Sow:

e

Chapter 9 Stellar Atmospheres

The Emission Coefficient

In the following discussions of beams and light rays, the primary consideration is the neg
flow of energy in a given direction, not the specific path taken by individual photons. First,

we will examine the emission process that increases the intensity of a ray of wavelength

3 as it travels through a gas. The increase in intensity d 1 is proportional to both ds, the
the density of the gas. For pure emission

distance traveled in the direction of the ray, and p,
(no absorption of the radiation),

dl, = jiods, (9.32)
where jy is the emission coefficient of the gas. The emission coefficient, which has units
of m s—3 sr~!, varies with the wavelength of the light.

As a beam of light moves through the gas in a star, its specific intensity, [, changes ag
photons traveling with the beam are removed by absorption or scattering out of the beam,
and are replaced by photons emitted from the surrounding stellar material, or scattered
into the beam. Combining Eq. (9.13) for the decrease in intensity due to the absorption of
radiation with Eq. (9.32) for the increase produced by emission gives the general result

dI, = —xplyds + jrp ds. 9.33)

ting processes of emission and absorption occur

The ratio of the rates at which the compe
determines how rapidly the intensity of the beam changes. This is similar to describing the

flow of traffic on an interstate highway. Imagine following a group of cars as they leave Los
Angeles, traveling north on 1-15. Initially, nearly all of the cars on the road have California
license plates. Driving north, the number of cars on the road declines as more individuals

y approaching Las Vegas, the number of cars on the

exit than enter the highway. Eventuall
road increases again, but now the surrounding cars bear Nevada license plates. Continuing
change to those of Utah, Idaho,

onward, the traffic fluctuates as the license plates eventually
and Montana. Most of the cars have the plates of the state they are in, with a few cars from

neighboring states and even fewer from more distant locales. At any point along the way,

the number of cars on the road reflects the local population density. Of course, this is to be
expected; the surrounding area is the source of the traffic entering the highway, and the rate
d by the ratio of the number of entering to exiting

at which the traffic changes is determine
automobiles. This ratio determines how rapidly the cars on the road from elsewhere are
1 population. Thus the traffic constantly changes,

replaced by the cars belonging to the loca
always tending to resemble the number and types of automobiles driven by the people living

nearby.

The Source Function and the Transfer Equation

ior, the same considerations describe the competition between
d out of a beam of light by absorption, and introduced
The ratio of the rates of emission and absorption
determines how rapidly the intensity of the beam of light changes and describes the tendency
of the population of photons in the beam to resemble the local source of photons in the
surrounding stellar material. To introduce the ratio of emission to absorption, we divide

In a stellar atmosphere or inter
the rates at which photons are plucke
into the beam by emission processes.
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Eq. (9.33) by —«,p ds:

1 dI j
_Ldh_ ok

Ko ds K5

The ratio of the emission coefficient to the absorption coefficient is called the source func-
tion, S, = ji /«,. It describes how photons originally traveling with the beam are removed
and replaced by photons from the surrounding gas.?® The source function, S, has the same
units as the intensity, W m~3 sr!. Therefore, in terms of the source function,

- =1 -5 (9.34)

This is one form of the equation of radiative transfer (usually referred to as the transfer
equation).* According to the transfer equation, if the intensity of the light does not vary
(so that the left-hand side of the equation is zero), then the intensity is equal to the source
function, I;, = S,. If the intensity of the light is greater than the source function (the right-
hand side of the transfer equation is greater than 0), then d 1, /ds is less than 0, and the
intensity decreases with distance. On the other hand, if the intensity is less than the source
function, the intensity increases with distance. This is merely a mathematical restatement
of the tendency of the photons found in the beam to resemble the local source of photons
in the surrounding gas. Thus the intensity of the light tends to become equal to the local
value of the source function, although the source function itself may vary too rapidly with
distance for an equality to be attained.

The Special Case of Blackbody Radiation

The source function for the special case of blackbody radiation can be found by considering
a box of optically thick gas maintained at a constant temperature 7. The confined particles
and blackbody radiation are in thermodynamic equilibrium, with no net flow of energy
through the box or between the gas particles and the radiation. With the particles and
photons in equilibrium, individually and with each other, every process of absorption is
balanced by an inverse process of emission. The intensity of the radiation is described by
the Planck function, I; = B,. Furthermore, because the intensity is constant throughout the
box, d1I,/ds = 0, and so I, = S,. For the case of thermodynamic equilibrium, the source
function is equal to the Planck function, Sy = B,,.

As mentioned in Section 9.2, a star cannot be in perfect thermodynamic equilibrium; there
is anet flow of energy from the center to the surface. Deep in the atmosphere, where 7;, > 1
as measured along a vertical ray, a random-walking photon will take at least 77 steps to
reach the surface (recall Eq. 9.30) and so will suffer many scattering events before escaping
from the star. Thus, at a depth at which the photon mean free path is small compared to the

23As aratio involving the inverse processes of absorption and emission, the source function is less sensitive to the
detailed properties of the stellar material than are j) and «;, individually.

241t is assumed that the atmosphere is in a steady state, not changing with time. Otherwise, a time-derivative term
would have to be included in the transfer equation.
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FIGURE 9.13 Transformation of the intensity of a light ray traveling through a volume of gas. (a) A
light ray entering a volume of gas. (b) Intensity of the light ray. The horizontal axis has units of i, pg,
the number of optical depths traveled into the gas.

temperature scale height, the photons are effectively confined to a limited volume, a region
of nearly constant temperature. The conditions for local thermodynamic equilibrium (LTE)
are satisfied, and so, as already seen, the source function is equal to the Planck function,
S, = Bj,. Making the assumption of LTE in a problem means setting Sy = By. However,
even in LTE, the intensity of the radiation, I, will not necessarily be equal to By unless
7, > 1. In summary, saying that [, = B, is a statement that the radiation field is described
by the Planck function, while S, = By, describes the physical source of the radiation, jj /i,

as one that produces blackbody radiation.

Example 9.4.1. To see how the intensity of a light ray tends to become equal to the local
value of the source function, imagine a beam of light of initial intensity I o ats = Oentering
a volume of gas of constant density, o, that has a constant opacity, «, and a constant source
function, S,. Then it is left as an exercise to show that the transfer equation (Eq. 9.34) may
be easily solved for the intensity of the light as a function of the distance s traveled into the
gas:

L(s) = Loe ™" + 5.1 — e ), (9.35)

As shown in Fig. 9.13 for the case of S, = 21, o, this solution describes the transformation
of the intensity of the light ray from its initial value of I o to Sy, the value of the source
function. The characteristic distance for this change to occur is s = 1/k,0, which 1s one
photon mean free path (recall Example 9.2.2), or one optical depth into the gas.

The Assumption of a Plane-Parallel Atmosphere

Although the transfer equation is the basic tool that describes the passage of light through 8
star’s atmosphere, a reader seeing it for the first time may be prone to despair. In this trou-
blesome equation, the intensity of the light must depend on the direction of travel to account
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for the net outward flow of energy. And although absorption and emission coefficients are
the same for light traveling in all directions (implying that the source function is indepen-
dent of direction), the absorption and emission coefficients depend on the temperature and
density in a rather complicated way.

