dt p2 Dt

for the one- or three-dimensional case. We can simplify this further. Thermodynamics

tells us that e
s
de = Tds — Pdv
= T'ds + —I-:—dp ;
p
Hence,

P
Tds = de— p—zdp 3
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and

T Bs : entropy formulation

also for the one- or three-dimensional case. “Entropy arises due to the injection of

energy” ... this is simply the statement ds = —f-'

Therefore, the three equations of fluid mechanics are:

dp O dp
i R — = 0

Ou, Jug BP e du

=)= V)u| =-VP

"(at +"=ax) ~ oz | [at+(“ )_ ,

ds ds Os )

- - v)s| =

T(at"’“‘ax) € T[a + (u. ) €
(one-dimensional) (three-dimensional)

Note that these equations are nonlinear, even in one dimension. This is
responsible for the wide variety of possible fluid motions, and some of the cha.rm and
difficulty of the subject.

Often we do not use or acknowledge the energy/entropy equa.tion at all; if there
is no internal energy generation (so that there is no dissipation, and generation, of heat
and € = 0), then the entropy equation can often be replaced by an equation of state P(p).

pkT

myg
might be P « p7. This is really a statement of entropy conservation:

Note that the P(p) equation is in addition to P = or whatever; an example

s In(Pp~7) ,
. Ds . T g
so if P o p7, — = 0. In cases where there is no dissipation or energy generation,

we will therefore use the adiabatic equation of state for the fluid. (But beware: this
is not generally possible. It only applies to flows where P o p7 and the constant of
proportionality is the same everywhere in the fluid: isentropic flows.)
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4.2. SOUND WAVES

The simplest solution of any set of physical equations is generally that for small
disturbances from equilibrium. This is usually a wave motion (or SHM) solution. In a
fluid, we call these disturbances sound waves. Sound waves are the way that different
parts of a fluid get to know about one another (they exchange information — e.g., about
pressure — at a speed equal to the speed of sound).

We obtain sound waves in their simplest form by assuming an equation of state,
P(p), and considering small perturbations of the fiuid properties about their equilibrium
values, Pp = constant, pg = constant, up == 0.

p = potp1(z,t)
P= P0+P1($,t)
Uy = ul(z,t)
T .
small perturbations: py € pp , PI1 <

Since the fluid is initially at rest, ugp = 0. We now substitute these forms for p, P, and
u, into the equations of fluid motion, and drop all terms that are the product of two
small quantities.

o} d i
g(ﬂo +p1) + 5;[(90 +p1)ui] =0 . mass conservation
Therefore,
L
ot TP, =0
du 8 8
(po + p1) [_a‘f' +uy %] = ~ 3z (Po+ P1) . Euler’s equation
Therefore,
e
Po 5 8z

We also need a % relation:
P=P(p) , equation of state
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from which
Po+ Py = P(po +p1)
= P(po) + p1 (%i;-)o
Thus,

8P
Py =p (a_p) .
()

Using these equations, which are homogeneous in first order quantities, we first eliminate

u; to obtain
62,01 _ 32P1

Atz 9z

and then eliminate P;, to get

d%p1 (B8P *p;
8tz \ 8p o 9z? )

.'I‘his is a one-dimensional wave equation; if we look for wavelike solutions,
p1 o e*(k2—wt) e find that they exist if the angular frequency, w, and wavenumber, k,

are related by
w? = k? (6_1’) ;
ap /o

But the wave speed (the speed of sound in this case) is ¢, = ¥; so the speed of a sound
wave is given by .

2_ (9P
8 apo‘

%p; _ 2 8%py
o2t 9g2

In fact, the general solution of

is
p1=F(ztcat) , _
which corresponds to traveling waves moving at speed ¢, in a positive z direction (z — ¢t)

or in a negative z direction (z + ct). F is an arbitrary function, so that waves of arbitrary
shape travel coherently, without dispersion. '
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P1§x)

/ N
I X

P1(x)

F(x+c,t) F(x—c,t)

If the gas is adiabatic,

and so

Hence,

or, using the ideal gas law,

so that i
(=)’
“=\Tm)

where m is the mass of the fluid pa.rtlcle ¢, is not only the wave speed, but close to
the mean speed of the fluid particles.

This was Iinear theory. The perturbations p; do not have a significant effect on
the properties of the gas, and the waves do not change shape. But if the waves are
larger, the terms p?, etc., cannot be ignored, and the wave significantly changes the
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properties of the gas it goes through. In particular, where p; is large, the temperature
of the gas is raised, and c, is larger, so the wave travels fastest at its crest.
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Because large waves tend to “break,” a region develops where at a given z
the density p(z) attempts to become multivalued. But the density (or pressure, or
temperature) cannot become multivalued. So something strange must happen when
the gradient of p; (or Py, or Ty, or u3) becomes infinite.

We call a region where something changes very fast a shock front. In such regions,
the continuum approximation about the gas breaks down — things are changing a lot
on a scale of one mean free path — so the fluid equations are not valid.

Shocks are a tracer of supersonic motson. In the example above, the top of the

strong wave is traveling faster than the speed of sound in the undisturbed medium.
This is why a shock develops.

We say a shock occurs because the unperturbed (preshock) gas cannot be told
(by “messages” traveling only at the speed of sound) to get out of the way of what is
approaching. So the gas is hit by something without advance warning and is compressed
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a lot before it heats up enough that it can flow (subsonically) out of the way (subsonic

with the new, higher, sound speed).

Supersonic plane

sonic boom is sound of bow shock passing

this is a “standoff shock” because it stands
off from the front of the projectile

Explosion

shock front

shocked gaé

undisturbed gas
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Piston supersonically moving

ambient gas

t=0
shocked gas ambient gae
e u (c' rressrsrsrnrmnnanae v oy
shock front
t >0

The shocked gas is heated, may be dissociated (if the ambient gas is molecular),

and has sound speed
(’szTz) e
Cy =

ma

The shocked gas region is made up of all the stuff compressed between the shock front
and the piston.

The Mach number of the shock is

M=2s1,
ci

where the shock moves supersonically into the ambient gas. But

v
—sl o
€2

and the shock moves subsonically relative to the shocked gas. The shocked gas “knows

about” the piston and shock and comes to a steady state (well, almost, since it is still
accumulating mass).
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