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The depth dependence of the source
function

6.1 Empirical determination of the depth dependence of the source
function for the sun

As we have seen in Chapter 5, the intensity leaving the stellar surface
under an angle 9 is given by

where the relation between A4,; and a;; is known to be (see (5.11))
A= ayi! 6.2

If we can measure A, for a given wavelength 4, i.e., if we measure the
center-to-limb variation of I,(0, 9), then we can determine the depth
dependence of the source function. We can do this for all wavelengths 4
and obtain S;(r,) for all 4.

As an example, we have chosen the wavelength 4= 5010 A. Measured
data for the center-to-limb variation can be approximated by (see the table
in Chapter 6, problem 1, page 233).

1,(0, 9) = [ao(1) + a,(A) cos § + 2a,(2) cos? 911,(0, 0). 6.3

From this expression we find, according to (6.1), that
S,(7,(5010 A)) = [ay (1) + a,(2)7,(5010 A) + a,(1)3(5010 A)]1,(0,0). 6.4

In Fig. 6.1 we have plotted the source function S;(r,;(5010 A)) as a
function of the optical depth according to equation (6.4). If we now go
one step further and assume again that S, = B,(T (,)), then we know at
each optical depth 7, how large the Planck function B, has to be. Since
B, depends only on the temperature T and on the wavelength 1 we have
one equation at each optical depth to determine the temperature T, which
will give the required value for the Planck function, i.e.,

2hc? 1
S(z;) = Buy(T(z,)) = 5 hIAT _ 1 6.5

where, in our example, the wavelength A is 5010 A.

51
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From equation (6.5) and the values of S,(r;) derived from the
center-to-limb variation, the temperature T can be determined as a function
of the optical depth for the wavelength of 5010 A.

The optical depth dependence of the temperature obtained in this way
for the wavelength of 5010 A is shown in Fig. 6.2. As we expected, the
temperature increases with increasing optical depths.

6.2 The wavelength dependence of the absorption coefficient in the sun

There is, of course, nothing magic about the wavelength of 5010 A.
We can follow the same procedure for any other wavelength A. For each
wavelength we find a relation T(r;), showing the dependence of the
temperature on that particular optical depth for the chosen wavelength.
In Fig. 6.3 we show the results for a number of wavelengths. We find
different curves for the different wavelengths because «; is dependent on
/. For a given layer in the solar atmosphere with a given geometrical depth

/
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S, x 107" [cgs] i
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B / :
/
/
/
41 o
3k
2t _
1 : : ;
0 0.5 1.0 1.5
7, (5010 A)

Fig. 6.1. The dependence of the source function S, (5010 A) on the optical depth
1, for the wavelength of 5010 A. From 7, > 1 we receive little radiation. The values
for deeper layers therefore become less certain as indicated by the dashed line.
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t and a particular temperature, we have different optical depths, t,, for
different wavelengths A. We know, however, that at a given geometrical
depth ¢ we must have one value for the temperature. All points with the
same temperature T, must therefore refer to the same geometrical depth.
We draw a horizontal line through Fig. 6.3 which connects all the points
with the temperature Ty = 6300 K. All these points must belong to the
same geometrical depth t. We now write the optical depths 7, in the form

‘L';_ - Klt N 6.6
Here «, is an average over depth down to depth ¢. For all the points on
the horizontal line we know that the value of ¢ is the same. We read off

at the abscissa the optical depths 1, , 7;,, T;,, etc., which belong to this
depth t. Equation (6.6) now tells us that

T T T
tllzz__iz=:A_iz=:__ig, 6.7
KJ.;; KAZ Kl1
7000 ; ; :
5010 A 7
//,f
//,/
G
e
P
65001
.
6000}
5500}
5000 1 1 1 1
0 0.5 1.0 1.5
7, (5010 A)

Fig. 6.2. The dependence of the solar temperature T on the optical depth at
1=5010 A is shown as derived from the observed center-to-limb variation of the
solar intensity at A = 5010 A. For t, > 1 the values become less certain, as
indicated by the dashed line.
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or

Tis _ K and Ty K A 6.8
Tiy Kip Th  Ka,
which means we can determine the ratio of all k;, with respect to one k..