However, if astronomers are to learn anything about the physical conditions in stellar
atmospheres, such as temperature or density, they must know where (at what depth) a
spectral line is formed. A vast amount of effort has therefore been devoted to solving and
understanding the implications of the transfer equation, and several powerful techniques
have been developed that simplify the analysis considerably.

We will begin by rewriting Eq. (9.34) in terms of the optical depth t;, defined by
Eq. (9.15), resulting in

= =1 =S (9.36)
Unfortunately, because the optical depth is measured along the path of the light ray, neither
the optical depth nor the distance s in Eq. (9.34) corresponds to a unique geometric depth
the atmosphere. Consequently, the optical depth must be replaced by a meaningful me.
of position.

To find a suitable replacement, we introduce the first of several standard approximatios
The atmospheres of stars near the main sequence are physically thin compared with the siz
of the star, analogous to the skin of an onion. The atmosphere’s radius of curvature is thus
much larger than its thickness, and we may consider the atmosphere as a plane-parallel
slab. As shown in Fig. 9.14, the z-axis is assumed to be in the vertical direction, with z = 0
at the top of this plane-parallel atmosphere.

Next, a vertical optical depth, 1, ,(2), is defined as

0
7.,0(2) E/ K.p dz. (9.37)

Comparison with Eq. (9.17) reveals that this is just the initial optical depth of a ray traveling

b2 Light ray

FIGURE 9.14 Plane-parallel stellar atmosphere.
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vertically upward from an initial position (z < 0) to the surface (z = 0) where 1), =0.25
However, a ray that travels upward at an angle 6 from the same initial position z has farthey
to go through the same layers of the atmosphere in order to reach the surface. Therefore, the
optical depth measured along this ray’s path to the surface, 7, is greater than the verticaj
optical depth, 7. ,(2). Since dz = ds cos 6, the two optical depths are related by

T,

T = — =1, 8ech. (9.38)

cos

The vertical optical depth is a true vertical coordinate, analogous to z, that increases in
the —z-direction. Its value does not depend on the direction of travel of a light ray, and so
it can be used as a meaningful position coordinate in the transfer equation. Replacing 7, by
Tp.v in Eq. (9.36) results in

cos 0 = I, — S 9.39)

This form of the transfer equation is usually employed when dealing with the approximation
of a plane-parallel atmosphere.

Of course, the value of the vertical optical depth at a level z is wavelength-dependent
because of the wavelength-dependent opacity in Eq. (9.37). In order to simplify the follow-
ing analysis, and to permit the identification of an atmospheric level with a unique value of
7,, the opacity is assumed to be independent of wa velength (we usually take it to be equal
to the Rosseland mean opacity, ¥). A model stellar atmosphere, for which the simplifying
assumption is made that the opacity is independent of wavelength, is called a gray atmo-
sphere, reflecting its indifference to the spectrum of wavelengths. If we write k instead of
«, in Eq. (9.37), the vertical optical depth no longer depends on wavelength; we can there-
fore write T, instead of Ty , in the transfer equation (Eq. 9.39). The remaining wavelength
dependencies may be removed by integrating the transfer equation over all wavelengths,
using

oo 0
1 =f de)\, and S =f S)\d)\.
0 0

With the preceding changes, the transfer equation appropriate for a plane-parallel gray
atmosphere is

dl
=1-S. (9.40)

cos6 e
dt,

This equation leads to two particularly useful relations between the various quantities
describing the radiation field. First, integrating over all solid angles, and recalling that §
depends only on the local conditions of the gas, independent of direction, we get

d
y /IcosGdQ:/IdQ—S/dQ. (9.41)
T

25Recall that as the light approaches the surface (and the observer on Earth), it is traveling through smaller and
smaller values of the optical depth.
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Using f d$2 = 47 together with the definitions of the radiative flux Frq (Eq. 9.8) and the
mean intensity (/) (Eq. 9.3), both integrated over all wavelengths, we find
dF, rad

dty,

= dn((I) = S).

The second relation is found by first multiplying the transfer equation (9.40) by cos
and again integrating over all solid angles:

a /IcoszedQ=/Icos€dQ—S/cos€dQ.

dr,

The term on the left is the radiation pressure multiplied by the speed of light (recall Eq. 9.9).
The first term on the right-hand side is the radiative flux. In spherical coordinates, the second
integral on the right-hand side evaluates to

2 b4
/cos@dQ:/ / cosOsinfdfdg =0.
$=0 J§=0

dPrad 1

Thus
rad - (9.42)

dr, c

In Problem 9.16, you will find that in a spherical coordinate system with its origin at the
center of the star, this equation is
APag _ _KP
dr - c rad >

which is just Eq. (9.31). As mentioned previously, this result can be interpreted as saying
that the net radiative flux is driven by differences in the radiation pressure, with a “photon
wind” blowing from high to low Prq. Equation (9.31) will be employed in Chapter 10 to
determine the temperature structure in the interior of a star.

In an equilibrium stellar atmosphere, every process of absorption is balanced by an
inverse process of emission; no net energy is subtracted from or added to the radiation field.
In a plane-parallel atmosphere, this means that the radiative flux must have the same value
at every level of the atmosphere, including its surface. From Eq. (3.18),

F.,q = constant = Fgyf = O'T:. (9.43)

Because the flux is a constant, d Fraa/dt, = 0, so Eq. (9.4) implies that the mean intensity
must be equal to the source function,

(I)=S. (9.44)

Equation (9.42) may now be integrated to find the radiation pressure as a function of the
vertical optical depth:

1
Prag = Z ad Ty + C, (9.45)

where C is the constant of integration.
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The Eddington Approximation
If we knew how the radiation pressure varied with temperature for the general case (ang
not just for blackbody radiation), we could use Eq. (9.45) to determine the temperatuye
structure of our plane-parallel gray atmosphere. We would have to assume a description of
the angular distribution of the intensity. In an approximation that we owe to the brilliap;
English physicist Sir Arthur Stanley Eddington (1882-1944), the intensity of the radiatioy,
field is assigned one value, o, in the -+z-direction (outward) and another value, Iy, in the
+direction (inward); see Fig. 9.15. Both loy and I, vary with depth in the atmosphere,

= 0 at the top of the atmosphere, where T, = 0. Itis left as an exercise

and in particular, [i
to show that with this Eddington approximation,”® the mean intensity, radiative flux, anq

radiation pressure are given by

1
= E ({ou + Iin) (946)

Fraa =T (Tout — Iin) (947)

2r 4
Pras = Tou + L) = = (. (948)
3c 3¢
[Note that because the flux is a constant, Eq. (9.47) shows that there is a constant difference
between Iy and I, at any level of the atmosphere.]
Inserting the last relation for the radiation pressure into Eq. (9.45), we find that

4 1
— (=~ FraaTy + C. (9.49)

3¢ c

The constant C can be determined by evaluating Eqgs. (9.46) and (9.47) at the top of the
atmosphere, where T, = 0 and I;, = 0. The result is that (I (z, = 0)) = Frad /2. Inserting

FIGURE 9.15 The Eddington approximation.

