
GLOSSARY 
(in order of appearance and usefulness) 

 
Tensor: A tensor is basically a multi-dimensional matrix. We usually depict a tensor with 

indices to denote its different dimensions. For example, if B = (1, 2, 3, 4) and C = (0, 
1, 0, 2), then 

  Aµ! = BµC!
 

 defines A as the two-dimensional tensor 
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Likewise, if Aµ!" = BµB!

C
"

, then we’d have A
134

= B
1
B
3
C
4
= 1! 3! 2 = 6 . A one-

dimensional tensor is a vector and a zero-dimensional tensor is a scalar. In this 
paper, I think we only deal with two-dimensional tensors, so it’s safe to think of 
them as matrices. 

 
Metric Tensor: The metric tensor gµ!  tells you about the geometry of space and time. In 

particular, the metric defines an inner product that is the equivalent of the dot 
product in a given space (the dot product is only valid in Euclidean space). This 
inner product of V with W is defined as the product V !

(gµ" )W . For example, in 
Euclidian space, the metric is simply the identity matrix, so we retrieve the familiar 
definition of the dot product. In special relativity, the metric is given by the 
Minkowski tensor 
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which leads to the well-known invariant ds2 = dx2 + dy2 + dz2 ! c2dt 2  when we take 
the inner product of the vector (dx, dy, dz, c dt) with itself. 
 

Raised and Lowered Indices: 
The inner product is often written as VµW

µ  or gµ!V
!
W

µ . There are two new things 
going on in this definition. First of all, when the same index label appears twice in a 
given term, we’re supposed to sum over that index (this is Einstein summation 
notation). Thus,  
 

 BµCµ = B1C1 + B2C2
+ B

3
C
3
+ B

4
C
4
= 0 + 2 + 0 + 8 = 10 . 



  
We also see that the metric lowers the index of V. In general,  

 gµ!Aabcd ...
"#$ ...v...

= Aabc...µ ...
"#$% ... . 

A is any tensor. The inverse of gµ! , gµ! , raises indices. We can think of raising and 
lowering as taking the transpose in our space. In Euclidean space, to take the dot 
product of V with W, we transpose V and use matrix multiplication. In the product 
gµ!V

!
W

µ , we first use gµ!  to take the transpose of V, and then multiply V-transpose 

and W. In the equivalent product VµW
µ , we’ve already collapsed the sum over v and 

simply depict the transposed-ness of V with a lowered index. 
 
Commas in Indices: denote a partial derivative with respect to the coordinate that follows 

the comma. 
 
Functional: Simply a scalar function that takes a vector as its argument. 
 
Action: By now, you’ve probably heard of the principle of “least time.” Well, there’s also 

the principle of least action. The action is the integral of the Lagrangian over a path: 
 S = Ldt

path

! . 

Of course, with a change of variables, time can be replaced by distance along the 
path. The Lagrangian is a measure of the energy of the system, and is defined by 
 

L = Kinetic energy – Potential energy 
 
L can be a function of both time and space. By minimizing the action with respect to 
position, we can determine equations of motion for the objects in our system. You’ll 
do lots of this in 111. 
 

Einstein-Hilbert Action:  

 S =
c
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c and G are the speed of light and the gravitational constant. g is the trace of the 
metric tensor, and R is the scalar curvature, which is determined by the metric and 
coordinate system. We thus see that the Einstein-Hilbert action depends only on the 
choice of coordinates and the metric tensor gµ! . Minimizing this action produces 
Einstein’s field equations. 

 
Friedmann-Robertson-Walker Metric: The FRW metric is a solution to the Einstein field 

equations. In Cartesian coordinates, it’s given by 
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 a(t) is known as the scale factor, as it scales the spatial coordinates with respect to 

the time coordinate. 
 
 
 
 
 

SUMMARY 
 

 Dark matter explains observations such as galaxy rotation curves, gravitational 
lensing, and large scale structure that can’t be understood with only baryonic matter and our 
current laws of gravity. However, dark matter is problematic – or rather, dark energy is. We 
don’t have any good theories that explain it, and the theories that do offer an explanation 
tend to predict more dark energy than we actually observe. If we assume that our universe 
can be explained with our current theories of gravity, then we must allow both dark matter 
and dark energy, the so-called “dark sector.” 
 To get rid of the dark sector, Milgrom proposed a theory of modified Newtonian 
dynamics, or MOND. MOND says that, for low accelerations, Newtonian gravity no longer 
holds. Bekenstein expanded on Milgrom’s theory and came up with the math required for a 
full relativistic model. Basically, Bekenstein redefined the metric, which is usually a tensor 
field, to also include a tensor field and a scalar field. His theory is called TeVeS, for the 
tensor, vector, and scalar nature of the fields. 
 In this paper, the authors apply the TeVeS model to a specific problem: the growth 
of density perturbations in the early universe. As seen in Figure 1, without dark matter, the 
Newtonian-gravity density fluctuation power spectrum has a much lower amplitude than the 
observed spectrum (I believe that the x-axis scales as 1/fluctuation size and the y-axis is a 
measure of how much clumping there is at a given scale). A large amplitude is required to 
form large-scale structure, so such structure cannot form with only baryonic matter 
according to Newtonian gravity. The authors note that numerical simulations of TeVeS have 
already been shown to increase the growth of perturbations in order to produce a larger 
amplitude, and so they’d like to analytically determine the root of the growth. Note that, in 
Figure 1, we also see that the shape of the baryonic power spectrum is different (more 
wiggly) than the observed spectrum, but the authors do not address this issue in the paper. 
 
 Next up is the mathematical model. Instead of taking you through it step by step, I’ll 
compare the results of general relativity with those of TeVeS: 
 
 
 
 



 general relativity TeVeS 
metric gµ!   

is governed by the 
Einstein-Hilbert action 

 
gµ! " e

#2$
( !gµ! + AµA! ) # e

2$
AµA! ,  

where 
 
!gµ!  is governed by the Einstein-Hilbert 

action, A is a vector field governed by the vector 
action defined below, and !  is a scalar field 
governed by the scalar action defined below. 
Indices are raised and lowered by 

 
!gµ! . 

 
actions Einstein-Hilbert action: 
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Einstein Hilbert action for the tensor field: 
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Scalar field action: 
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Vector field action: 
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F is defined by A. µ  is a scalar field. !  is a 
scalar fixed by the action. The potential V (Eq. 
3) introduces two constant free parameters, 
µ
0
and 

 
!
B

. Additionally, there’s a K in the 
vector field action, which maybe relates to 
Killing vectors? Or perhaps K is actually the 
third free parameter, K

B
, with the subscript left 

off. 
time 
evolution 
of the 
scale 
factor 

Friedmann equation: 
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Same, but G becomes G
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, and 

there is an additional term for the energy density 
of the scalar field. 

 
We thus see that the TeVeS model is quite a bit more complex than the standard GR 

model. In GR, it is typical to guess at the form of the action and consider it true if it predicts 
observations correctly. However, the forms of the TeVeS actions are so complex that it is 
difficult to understand how Bekenstein came up with them.  

 
Next, in order to investigate growth of density fluctuations, the authors perturb the 

system. For a normal FRW metric, the perturbation would consist only of a perturbation of 
the matter and radiation densities. For the TeVeS model, the scalar and vector fields also 
enter into the calculation. In the third panel of Figure 3, we see that, for small values of the 
free parameter K

B
, there is greater growth of perturbations than for the standard model. 

This enhanced growth is due to perturbations in the vector field, and without vector 
perturbations, growth is not enhanced. 