For a given temperature T(t) we can also plot the values 7,(T) as a
function of 1. Because ¢t is the same for all A, the wavelength dependence
of 7, shows directly the wavelength dependence of x,;, as was first
derived by Chalonge and Kourganoff in 1946.

If x,, does depend on the geometrical depth ¢, we will find an average
value of ,, down to the depth ¢. For different temperatures, i.e., for different
depths, these averages will be somewhat different. The results are shown
in Fig. 6.4.

It turns out that the wavelength dependence of k, agrees with the

absorption coefficient which was calculated for the negative hydrogen ion

6500 -

6000+

55001

5000}/

,// 7,(6010) ,(3737) 1,(8660)
1 L l 1

0 05 1.0 1.5

Ta

Fig. 6.3. The dependences of the temperature T on the optical depth 7,, 7;,, 7;,,
where 4, = 5010 A, 1, = 3737 A, 1, = 8660 A. The horizontal line connects points
of equal temperature T, = 6300 K. These points must all belong to the same
geometrical depth t. The corresponding optical depths for the different
wavelengths can be read off at the abscissa.
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H~ (see Fig. 6.4). Rupert Wildt first suggested in 1938 that H™ might be
most important for the continuous absorption coefficient in the solar
photosphere. It is still very difficult to measure the absorption coefficient
for H™ in the laboratory because it is so small. The solar photosphere
needs a depth of roughly 100 km to reach an optical depth of 1. In the
laboratory we can use higher densities, but the required path lengths are
still very large. Therefore, it was very important when Chalonge and
Kourganoff (1946) showed that the wavelength dependence of x, could be
measured for the sun and that it did agree with the one calculated for H™.

6.3 Radiative equilibrium

We pointed out above that the energy transport in the star, which
has to bring the energy from the interior to the surface, requires that the
temperature decreases from the inside out, because a thermal energy flow
goes only in the direction of decreasing temperature. This discussion
indicates that the energy flux through the star is related to the temperature
gradient. Here we will show that we can actually calculate the temperature
gradient if we know how much energy is transported outwards at any given
point and by which transport mechanism.
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Fig. 6.4. The wavelength dependence of the continuous absorption coefficient x;
in the solar photosphere as determined by Chalonge and Kourganoff in 1946.
(From Unsold, 1955, p. 116.)
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We know from observation how much energy leaves the surface of a
star per cm? each second. We expect that a larger temperature gradient is
needed for a larger energy transport. We also expect a larger temperature
gradient if the heat transport is made difficult by some obstacle. For
instance, if we think about a room with an outside wall where the heat is
leaving, and with a radiator on the inside wall on the opposite side, then
there will be a temperature gradient from the radiator wall to the outside
wall. The temperature gradient will be larger if the window is opened on
a cool day, which will cause a large energy flux to go out the window. If
a large flux is to go out the window the temperature gradient will have to
be larger if shelves are erected in front of the radiator which inhibit the
heat flow. The heat flow is largest for the largest temperature gradient and
for the smallest number of obstacles. We can turn this around and say if
a large amount of heat energy transport is required we need a steep
temperature gradient, and if the energy transport is made difficult, we also
need a steep temperature gradient in order to transport a given amount
of energy.

If we have measured the amount of energy leaving the stellar surface,
how do we know how much energy is transported outwards at a deeper
layer? We know that the radiation we see comes from a layer which has
a geometrical height of a few hundred kilometers. We can easily calculate
how much thermal energy is contained in this layer. For instance, for the
sun the number of particles per cm?® is about 10'7. The total number of
particles in a column of 100 km height and a cross-section of 1 cm? is then
roughly 1024, Each particle has a thermal energy of 3kT, which is about
10~ *2 erg. The total thermal energy of this column is therefore about
10'2 erg cm ™~ 2. The radiative energy loss per cm? of the solar surface is
equal to nF, which for the sun is measured to be 6.3 x 10'° erg cm ™ 2s” 1.
The energy content of the solar photosphere therefore can only last for 15
seconds if the sun keeps shining at a constant rate. However, we see that
the photosphere is not cooling off; therefore, we know that the amount of
energy which the sun is losing at the surface must constantly be put into
the photosphere at the bottom. If exactly the same amount of energy were -
not replenished at any given time the solar photosphere would very rapidly
change its temperature. If too little energy were to flow in from the bottom
the photosphere would cool off; if too much were transported into the
bottom of the photosphere it would heat up and more energy would leave
the solar surface. Nothing like this happens, so the amount of energy
flowing into the photosphere per cm? each second must equal exactly the
amount of energy lost at the surface, which is nF. The same argument can
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be made for the layer below the photosphere. It too must get the same
amount of energy from the next deeper layer in order to remain at the
same temperature. Therefore, we must have the situation shown in Fig.
6.5. The energy flux must remain constant with depth.