26 A ctually, there are several more mathematical ways of implementing the Eddington approximation, but they are

all equivalent.
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this into Eq. (9.49) with 7, = 0 shows that

2
C= —:)’_C rad-
With this value of C, Eq. (9.49) becomes
4 2
X (IN = Flaa (rv + §) . (9.50)

Of course, we already know that the radiative flux is a constant, given by Eq. (9.43). Using
this results in an expression for the mean intensity as a function of the vertical optical depth:

Iy = 3—; T4 (ru + —) . 9.51)

We may now derive the final approximation to determine the temperature structure of our
model atmosphere. If the atmosphere is assumed to be in local thermodynamic equilibrium,
another expression for the mean intensity can be found and combined with Eq. (9.51). By the
definition of LTE, the source function is equal to the Planck function, S, = B,. Integrating
B, over all wavelengths (see Eq. 3.28) shows that for LTE,

oT*
S=B=—,

and so, from Eq. (9.44),
(I) = —. (9.52)
Equating expressions (9.51) and (9.52) finally results in the variation of the temperature with

vertical optical depth in a plane-parallel gray atmosphere in LTE, assuming the Eddington
approximation:?’

3 2
Th= 0 Tt (rv + §> : (9.53)

This relation is well worth the effort of its derivation, because it reveals some important
aspects of real stellar atmospheres. First, notice that T = T, at T, = 2/3, not at 7, = 0.
Thus the “surface” of a star, which by definition has temperature T, [recall the Stefan—
Boltzmann equation, Eq. (3.17)], is not at the top of the atmosphere, where 7, = 0, but
deeper down, where 7, = 2/3. This result may be thought of as the average point of origin
of the observed photons. Although this result came at the end of a string of assumptions, it
can be generalized to the statement that when looking at a star, we see down to a vertical
optical depth of T, ~ 2/3, averaged over the disk of the star. The importance of this for the
formation and interpretation of spectral lines was discussed on page 254.

27You are encouraged to refer to Mihalas, Chapter 3, for a more detailed discussion of the gray atmosphere, includ-
ing a more sophisticated development of the relation T4 =374 [v, + q{(7,)], where the Eddington approximation
g P P ile g pp

[g(zy) = %] is a special case.
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Limb Darkening Revisited

We now move on to take a closer look at limb darkening (recall Fig. 9.12). A comparisqy,
of theory and observations of limb darkening can provide valuable information about hoy,
the source function varies with depth in a star’s atmosphere. To see how this is done, we
first solve the general form of the transfer equation (Eq. 9.36),

dl, L_§
df)\ = i) A

at least formally, rather than by making assumptions. (The inevitable assumptions will be
required soon enough.) Multiplying both sides by ¢~ ™, we have
dly .

Theh —Le h =~8¢
d'L';L

d
_— _IAI = —S T
an, (e ) A€

d(e™ ™) = =S e ™ dr;.

If we integrate from the initial position of the ray, at optical depth 7, o Where L =1,
to the top of the atmosphere, at optical depth 1;, =0 where I, = I,(0), the result for the
emergent intensity at the top of the atmosphere, ,,(0), is

0
1(0) = Lpe™° f Se ™ dny. ©.54)

.0

This equation has a very straightforward interpretation. The emergent intensity on the left
is the sum of two positive contributions. The first term on the right is the initial intensity
of the ray, reduced by the effects of absorption along the path to the surface. The second
term, also positive,i’S represents the emission at every point along the path, attenuated by
the absorption between the point of emission and the surface.

We now return to the geometry of a plane-parallel atmosphere and the vertical optical
depth, t,. However, we do not assume a gray atmosphere, LTE, or make the Eddington
approximation. As shown in Fig. 9.16, the problem of limb darkening amounts Lo determin-
ing the emergent intensity I,,(0) as a function of the angle #. Equation (9.54), the formal
solution to the transfer equation, is easily converted to this situation by using Eq. (9.38) t0
replace 7, with 7y, sec (the vertical optical depth) to get

0
1(0) = Ipe ™° O / Ssech e ™50 dr,.

v.0 5€c @

Althoughboth I and 7, depend on wavelength, the A subscript has been dropped to simplify
the notation; the approximation of a gray atmosphere has not been made. To include the
contributions to the emergent intensity from all layers of the atmosphere, we take the value

28Remember that the optical depth, measured along the ray’s path, decreases in the direction of travel, sO dois
negative.

:
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Light ray

(]

dr,

dr = dt, sec 0

FIGURE 9.16 Finding I (0) as a functiou of 6 for limb darkening in plane-parallel geometry,

of the initial position of the rays to be at 7,0 = co. Then the first term on the right-hand
side vanishes, leaving

o0
1(0) = / Ssech e 5l dr,. (9.55)
0

If we knew how the source function depends on the vertical optical depth, this equation
could be integrated to find the emergent intensity as a function of the direction of travel,
8, of the ray. Although the form of the source function is not known, a good guess will be
enough to estimate I (0). Suppose that the source function has the form

S =a+ b1, (9.56)

where a and b are wavelength-dependent numbers to be determined. Inserting this into
Eq. (9.55) and integrating (the details are left as an exercise) show that the emergent intensity
for this source function is

L,(0) = ay, + b) cos 9, 9.57)

where the A subscripts have been restored to the appropriate quantities to emphasize their
wavelength dependence. By making careful measurements of the variation in the specific
intensity across the disk of the Sun, the values of a; and by for the solar source function
can be determined for a range of wavelengths. For example, for a wavelength of 501 nm,
Bohm-Vitense (1989) supplies values of asg; = 1.04 x 10 W m=3 sy} and bsy; = 3.52 x
108 Wm™3 sr !

Example 9.4.2. Solar limb darkening provides an opportunity to test the accuracy of
our “plane-parallel gray atmosphere in LTE using the Eddington approximation.” In the
preceding discussion of an equilibrium gray atmosphere, it was found that the mean intensity
is equal to the source function,

(Iy=358

continued




266

Chapter 9 Stellar Atmospheres

(Eq. 9.44). Then, with the additional assumptions of the Eddington approximation apg
LTE, Egs. (9.52) and (9.53) can be used to determine the mean intensity and thus the sourcg

function:
S= oT* 3o 74 n 2
= = — = 15 b= B
) T 4r ¢ \" 3

Taking the source function to have the form of Eq. (9.56), S = a + b1y, as used earlier for
limb darkening (after integrating over all wavelengths), the values of the coefficients aye
Rlog
a:g—Te4 and =T\

2 4
The emergent intensity then will have the form of Eq. (9.57), 1(0) = a + bcos 6 (again
after integrating over all wavelengths). The ratio of the emergent intensity at angle 8, I(9),
to that at the center of the star, 1 (8 = 0), is thus

1(9) a+bcosfd 2 3
16=0  a+b =550 ©:38)
We can compare the results of this calculation with observations of solar limb darken-
ing in integrated light (made by summing over all wavelengths). Figure 9.17 shows both
the observed values of 1(9)/1(6 = 0) and the values from Eqg. (9.58). The agreement is
remarkably good, despite our numerous approximations. However, be forewarned that the
agreement is much worse for observations made at a given wavelength (see Bohm-Vitense,
1989) as a consequence of wavelength-dependent opacity effects such as line blanketing.
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FIGURE 9.17 A theoretical Eddington approximation of solar Jimb darkening for light integrated
over all wavelengths. The dots are observ ational data for the Sun. Although a good fit, the Eddington
approximation is not perfect, which implies that a more detailed model must be developed, see, for
example, Problem 9.29.
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9.5 B THE PROFILES OF SPECTRAL LINES

We now have a formidable theoretical arsenal to bring to bear on the analysis of spectral
lines. The shape of an individual spectral line contains a wealth of information about the

environment in which it was formed.

