
23 cosmotogy

Cosmology is the study of the universe, or cosmos, regarded as a whole. Some questions

addressed by cosmologists are What is the universe made of? Is it finite or infinite in
spatial extent? Did it have a beginning at some time in the past? Will it come to an end

at some time in the future?
In addition to dealing with Very Big Things, cosmology also deals with very small

things. Early in its history, as we'll see later on, the universe was very hot in addition

to being very dense, and interesting particle physics phenomena were occurring. Thus,

a briefreview of elementary particle physics will be useful as a preface to this chapter.

For most particle physics applications, the electron volt (1 eV : L602 x 10-1e J) tends

to be an inconveniently small unit of energy. Thus, particle physicists tend to measure

energy in units of MeV (106 eV), GeV (10e eV), or TeV (1012 eV).
The most cosmologically important particles are listed in Table 23.I.r The objects that

surround us in everyday life are made of protons, neutrons, and electrons. Protons and

neutrons are both examples of baryons, where a baryon is def,ned as a particle made of
three quarks.2 A proton (p) contains two "up" quarks, each with acharge q : ¡213, and

a "down" quark, with a charge of q - -I13. A neutron (n) contains one "up" quark and

two "down" quarks. A proton has a mass (or equivalently, a rest energy) that is 0. 17¿ less

than that of a neutron. A free neutron is unstable, decaying into a proton with a decay

time of rr:940 s, about a quarter of an hour.

Electrons (e-) are examples of leptons, a class of elementary particles that are not

made of quarks.3 The mass of an electron is small compared to that of a proton or neutron;

the electric charge of an electron is equal in magnitude, but opposite in sign, to that of a

proton. On large scales, the universe seems to be electrically neutral, with equal numbers

of protons and electrons. The component of the universe made of atoms, molecules, and

ions is called baryonic matter, since only the baryons contribute significantly to the

mass density.

I Other particles, exotic by current standards, were abundantiy present during the f,rst few seconds of the

universe. Since then, however, the particles we tabulate have been the most abundant.
2 "Baryon" comes f¡om the Greek roolbarys, meaning "heavy" or "w eighfy." Abarom¿l¿r measures the weight

of the atmosphere, and the barycenter of the Local Group (see Figwe 22.2) is the center of gravity, or center

of mass.
3 "Lepton" comes from the Greek ¡oot leptos, meanitg "small" or' "thin." In Greece, the euro cent (1/100 of a

euro) is called a lepton, since it is the smallest coin minted.
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TABIE 23.1 Particle Properties
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Neutrinos (u) are also leptons. Neutrinos have no electric charge and interact with
other particles only through the weak nuclear force or gravity. There are three types,
or flavors, of neutrinos: electron neutrinos (ur), muon neutrinos (v,r), and tau neutrinos
(ur). Although recent experiments indicate that the different neutrino types have different
masses, those masses must be small compared to the electron mass, with muc2 < 2 eV
being the approximate upper limit on the rest energy.

A particle known to be massless is the photon (7). Unlike neutrinos, photons interact
readily with electrons, protons, and neutrons. Although photons are massless, they have
an energy E : hclL, where À is the wavelength.

The most mysterious component of the universe is the dark matter. As discussed in
Section 19.2, some of the dark matter may be baryonic (in the form of brown dwarfs
or other dense, dim MACHOs). Some of the dark matter, but not much, is contributed
by the lightweight neutrinos. It is likely that some of the dark matter is contributed by
WIMPs, weakly interacting massive particles that are far more massive than neutrinos.

23.1 I BASIC COSMOLOGICAT OBSERVATIONS

Observations of the universe around us have led cosmologists to adopt the Hot Big Bang
model, which states that the universe has expanded from an initial hot and dense state
to its current cooler and lower-density state, and that the expansion is continuing today.
Several observations have contributed to the acceptance of the Hot Big Bang model.
Many of these observations are recent and depend on sophisticated technology. Howeve¡
the first observation on which the Hot Big Bang is based is ancient and requires nothing
more sophisticated than your own eyes.