This means
(:1—1: =0, or ((11—1; =0
or
nF = const. = 6 T%;. 6.9

Equation (6.9) is a basic condition for a star if it is to remain constant
in time and not supposed to heat up or cool off. We call this the condition
of thermal equilibrium. This should not be confused with the condition of
thermodynamic equilibrium, for which we require that the temperature
should be the same everywhere and that we should always find the same
value of the temperature, no matter how we measure it. Nothing like this
is required for what we call thermal equilibrium. For thermal equilibrium
we require only that the temperature should not change in time.

So far we have not yet specified by which means the energy is transported.
The condition of thermal equilibrium does not specify this. We can have
different transport mechanisms at different layers. We know that at the
surface the transport must be by radiation. If in the deeper layers the energy
transport is also due to radiation, i.e., if the heat flux F is radiative
heat flux, then we talk about radiative equilibrium. As we said, this does
not have to be the case. We may have some energy transport by mass
motion — the so-called convective energy transport — or we might have
energy transport by heat conduction. If all the heat transport were by
convection, which, strictly speaking, never happens, we might talk about
convective equilibrium. Also, if all the energy transport were due to heat
conduction, we might talk about conductive equilibrium. The latter two

nF
f
aF
!
aF
"
aF
!

Fig. 6.5. The same amount of energy must be transported through each horizontal
layer if the temperature is to remain constant in time.
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i cases are very rare in stars, so these concepts are hardly ever used. The
scheme in Fig. 6.6 demonstrates the situation.

Generally, in the stellar photospheres we find that the condition of
radiative equilibrium is a very good approximation. In the solar
photosphere we see granulation showing that there is also energy transport
by mass motion, but the convective flux is of the order of 1% of the total
flux. If there is a temperature gradient there is also some conductive flux,
but again, this is much smaller than both the radiative energy flux and
the convective flux. When we know how large the temperature gradient is
in the solar photosphere and in other stellar atmospheres, we will come
back to the discussion of this question. In the following chapters we will
only be concerned with radiative equilibrium.

[ For radiative equilibrium we now consider the energy flux F = F, to be
'l radiative flux only. Equation (6.9) does not, of course, imply that the same
photons keep flowing across the different horizontal planes. There is much
absorption and re-emission, but the surplus of radiation in the outward
; direction, i.e., the net flux F(t), has to remain constant.

In order to see what this means for the source function, we have to start
I from the transfer equation (5.3) which we integrate over the whole solid

angle and obtain

J‘COSS%I—A(‘L'A,S)CI(U=+J‘I;‘(TA, S)dw—JSl(tl)da). 6.10

T,

il

by

Thermodynamic equilibrium: nothing changes in time and space

Thermal equilibrium: no temperature changes in time
requires div F =0
1 with F = Fradiative+Fconvective +Fconduc(ive

’ Special cases of thermal equilibrium

~ | e

Radiative equilibrium Convective equilibrium Conductive equilibrium
F_= Fadiative F.= Feonvective F.= Feonductive
div Fgiave = 0 div Fonvective = 0 div Fognduciive = 0
(Feonvective = 0 (Fradiative = 0 (Fadiotive = 0
!. Fconductive . conductive — 0) Fconvective = )

Fradiative > Fconvec(ive+Fconduclive Fconvective > Fradialive+Fconduclive Fconductive > rradiative+ Fconveclive

| in the high in the upper in the upper

photospheric layers, and layers of the hydrogen parts of the transition
!_ in major fractions of convection zone regions between stellar
* stellar interiors chromospheres and

coronae. Also in interiors
of white dwarfs.