Equivalent Widths

Figure 9.18 shows a graph of the radiant flux, F), as a function of wavelength for a typical
absorption line. In the figure, F, is expressed as a fraction of F., the value of the flux
from the continuous spectrum outside the spectral line. Near the central wavelength, Ao, 18
the core of the line, and the sides sweeping upward to the continuum are the line’s wings.
Individual lines may be narrow or broad, shallow or deep. The quantity (F. — F3) JF. is
referred to as the depth of the line. The strength of a spectral line is measured in terms of
its equivalent width. The equivalent width W of a spectral line is defined as the width of a
box (shaded in Fig. 9.18) reaching up to the continuum that has the same area as the spectral

line. That is,

F.— F,
W= | S d, (9.59)

where the integral is taken from one side of the line to the other. The equivalent width of a
line in the visible spectrum, shaded in Fig. 0.18, is usually on the order of 0.01 nm. Another
measure of the width of a spectral line is the change in wavelength from one side of the
line to the other, where its depth (F, — F)/(Fe — Fy) = 1/2; this is called the full width
at half-maximum and will be denoted by (AX)1/2.

The spectral line shown in Fig. 9.18 is termed optically thin because there is no wave-
length at which the radiant flux has been completely blocked. The opacity k. of the stellar

T
-

F\/F,

0.0 L L 1 i 1 L 1

Ao
Wavelength

FIGURE 9.18 The profile of a typical spectral line.
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material is greatest at the wavelength Ay at the line’s center and decreases moving into the
wings. From the discussion on page 254, this means that the center of the line is formeq at
higher (and cooler) regions of the stellar atmosphere. Moving into the wings from J, the
line formation occurs at progressively deeper (and hotter) layers of the atmosphere, untj]
it merges with the continuum-producing region at an optical depth of 2/3. In Section 11 5
this idea will be applied to the absorption lines produced in the solar photosphere.

Processes That Broaden Spectral Lines

Three main processes are responsible for the broadening of spectral lines. Each of thege
mechanisms produces its own distinctive line shape or line profile.

1. Natural broadening. Spectral lines cannot be infinitely sharp, even for motionless,
isolated atoms. According to Heisenberg’s uncertainty principle (recall Eq. 5.20), 5
the time available for an energy measurement decreases, the inherent uncertainty of
the result increases. Because an electron in an excited state occupies its orbital for
only a brief instant, At, the orbital’s energy, E, cannot have a precise value. Thus the
uncertainty in the energy, A E, of the orbital is approximately

R
AE ~ —.

At
(The electron’s lifetime in the ground state may be taken as infinite, so in that case ',
AE = 0.) Electrons can make transitions from and to anywhere within these “fuzzy”
energy levels, producing an uncertainty in the wavelength of the photon absorbed or
emitted in a transition. Using Eq. (5.3) for the energy of a photon, Epnoton = hc/A,
we find that the uncertainty in the photon’s wavelength has a magnitude of roughly

Al & N ! + ! 9.60
N27TC At Al‘f ~ 60)

where At; is the lifetime of the electron in its initial state and At is the lifetime in
the final state. (The proof is left as a problem.)

g B S ——————————

Example 9.5.1. The lifetime of an electron in the first and second excited states of
hydrogen is about At = 1078 s. The natural broadening of the Ho line of hydrogen,
A = 656.3 nm, is then

AL~ 457 x 107 m =4.57 x 107° nm.

A more involved calculation shows that the full width at half-maximum of the
line profile for natural broadening is

2

(A2 = 9.61)

Te Aty
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where Aty is the average waiting time for a specific transition to occur. This results
in a typical value of

(AL)yp = 2.4 x 107

in good agreement with the preceding estimate.

. Doppler broadening. In thermal equilibrium, the atoms in a gas, each of mass m,

are moving randomly about with a distribution of speeds that is described by the
Maxwell-Boltzmann distribution function (Eq. 8.1), with the most probable speed
givenby Eq. (8.2), vnp = +/2kT /m. The wavelengths of the light absorbed or emitted
by the atoms in the gas are Doppler-shifted according to (nonrelativistic) Eq. (4.30),
AML/A = £ |v,|/c. Thus the width of a spectral line due to Doppler broadening should
be approximately

Akw— —_—
c m

Example 9.5.2. For hydrogen atoms in the Sun’s photosphere (T' = 5777 K), the
Doppler broadening of the He line should be about

Al =~ 0.0427 nm,

roughly 1000 times greater than for natural broadening.

Amore in-depth analysis, taking into account the different directions of the atoms’
motions with respect to one another and to the line of sight of the observer, shows
that the full width at half-maximum of the line profile for Doppler broadening is

20 [2kT ln2
(AM)1p = 5

(9.62)
m
Although the line profile for Doppler broadening is much wider at half-maximum
than for natural broadening, the line depth for Doppler broadening decreases expo-
nentially as the wavelength moves away from the central wavelength Ag. This rapid
decline is due to the high-speed exponential “tail” of the Maxwell-Boltzmann veloc-
ity distribution and is a much faster falloff in strength than for natural broadening.
Doppler shifts caused by the large-scale turbulent motion of large masses of gas (as
opposed to the random motion of the individual atoms) can also be accommodated by
Eq. (9.62) if the distribution of turbulent velocities follows the Maxwell-Boltzmann
distribution. In that case,

2kT
(AM)p = — (— + Umrb) In2, (9.63)
c m

where vy, is the most probable turbulent speed. The effect of turbulence on line
profiles is particularly important in the atmospheres of giant and supergiant stars. In
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fact, the existence of wrbulence in the atmospheres of these stars was first deduce d

from the inordinately large effect of Doppler broadening on their spectra. ]
Other sources of Doppler broadening involve orderly, coherent mass motiopg !
such as stellar rotation, pulsation, and mass loss. These phenomena can have a Sub:
stantial effect on the shape and width of the line profiles but cannot be combiney
with the results of Doppler broadening produced by random thermal motions obey.
ing the Maxwell-Boltzmann distribution. For example, the characteristic P Cygy;
profile associated with mass loss will be discussed in Section 12.3 (see Fig. 12.17),
3. Pressure (and collisional) broadening. The orbitals of an atom can be perturbeq
in a collision with a neutral atom or by a close encounter involving the electric fiely
f of an ion. The results of individual collisions are called collisional broadening, ang
L the statistical effects of the electric fields of large numbers of closely passing iopg

Vel

}
A is termed pressure broadening; however, in the following discussion, both of thege
}i effects will be collectively referred to as pressure broadening. In either case, the oyt
{,{ come depends on the average time between collisions or encounters with other atomg
3 and ions.

Calculating the precise width and shape of a pressure-broadened line is quite com-
plicated. Atoms and ions of the same or different elements, as well as free electrong,
are involved in these collisions and close encounters. The general shape of the line,
however, is like that found for natural broadening, Eq. (9.61), and the line profile
shared by natural and pressure broadening is sometimes referred to as a damping
profile (also known as a Lorentz profile), so named because the shape is characteristic
of the spectrum of radiation emitted by an electric charge undergoing damped simple
harmonic motion. The values of the full width at half-maximum for natural and pres-
sure broadening usually prove to be comparable, although the pressure profile can at
times be more than an order of magnitude wider.

An estimate of pressure broadening due to collisions with atoms of a single ele-
ment can be obtained by taking the value of Aty in Eq. (9.61) to be the average time
between collisions. This time is approximately equal to the mean free path between
collisions divided by the average speed of the atoms. Using Eq. (9.12) for the mean
free path and Eq. (8.2) for the speed, we find that

1

Mg N = = ————=—,
07 ) T noJ2kT[m

where m is the mass of an atom, & is its collision cross section, and 7 is the number
density of the atoms. Thus the width of the spectral line due to pressure broadening

is on the order of

[

2 2
A 1 A no Z_k_T_ 9.64)

N — —

¢ mAnp c m

Note that the width of the line is proportional to the number density n of the atoms-
The physical reason for the Morgan—Keenan luminosity classes is now clear. The
narrower lines observed for the more luminous giant and supergiant stars are due 10
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the lower number densities in their extended atmospheres. Pressure broadening (with
the width of the line profile proportional to #) broadens the lines formed in the denser
atmospheres of main-sequence stars, where collisions occur more frequently.

Example 9.5.3. Again, consider the hydrogen atoms in the Sun’s photosphere,
where the temperature is 5777 K and the number density of hydrogen atoms is about
1.5 x 10% m~3, Then the pressure broadening of the Ha line should be roughly

AL~ 2.36 x 107° nm,

which is comparable to the result for natural broadening found earlier. However, if
the number density of the atoms in the atmosphere of a star is larger, the line width
will be larger as well—more than an order of magnitude larger in some cases.

The Voigt Profile

The total line profile, called a Voigt profile, is due to the contributions of both the Doppler
and damping profiles. The wider line profile for Doppler broadening dominates near the
central wavelength Ay. Farther from g, however, the exponential decrease in the line depth
for Doppler broadening means that there is a transition to a damping profile in the wings at
a distance of about 1.8 times the Doppler value of (AX)1,; from the center of the line. Thus
line profiles tend to have Doppler cores and damping wings. Figure 9.19 schematically
shows the Doppler and damping line profiles.

Fy/F,

\\ f-* Damping
s — — —Doppler
0.0 . 1 . I , I .
Ag
Wavelength

FIGURE 9.19 Schematic damping and Doppler line profiles, scaled so they have the same equiv-
alent width.
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Example 9.5.4. As areview of the ideas of spectral line formation discussed here and i,
Chapter 8, consider the subdwarfs of luminosity class VI or “sd,” which reside to the lef
of the main sequence (see Fig. 3.16). The spectra of these subdwarfs show that they gpe
deficient in the atoms of metals (elements heavier than helium). Because ionized meta]g
are an important source of electrons in stellar atmospheres, the electron number (lCngily
is reduced. As mentioned in Section 8.1, fewer electrons with which ions may recombipe
means that a higher degree of ionization for all atoms can be achieved at the same tem.
perature. Specifically, this reduces the number of H™ ions in the atmosphere by ionizing
them, thereby diluting this dominant source of continuum opacity. As a consequence of g
lower opacity, we can see longer distances into these stars before reaching an optical depth
of 1, = 2/3. The forest of metallic lines (which are already weakened by the low meta)
abundance of the subdwarfs) appears even weaker against the brighter continuum. Thyg
as a result of an under-abundance of metals, the spectrum of a subdwarf appears 1o be lhai
of a hotter and brighter star of earlier spectral type with less prominent metal lines (see
Table 8.1). This is why it is more accurate to say that these stars are displaced to the left of
the main sequence, toward higher temperatures, rather than one magnitude below the main
sequernce.

The simplest model used for calculating a line profile assumes that the star’s photosphere
acts as a source of blackbody radiation and that the atoms above the photosphere remove
photons from this continuous spectrum to form absorption lines. Although this Schuster-
Schwarzschild model is inconsistent with the idea that photons of wavelength A originate
at an optical depth of m = 2/3, it is still a useful approximation. In order to carry out
the calculation, values for the temperature, density, and composition must be adopted for
the region above the photosphere where the line is formed. The temperature and density
determine the importance of Doppler and pressure broadening and are also used in the
Boltzmann and Saha equations.

The calculation of a spectral line depends not only on the abundance of the element
forming the line but also on the quantum-mechanical details of how atoms absorb photons.
Let N be the number of atoms of a certain element lying above a unit area of the photosphere.
N is a column density and has units of m~2. (In other words, suppose a hollow tube with
a cross section of 1 m* was stretched from the observer to the photosphere: the tube would
then contain N atoms of the specified type.) To find the number of absorbing atoms per unit
area, N, that have electrons in the proper orbital for absorbing a photon at the wavelength of
the spectral line, the temperature and density are used in the Boltzmann and Saha equations
to calculate the atomic states of excitation and ionization. Our goal is to determine the value
of N, by comparing the calculated and observed line profiles.

This task is complicated by the fact that not all transitions between atomic orbitals are
equally likely. For example, an electron initially in the n = 2 orbital of hydrogen is aboul
five times more likely to absorb an Ho photon and make a transition to the n = 3 orbital
than it is to absorb an HB photon and jump to the n = 4 orbital, The relative probabilities
of an electron making a transition from the same initial orbital are given by the f-values
or oscillator strengths for that orbital. For hydrogen, f = 0.637 for the Ha transition and
f = 0.119 for HB. The oscillator strengths may be caleulated numerically or measured i
the laboratory, and they are defined so that the f-values for transitions from the same initial
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FIGURE 9.20 Voigt profiles of the K line of Ca II. The shallowest line is produced by N, =
3.4 x 10" jons m~2, and the jons are ten times more abundant for each successively broader line.
(Adapted from Novotny, Introduction to Stellar Atmospheres and Interiors, Oxford University Press,
New York, 1973.)

orbital add up to the number of electrons in the atom or ion. Thus the oscillator strength is
the effective number of electrons per atom participating in a transition, and so multiplying
the number of absorbing atoms per unit area by the f-value gives the number of atoms
lying above each square meter of the photosphere that are actively involved in producing
a given spectral line, fN,. Figure 9.20 shows the Voigt profiles of the K line of Ca II
(A = 393.3 nm) for various values of the number of absorbing calcium ions.