Fig. 6.6 explains the concepts of the different equilibria.
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Interchanging differentiation and integration on the left-hand side yields

d
de. (mFy(z;) = J("S,{(Ta) + I,(z;, 9)) dw. 6.11
a
Integrating the right-hand side and dividing by 4= gives
1d
——— Fy(r;) = = 8;(v;) + J1(12), 6.12
4dr,

since S, can be assumed to be isotropic and J; = | I, dw/4n, according to
(5.32).

If we now again assume k, to be independent of 4, i.e., we assume a
grey atmosphere, we can then integrate over A and obtain

1 d [e 0} o0 [e o]
N . F;_(t) dl= _J‘ SA(T) d;\.+ J J;l(T) d;\.
or 6.13
BE F(r)=—-8(1)+J(1)=0
4dz ’
according to equation (6.9). Equation (6.13) tells us that

S(t)=J(1). 6.14

In a grey atmosphere, the source function must be equal to the mean
intensity J.

If the atmosphere is not grey, it is better to take x, to the right-hand

side of equation (6.12). Integration over A and division by 4r then yields

1dF(r;) [~
i dtl =L (,S, —x,1;)dA=0, 6.15
or
J\ (KASA,_KAJ},)dl=07 6.16
0

which must always hold if (6.19) holds for the radiative flux, i.e., if we have
radiative equilibrium.

The two conditions dF/dt=0 and (¥ k,;S;dA=[J k;J;dA are
equivalent.

Equation (6.16) can easily be understood: since [ x,S; dA describes the
total amount of energy emitted and g k,J; dA describes the total amount
of energy absorbed per unit volume, equation (6.16) only says that the
amount of energy absorbed must equal the amount of energy re-emitted
if no heating or cooling is taking place.

We can understand the functioning of radiative equilibrium by comparing
the emitted radiation with water being emitted from one fountain and
thrown into the next, where it is ‘absorbed’ and mixed with the other water
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and new water is re-emitted and thrown into the next one, etc. Fig. 6.7
illustrates the situation. If the water level is to remain constant, equal
amounts of water have to be ‘absorbed’ and ‘re-emitted’, but the ‘absorbed’
water is generally not the same as the re-emitted water.

6.4 The theoretical temperature stratification in a grey atmosphere
in radiative equilibrium

6.4.1 Qualitative discussion

As we saw earlier, the temperature stratification is determined by
the amount of energy which has to be transported through the atmosphere.
We know from observation that the amount nF =0T, is leaving the
surface per cm? each second. This is the amount which has to be transported
through every horizontal layer of the atmosphere. The larger the amount
of energy transport, the larger the temperature gradient has to be. This
means that the temperature gradient is expected to grow with increasing
T4, We also saw that the more difficult the energy transport, the steeper
the temperature gradient has to be. For the photons the obstacles are the
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Fig. 6.7 illustrates what is happening in radiative equilibrium. We compare the
flow of photons through different horizontal layers with the flow of water through
a series of fountains. The water (photons) is emitted from one fountain and flows
into the next one. Here it is ‘absorbed’ and mixed with the rest of the water. A
fraction of the mixed water is ‘re-emitted’, i.e., it flows into the next fountain, is
‘absorbed’ there, mixed with the water (photons) in this fountain and another
fraction is ‘emitted’ again and so on. If the water level (energy level) in all the
fountains (horizontal layers of the photosphere) is required to remain constant,
then the same amount of water (photons) has to flow out of each faucet into the
next fountain in each unit of time.
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atoms which keep absorbing them and emitting them equally in all
directions. We therefore expect a steeper temperature gradient if the
absorption coefficient x, is very large. dT/dt is expected to grow with
increasing . In fact, without any calculations we can estimate how fast
the source function must grow with depth if the radiative flux is to remain
constant. We can see this best from a series of drawings (see Fig. 6.8).
Again, we compare the photosphere with a number of fountains. We know
that on average the photons are absorbed after they have travelled a
distance with an optical depth At, =1 in the direction of propagation. On
average this corresponds to a vertical At =%, when averaged over all
directions. We therefore give the fountains a size corresponding to an
optical depth At =2 (see Fig. 6.8(a)). At the surface the flux nF is flowing
out. This amount of energy flowing into a half-sphere is indicated by one
arrow. At the bottom of this layer the same amount — one arrow — has to
be the surplus of energy flowing up as compared to the energy flowing
down. The source function is determined by the photons emitted by the
atoms. The atoms have no incentives to emit the photons preferentially
into one direction. The source function is therefore expected to be isotropic.
Since at the top just one arrow is flowing out, the emission, i.e., the source
function, in the top panel must be one arrow in each direction. The source
function in the top panel is completely determined by the outflow at the
surface. So one arrow is flowing downward from the top fountains into
the next deeper layer of fountains. Since the surplus flux upward has to
be one arrow, there must be an upward flow of two arrows from the next
deeper layer. Again, the source function is isotropic. Therefore, in the next
deeper panel there must be an emission of two arrows in all directions.
This means the source function must be twice as large as in the top panel.
Following this construction to the next deeper layer of fountains, we see
easily that for each absorption and re-emission process the emission into
a half-sphere must increase by the amount nF leaving the surface into a
half-sphere. In Fig. 6.8(b) we consider the energy emitted into half-spheres
and absorbed from half-spheres. The energy going into the half-sphere at
the surface is given by nF = ¢ T%;. So for each absorption and re-emission
process, i.€., over At =3, the emission into the half-sphere, which is 2nS,
must increase by nF. This means
AQ2rnS) =wF
At 2/3