The Curve of Growth

The curve of growth is an important tool that astronomers use to determine the value of
N, and thus the abundances of elements in stellar atmospheres. As seen in Fig. 9.20, the
equivalent width, W, of the line varies with N,. A curve of growth, shown in Fig. 9.21,
is a logarithmic graph of the equivalent width, W, as a function of the number of absorb-
ing atoms, N,. To begin with, imagine that a specific element is not present in a stellar
atmosphere. As some of that element is introduced, a weak absorption line appears that
is initially optically thin. If the number of the absorbing atoms is doubled, twice as much
light is removed, and the equivalent width of the line is twice as great. So W « N,, and the
curve of growth is initially linear with In V,. As the number of absorbing atoms continues
to increase, the center of the line becomes optically thick as the maximum amount of flux
at the line’s center is absorbed.?? With the addition of still more atoms, the line bottoms
out and becomes saturated. The wings of the line, which are still optically thin, continue to
deepen. This occurs with relatively little change in the line’s equivalent width and produces
a flattening on the curve of growth where W o 4/ In N, . Increasing the number of absorbing
atoms still further increases the width of the pressure-broadening profile [recall Eq. (9.64)],

2The zero flux at the center of the line shown in Fig. 9.20 is a peculiarity of the Schuster—Schwarzschild model.
Actually, there is always some flux received at the central wavelength, Ao, even for very strong, optically thick
lines. As arule, the flux at any wavelength cannot fall below Fy = 7 S) (r;, = 2/3), the value of the source function
at an optical depth of 2/3; see Problem 9.20.
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FIGURE 9.21 The curve of growth for the K line of Ca IL. As N, increases, the functional depen-
dence of the equivalent width (W) changes. At various positions along the curve of growth, W is
proportional to the functional forms indicated. (Figure adapted from Aller, The Atmospheres of the

Sun and Stars, Ronald Press, New York, 1963.)

of the line. The equivalent width grows more rapidly,
h approximately W o /N for the total line profile.
Using the curve of growth and a measured equivalent width, we can obtain the number of
absorbing atoms. The Boltzmann and Saha equations are then used to convert this value
into the total number of atoms of that element lying above the photosphere.

To reduce the errors involved in using a single spectral line, it is advantageous to locate,
on a single curve of growth, the positions of the equivalent widths of several Jines formed by
transitions from the same initial orbital. 2 This can be accomplished by pl otting logo(W/A)
on the vertical axis and log ;[ f Na(A/500 nm)] on the horizontal axis. This scaling results
in a general curve of growth that can be used for several lines. Figure 9.22 shows a general
curve of growth for the Sun. The use of such a curve of growth is best illustrated by an

example.

enabling it to contribute to the wings
although not as steeply as at first, wit

Example 9.5.5. We will use Fig. 9.22 to find the number of sodium atoms above each
square meter of the Sun’s photosphere from measurements of the 330.238-nm and 588.997-
nm absorption lines of sodium (Table 9.1). Values of T =5800Kand P, = 1N m~2 were
used for the temperature and electron pressure, respectively, to construct this curve of growth
and will be adopted in the calculations that follow.

Both of these lines are produced when an electron makes an upward transition from the
ground state orbital of the neutral Na I atom, and so these lines have the same value of Ne»

sible ways of scaling the curve of growth. The assumptions used to obtain such 2

30This is just one of several pos
d lines (such as hydrogen) and may lead to inaccurate results.

scaling are not valid for all broa
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FIGURE 9.22 A general curve of growth for the Sun. The arrows refer to the data used in Exam-
ple 9.5.5. (Figure adapted from Aller, Atoms, Stars, and Nebulae, Revised Edition, Harvard University
Press, Cambridge, MA, 1971.)

TABLE 9.1 Data for Solar Sodium Lines. (From Aller, Atoms, Stars, and Nebulae, Revised
Edition, Harvard University Press, Cambridge, MA, 1971.)

Afm) Wm)  f  log(W/A) log,[f(2/500 nm)]
330.2338  0.0088 0.0214 ~ —4.58 —1.85
588.997  0.0730  0.645 -3.90 —0.12

the number of absorbing sodium atoms per unit area above the continuum-forming layer of
the photosphere. This number can be found using the values of log,,(W/A) with the general
curve of growth, Fig. 9.22, to obtain a value of log,,[ f N,(A/500 nm)] for each line. The
results are

Na .
logg <5€0 nm> =17.20 for the 330.238 nm line

= 18.83 for the 588.997 nm line.

To obtain the value of the number of absorbing atoms per unit area, NV,;, we use the measured
values of log,,[ f (/500 nm)] together with

1 N.o=1 SN i [ fA
= 0 - — 1 —-1lo —,
0810 Na = 10810\ 500 hm 10 500 nm

log;y N, = 17.15 — (—1.85) = 19.00  for the 330.238 nm line

to find

continued
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and
logo Na = 18.80 — (—0.12) = 18.92 for the 588.997 nm line.

The average value of logyy Nq 1 18.96: thus there are about 10'? Na T atoms in the groupg
state per square meter of the photosphere.

To find the total number of sodium atoms, the Boltzmann and Saha equations must g
used; Egs. (8.6) and (8.9), respectively. The difference in energy between the final and initjy
states [E, — Eq in Eq. (8.6)] is just the energy of the emitted photon. Using Eq. (5.3), the
exponential term in the Boltzmann equation is

o Eb—ED/KT _ g=he/MT
— 545 % 107 for the 330.238 nm line

— 148 x 1072 for the 588.997 nm line,

so nearly all of the neutral Na I atoms are in the ground state.

All that remains is to determine the total number of sodium atoms per unit area in a}
stages of ionization. If there are N = 101 neutral sodium atoms per square meter, then the
number of singly ionized atoms, Nyj, comes from the Saha equation:

NH _ 2kTZH anekT sl —x/kT
N P 02 ¢

Using Z; = 2.4and Zy = 1.0 for the partition functions and x1 = 5.14 eV for the ionization
energy of neutral sodium leads to Nyt /Ny =243 x 103. There are about 2430 singly ionized
sodium atoms for every neutral sodium atom in the Sun’s photosphere,31 so the total number
of sodium atoms per unit area above the photosphere is about

N = 2430N; = 2.43 x 102 m %,

The mass of a sodium atom is 3.82 x 1072 kg, so the mass of sodium atoms above each
square meter of the photosphere is roughly 9.3 x 1074 kg m~2. (A more detailed analysis
leads to a slightly lower value of 5.4 x 107*kg m~2.) For comparison, the mass of hydrogen

atoms per unit area is about 11 kg m~2.

Thus the number of absorbing atoms can be determined by comparing the equivalent
widths measured for different absorption lines produced by atoms or ions initially in the same
state (and so having the same column density in the stellar atmosphere) with a theoretical
curve of growth. A curve-of-growth analysis can also be applied to lines originating from
atoms or ions in different initial states; then applying the Boltzmann equation to the relative
numbers of atoms and ions in these different states of excitation allows the excitation
temperature to be calculated. Similarly, it is possible to use the Saha equation to find either
the electron pressure or the ionization temperature (if the other is known) in the atmosphere
from the relative numbers of atoms at various stages of ionization.