AS

— =2F. 6.17
Az

=3nF  and

Blw

Before we start the mathematical derivation, let us look at Fig. 6.8(a)
once more and check what the relation is between J, the mean intensity,
and S, the source function. The total emission is given by 4nS, by all the
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| outgoing arrows. The total absorption is given by all the ingoing arrows,
1 which correspond to 4rxJ. We see that, while we have an anisotropy in the
radiation field because we always have more upward arrows than
| downward, we still have the same number of arrows leaving each cell as
'| we have arrows coming in, telling us that, in spite of the anisotropy in the
radiation field (determining F), we still have

S=J. 6.18

6.4.2 Mathematical derivation

| Let us now see how the depth dependence of the source function
can also be obtained from the transfer equation. We multiply equation
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Fig. 6.8. (a) illustrates the situation in an atmosphere with radiative equilibrium.
l The source function must increase with depth if F has to remain constant. (b)
Here we plot the emissions into half-spheres for  <4n and 9§ > in. The integrals

! over half-spheres have to grow by =nF for each step At = 2.
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(5.3) by cos 3 and integrate over all solid angles, w, to obtain

d d
4n——K1=——J cos? 9 1,(r;) dw

=J cos 3 I,(t,) dw—J cos 3 S,(r;)dw.  6.19
w=4r

w=4n
The left-hand integral is generally abbreviated by K,(z;). The last integral
on the right-hand side is zero, since S,(7) can be taken to be isotropic. The
first integral on the right-hand side equals nF,. Division by 4n gives

dK;(t;)
dr,

We know that the temperature gradient is finally determined by the total
energy transport through the atmosphere, i.e., by nF. For radiative

=4F(12)- 6.20
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equilibrium, we therefore have to introduce the equation for radiative
equilibrium, namely dF/dt = 0, into our equations. Since F = [ F, dJ, we
have to integrate the equations over wavelengths A. However, in
equation (6.20) x, occurs in the denominator. If we want to integrate over
A we have to specify the wavelength dependence of k,. We have not yet
discussed this, except for the empirical numerical determination for the
sun; therefore, we will make the simplest specification; namely, assume
that « is independent of wavelength, which means we now make the
approximation of a grey atmosphere. Even if the real stellar atmospheres
are not grey, we may hope that our results are still approximately correct
if we determine an appropriate average value for «,.

If we are dealing with a grey atmosphere we can integrate equation (6.20)
over A and obtain

[e o}

=4F,  where K=J K, dA. 6.21

0

dK
dr
This introduces a new unknown function K (). In order to find an equation
for dF/dt we now differentiate with respect to t, which, after integrating
the transfer equation over A, yields
d’K(r) 1dF(r)
dt? 4 dt
because we are dealing with radiative equilibrium, for which dF/dz = 0.

We then find again that for a grey atmosphere S(z) = J(z). This is our first
important result. Integration of the equation with respect to t gives

= J(t)—S(1) =0, 6.22

dK
K=c;t+c,, whered—=c1=iF such that K =1Ft+4¢,. 6.23
T

With the new unknown function K(z) we now have for a given F two
equations — (6.22) and (6.23) — for the determination of the three unknowns,
K, J,S. We need an additional relation between two of these variables in
order to determine all three.