31The jonization energy for NaIlis 47.3 eV. This is sufficiently large to guarantee that Nijy < N, so higher states
of ionization can be neglected.




m line.

atoms in the Eloupy

a equations mugt
n the final anq il'iili'ﬂ
€

1€

ne,

$ per unit area in g))
quare meter, then the

-eV for the ionization
1t 2430 singly ionized
31 g6 the total number

im atoms above each
10re detailed analysis
the mass of hydrogen

e
paring the equivalent
nsinitially in the same
are) with a theoretical
lines originating from
:quation to the relat'ive
allows the excitation
equation to find either
wn) in the atmosphere

N & Ny, so higher states

|

9.5 The Profiles of Spectral Lines 277

Computer Modeling of Stellar Atmospheres

The ultimate refinement in the analysis of stellar atmospheres is the construction of a mode!
atmosphere on a computer. Each atmospheric layer is involved in the formation of line
profiles and contributes to the spectrum observed for the star. All of the ingredients of
the preceding discussion, plus the equations of hydrostatic equilibrium, thermodynamics,
statistical and quantum mechanics, and the transport of energy by radiation and convection,
are combined with extensive libraries of opacities to calculate how the temperature, pressure,
and density vary with depth below the surface.3? These models not only provide details
regarding line profiles; they also provide information about such fundamental properties
as the effective temperature and surface gravity of the star. Only when the variables of
the model have been “fine-tuned” to obtain good agreement with the observations can
astronomers finally claim to have decoded the vast amount of information carried in the
light from a star.

This basic procedure has led astronomers to an understanding of the abundances of the
elements in the Sun (see Table 9.2) and other stars. Hydrogen and helium are by far the
most common elements, followed by oxygen, carbon, and nitrogen; for every 10'2 atoms
of hydrogen, there are 10! atoms of helium and about 10° atoms of oxygen. These figures
are in very good agreement with abundances obtained from meteorites, giving astronomers

TABLE 9.2 The Most Abundant Elements in the Solar Photosphere. The relative abundance of an
element is given by log,,(Ne/Nu) + 12. (Data from Grevesse and Sauval, Space Science Reviews,
85, 161, 1998.)

Atomic  Log Relative

Element Number Abundance
Hydrogen 1 12.00
Helium 2 10.93 £+ 0.004
Oxygen 8 8.83 £ 0.06
Carbon 6 8.52 £ 0.06
Neon 10 8.08 £ 0.06
Nitrogen 7 7.92 +£0.06
Magnesium 12 7.58 £0.05
Silicon 14 7.55 £ 0.05
Iron 26 7.50+£0.05
Sulfur 16 7.33+0.11
Aluminum 13 6.47 £0.07
Argon 18 6.40 + 0.06
Calcium 20 6.36 £0.02
Sodium 11 6.33 £0.03
Nickel 28 6.25 + 0.04

32Details of the construction of a model star will be deferred to Chapter 10.
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confidence in their results 33 This knowledge of the basic ingredients of the universe pm“'iﬂeg
invaluable observational tests and constraints for some of the most fundamental meo"ieg
in astronomy: the nucleosynthesis of light elements as a result of stellar evolution, the Pro.
duction of heavier elements by supernovae, and the Big Bang that produced the prim()rdial
hydrogen and helium that started it all.
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PROBLEMS

9.1

9.2

9.3

94
9.5

9.6

9.7

9.8

929

9.10

9.11

Evaluate the energy of the blackbody photons inside your eye. Compare this with the visible
energy inside your eye while looking at a 100-W light bulb that is 1 m away. You can assume that
the light bulb is 100% efficient, although in reality it converts only a few percent of its 100 watts
into visible photons. Take your eye to be a hollow sphere of radius 1.5 cm at a temperature of
37°C. The area of the eye’s pupil is about 0.1 cm?. Why is it dark when you close your eyes?

(a) Find an expression for n, dA, the number density of blackbody photons (the number of
blackbody photons per m?®) with a wavelength between A and A + dA.

(b) Find the total number of photons inside a kitchen oven set at 400°F (477 K), assuming a
volume of 0.5 m?.

(a) Use the results of Problem 9.2 to find the total number density, n, of blackbody photons of
all wavelengths. Also show that the average energy per photon, u/#, is

u 7kl

-—=—— =270kT. 9.65
n  15(2.404) (965

(b) Find the average energy per blackbody photon at the center of the Sun, where T = 1.57 x
107 K, and in the solar photosphere, where T = 5777 K. Express your answers in units of
electron volts (eV).

Derive Eq. (9.11) for the blackbody radiation pressure.

Consider a spherical blackbody of radius R and temperature 7. By integrating Eq. (9.8) for the
radiative flux with I, = B, over all outward directions, derive the Stefan-Boltzmann equation
in the form of Eq. (3.17). (You will also have to integrate over all wavelengths and over the
surface area of the sphere.)

Using the root-mean-square speed, vy, estimate the mean free path of the nitrogen molecules
in your classroom at room temperature (300 K). What is the average time between collisions?
Take the radius of a nitrogen molecule to be 0.1 nm and the density of air to be 1.2 kg m™.
A nitrogen molecule contains 28 nucleons (protons and neutrons).

Calculate how far you could see through Earth’s atmosphere if it had the opacity of the solar
photosphere. Use the value for the Sun’s opacity from Example 9.2.2 and 1.2 kg m > for the
density of Earth’s atmosphere.

In Example 9.2.3, suppose that only two measurements of the specific intensity, I; and I,, are
available, made at angles 8; and 6,. Determine expressions for the intensity [, o of the light
above Earth’s atmosphere and for the vertical optical depth of the atmosphere, 7 g, in terms of
these two measurements.

Use the laws of conservation of relativistic energy and momentum to prove that an isolated
electron cannot absorb a photon.

By measuring the slope of the curves in Fig. 9.10, verify that the decline of the curves after the
peak in the opacity follows a Kramers law, ¥ o« T™", where n & 3.5.

According to one model of the Sun, the central density is 1.53 x 10° kg m* and the Rosseland
mean opacity at the center is 0.217 m? kg™,

(a) Calculate the mean free path of a photon at the center of the Sun.
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9.12

9.13

9.14
9.15

9.16

9.17

9.18

9.19

9.20

9.21

(b) Calculate the average time it would take for the photon to escape from the Sun if this meg
free path remained constant for the photon’s journey to the surface. (Ignore the fact thy
identifiable photons are constantly destroyed and created through absorption, scattering
and emission.)

1f the temperature of a star’s atmosphere is increasing outward, what type of spectral lines woyjg
you expect to find in the star’s spectrum at those wavelengths where the opacity is greatest?

Consider a large hollow spherical shell of hot gas surrounding a star. Under what circumstanceg
would you see the shell as a glowing ring around the star? What can you say about the opticg]
thickness of the shell?

Verify that the emission coefficient, jy, has units of m s sl

Derive Eq. (9.35) in Example 9.4.1, which shows how the intensity of a light ray is converteq
from its initial intensity I, to the value Sy of the source function.

The transfer equation, Eq. (9.34), is written in terms of the distance, s, measured along the path

of a light ray. In different coordinate systems, the transfer equation will look slightly differeng,

and care must be taken to include all of the necessary terms.

(a) Show that in a spherical coordinate system, with the center of the star at the origin, the
transfer equation has the form

where 6 is the angle between the ray and the outward radial direction. Note that you cannot
simply replace s with r'!
(b) Use this form of the transfer equation to derive Eq. 9.31).

For a plane-parallel atmosphere, show that the Eddington approximation leads to expressions
for the mean intensity, radiative flux, and radiation pressure given by Egs. (9.46-9.48).

Using the Eddington approximation for a plane-parallel atmosphere, determine the values of
L, and I, as functions of the vertical optical depth. At what depth is the radiation isotropic to
within 1%?

Using the results for the plane-parallel gray atmosphere in LTE, determine the ratio of the
effective temperature of a star to its temperature at the top of the atmosphere. If T, = 5777 K,
what is the temperature at the top of the atmosphere?

Show that for a plane-parallel gray atmosphere in LTE, the (constant) value of the radiative flux
is equal to r times the source function evaluated at an optical depth of 2/3:

Fod = 7 S(x, =2/3).

This function, called the Eddington-Barbier relation, says that the radiative flux received from
the surface of the star is determined by the value of the source function at T, = 2/3.

Consider a horizontal plane-parallel slab of gas of thickness L that is maintained at a constant
temperatare T, Assume that the gas has optical depth 7.0, with 7, = 0 at the top surface of
the slab. Assume further that no radiation enters the gas from outside. Use the general solution
of the transfer equation (9.54) to show that when looking at the slab from above, you see
blackbody radiation if 71,0 > 1 and emission lines (where j, is large) if 70 < 1. You may
assume that the source function, S, does not vary with position inside the gas. You may also
assume thermodynamic equilibrium when 7,0 > 1.

]
%
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9.22 Consider a horizontal plane-parallel slab of gas of thickness L that is maintained at a constant

9.23

9.24

9.25

9.26

9.27

temperature 7. Assume that the gas has optical depth 1, o, with 7, = 0 at the top surface of
the slab. Assume further that incident radiation of intensity I, ¢ enters the bottom of the slab
from outside. Use the general solution of the transfer equation (9.54) to show that when looking
at the slab from above, you see blackbody radiation if 7,0 > 1. If 7, 9 <« 1, show that you
see absorption lines superimposed on the spectrum of the incident radiation if I, o > S, and
emission lines superimposed on the spectrum of the incident radiation if I, o < S,. (These latter
two cases correspond to the spectral lines formed in the Sun’s photosphere and chromosphere,
respectively; see Section 11.2.) You may assume that the source function, Sy, does not vary with
position inside the gas. You may also assume thermodynamic equilibrium when 7, o > 1.

Verify that if the source function is S, = a, + by, ,, then the emergent intensity is given by
Eq. (9.57), I, (0) = a, + b cos 8.

Suppose that the shape of a spectral line is fit with one-half of an ellipse, such that the semimajor
axis a is equal to the maximum depth of the line (let F; = 0) and the minor axis 2 is equal to
the maximum width of the line (where it joins the continuum). What is the equivalent width of
this line? Hint: You may find Eq. (2.4) useful.

Derive Eq. (9.60) for the uncertainty in the wavelength of a spectral line due to Heisenberg’s
uncertainty principle.

The two solar absorption lines given in Table 9.3 are produced when an electron makes an upward
transition from the ground state orbital of the neutral Na I atom.

(a) Using the general curve of growth for the Sun, Fig. 9.22, repeat the procedure of Exam-
ple 9.5.5 to find N,, the number of absorbing sodium atoms per unit area of the photosphere.

(b) Combine your results with those of Example 9.5.5 to find an average value of N,. Use this
value to plot the positions of the four sodium absorption lines on Fig. 9.22, and confirm that
they do all lie on the curve of growth.

Pressure broadening (due to the presence of the electric fields of nearby ions) is unusually
effective for the spectral lines of hydrogen. Using the general curve of growth for the Sun with
these broad hydrogen absorption lines will result in an overestimate of the amount of hydrogen
present. The following calculation nevertheless demonstrates just how abundant hydrogen is in
the Sun.

The two solar absorption lines given in Table 9.4 belong to the Paschen series, produced
when an electron makes an upward transition from the n = 3 orbital of the hydrogen atom.

(a) Using the general curve of growth for the Sun, Fig. 9.22, repeat the procedure of Exam-
ple 9.5.5 to find N,, the number of absorbing hydrogen atoms per unit area of the photosphere
(those with electrons initially in the n = 3 orbital).

(b) Use the Boltzmann and Saha equations to calculate the total number of hydrogen atoms
above each square meter of the Sun’s photosphere.

TABLE 9.3 Data for Solar Sodium Lines for Problem 9.26. (Data from Aller, Atoms, Stars, and
Nebulae, Revised Edition, Harvard University Press, Cambridge, MA, 1971.)

A (nm) W (nm) i
330.298  0.0067  0.0049
589.594  0.0560 0.325
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TABLE 9.4 Data for Solar Hydrogen Lines for Problem 9.27. (Data from Aller, Atoms, Stars, and
Nebulae, Revised Edition, Harvard University Press, Cambridge, MA, 1971.)

A (nm) W (nm) f
1093.8 (Pay) 0.22 0.0554
1004.9 (Pad) 0.16 0.0269

COMPUTER PROBLEMS

9.28 In this problem, you will use the values of the density and opacity at various points near the
\.3 . surface of the star to calculate the optical depth of these points. The data in Table 9.5 were

o obtained from the stellar model building program StatStar, described in Section 10.5 and
Appendix L. The first point listed is at the surface of the stellar model.

3
‘ (a) Find the optical depth at each point by numerically integrating Eq. (9.15). Use a simple
' trapezoidal rule such that
dt = —kpds
becomes
KiPi + Kit1Piv1
el U=\ T (rig1 — 1)

where i and i + 1 designate adjacent zones in the model. Note that because s is measured
along the path traveled by the photons, ds =dr.

(b) Make a graph of the temperature (vertical axis) vs. the optical depth (horizontal axis).

(¢) For each value of the optical depth, use Eq. (9.53) to calculate the temperature for a plane-
parallel gray atmosphere in LTE. Plot these values of T on the same graph. |

(d) The StatStar program utilizes a simplifying assumption that the surface temperature is
zero (see Appendix L). Comment on the validity of the surface value of T that you found.

9,29 The binary star code TwoStars, discussed in Section 7.3 and Appendix K, makes use of an
empirical limb darkening formula developed by W. Van Hamme (Astronomical Journal, 106,

1096, 1993):

I_(g%)—()) =1—x(1 —cosf) — ycosf logy(cosd),
where x = 0.648 and y = 0.207 for solar-type stars (other coefficients are provided for other
types of stars).

(a) Plot Van Hamme’s formula for limb darkening over the range 0 < 6 < 90°.
correctly treat the singularity in the function at 6 =90°)

(b) Plot Eq. (9.58), which is based on the Eddington approximation, on the same graph.

(¢) Where is the difference between the two formulae the greatest?

(d) Compare the two curves to the observational data shown in Fig. 9.17. Which curve best

represents the solar data?

(Be sure 10