We have seen that for the determination of the flux the anisotropy in
the radiation field I,(9) is very important because in the flux integral the
inward-going intensities are subtracted from the outward-going ones, due
to the factor cos 8. For K, on the other hand, a small anisotropy is
unimportant because the intensities are multiplied by the factor cos? 9,
which does not change sign for inward and outward radiation. In order
to evaluate K, we can therefore approximate the radiation field by an
isotropic radiation field of the mean intensity J. From the definition of K P
we obtain
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w=4n
4
= J,(z,) J cos? 9 dw = —3”— VACAY 6.24
w=4n

or, after division by 4,

K,=%J, and K=3J, 6.25
when we integrate over A. This approximation for the K function is called
the Eddington approximation. It has received wide application and is
therefore very important.

Inserting the relation (6.25) into equation (6.21) we find

dK dJ
@ _ 4 YO _ 1) = const. 6.26
drt dt
From (6.23) we then derive

dK(7) _

dJ(x) . dK()
¢, =1iF or =3 =3F, 6.27
e 7 d(r) e *
which yields
J(t) =2Ft + const. = S(1). 6.28

Instead of equation (6.17), which we derived from Fig. 6.8(b), we now find
again that

ds
a=%F‘t and S(t)=3Ft+c¢,, 6.29

as we derived from Fig. 6.8(b) (see equation 6.17). From the condition of
radiative equilibrium we thus find the law for the depth dependence of the
source function.

If we want to derive the depth dependence of the temperature from this,
we have to know what the relation is between the source function and the
temperature. The condition of radiative equilibrium does not tell us this
directly. Therefore, we now make the assumption of LTE, which means
we now assume that the source function is given by the Planck function.
We want to emphasize that the temperature which we obtain as a function
of depth depends on this assumption. The depth dependence of the source
function is independent of this assumption. With

S(t) = B(x) =% T(z), 6.30

we then find
oT*(t) = 2nF(t + const.) = n5(7), 6.31
and

ocT*(t)=3T%(t +const.)  since nF = oT%:. 6.32
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The source function must increase linearly with the optical depth © and,
as we saw, the gradient must be proportional to the flux.

The constant c, in equation (6.23) is still undetermined. Instead of this
constant we can determine the constant in equation (6.32). These are
integration constants which have to be determined from the boundary
conditions. Our boundary condition here simply states that there is no
flux going into the star. We must have

10,3)=1"=0 forin< 9<n. 6.33
In order to be able to calculate K and J at the surface of the star we make
the simplifying assumption that the outward-going intensity does not
depend on the angle 9. This means we assume that
100,9)=1" =const. for0<9<in. 6.34
With this the integration over the whole solid angle reduces to an
integration over the half-sphere which gives
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Fig. 6.9. The exact temperature stratification of a grey atmosphere (——) is
compared with the simple approximation (——) given by equation (6.38). The
exact solution gives somewhat lower surface temperatures and slightly higher
temperatures in deeper layers.
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JO)=41" and F=1I" or  J(0)=1iF, 6.35
which means

J(0)= BO) =% T40) or  TH0)=1iT%. 6.36

From equation (6.13) we derive for t=0
T40)=3T%; = const. = $T%;, 6.37
which requires const. = 2,

We finally derive for the grey atmosphere with the Eddington

approximation

THt) = 3T se(z + 3). 6.38
For the optical depth = 2 we then find T*(1 =2) = T or T(t =3%) = T,
as we derived previously for a grey atmosphere.

Without making the Eddington approximation and with the accurate
boundary condition, i.e., considering the true angular dependence of I(0, 3),
one obtains

T*(t) = 3T &l + q(1)), 6.39
where ¢(t) is a function which varies slowly with 7, with g(0) =0.577 and
q(00) = 0.7101. So g(r) =% is quite good as an approximation. In Fig. 6.9
we compare the temperature stratifications obtained with (6.38) and (6.39).

How good an approximation is the grey atmosphere? In order to judge
this, we have to discuss the frequency dependence of the absorption
coefficients.