The first observation underpinning modern cosmology is this: The night sky is dark.
'When you go outside on a clear night and look upward, you see scattered stars on a
dark background. The fact that the night sky is dark at visible wavelengths, rather than
being uniformly bright with starlight, is known as Olbers's paradox, after the astronomer
Heinrich Olbers, who wrote a paper on the subject in the year 1826.4 Olbers was not

4 Close¡ to home, Olbels is also known as the discoverer of the asteroids Pallas and Vesta
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actually the first person to think about Olbers's paradox; as early as 1576, Thomas Digges

was worrying in print about the darkness of the night sþ.
Why should the darkness of the night sþ be paradoxical? First, consider the light

from a single star of luminosity L at a distance r. The flux from the star is given by the

inverse square law:

F: L -.
4n r'2' Q3'l)

The solid angle subtended by the star is also inversely proportional to its distance; ifthe
star's radius is lR*, its angular area (in steradians) is

rR2)('\ _ - (23.2)
"oo- ,2'

This means that the surface brightness X* of the star (in watts per square meter per

steradian) is independent of distance:

(¿) (å) 
'

(23.6)

(23.1)

FL
>* :2.0x 107Wm 2ster-l (23.3)

For a Sun-like star, this corresponds to )* - 0.5 mV/ m-2 arcsec-2. Since even nearby

stars, like those of the Alpha Centauri system, have angular areas dQ < 10 s arcsec2,

any individual star other than the Sun will cover only a tiny fraction ofthe celestial sphere

and contribute only a tiny flux here at Earth. But what if the universe stretches to infinity
in all directions?

Let n* be the average number density of stars in the universe, and let L and R* be

the average stellar luminosity and radius. Consider a thin spherical shell ofradius r and

thickness dr centered on the Earth (Figure 23.1). The total number of stars in the shell

will be

dN*:n*4rr2dr' (23'4)

Since each star covers an angular area dS2 : T R?l 12, the fraction of the shell's area

covered with stars will be

df :4r't!E : n*r R?d.r, (23.s)"4n

independent ofthe radius r ofthe shell. The fraction ofthe sky covered by stars within
a distance r of us will then be

, : Ir' d.f : nø R? 
[o' 

o, : n¡r R?*r.

The coverage becomes complete when / È 1, coffesponding to a distance

1
rolb È 

---:-n*r R2*'
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dr

FIGURE 23.1 A star-filled spherical shell.

Thus, if the universe extends for a distance r / ro¡, the sky must be uniformly bright,

with a surface brightness equal to that of a typical star.

Obviously, the sþ is ¿or uniformLy bright; at least one of the assumptions that went
into our calculation must be wrong. One assumption we made was that n* and R* were

independent of distance. This might be wrong. Distant stars might be smaller or less

numerous than nearby stars.

A second assumption is that the universe is bigger than ro16. This might be wrong.
If the universe stretches only to a distance rs < /616, then the fraction of the night sky

covered by stars will be

f * n*n R?ro.I, (23.8)

and the average surface brightness ofthe sky will be

Ð,ky : f E*N n_on2_ro _-f- *y¿!g (23.e)

This result will also be found if the universe is infinitely large but empty of stars beyond

a distance r9.

A thfud assumption, slightly more subtle, is that the universe is infinitely old. This
might be wrong. If the universe has a finite age /6, then the greatest distance we can see

is 16 æ cts, aîd the average surface brightness of the sþ will be

s _ n *LctgErky È -* (23.10)

This result will also be found if the universe is eternally old but has contained stars only
for a finite time /s.
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A fourth assumption made in computing the surface brightness is that the flux of
stars is given by the invelse square law of equation (23.1). This might be wrong. The

assumption that F c< r 2 follows directly from Euclid's laws of geometry. However, on
large scales, the universe is under no obligation to be Euclidean. In some non-Euclidean
geometries, the flux falls off more rapidly than an inverse square 1aw.5

The darkness of the night sky caused astronomers to question many of their as-

sumptions; an infinitely large, inf,nitely old, Euclidean universe can't stand up to close

scrutiny.
The second obselvation on which modern cosmology is based is the Hubble law:

Galaxies show a redshift proportional to distance. As noted in Section 20.5, the Hub-
ble law is a natural consequence of homogeneous, isotropic expansion. If the expansion

is perfectly homogeneous and isotropic, then the distance r(t) between any two points

can be written in the form

r(t) : ¡1ç¡¡'0, Q3'I7)

where rs =r(to) is the separation at the current time /s, and a(t) is a dimensionless

function known as the scale factor. The homogeneity and isotropy of the expansion

imply that ø(t) is not a function of position or direction but only of the time ¡. The

distance between the two points will increase at the rate

ulr) - àrn: L¡o(/)r6l: 1rØ. (23.12)
a\t ) a\t )

Thus, the velocity-distance relation takes the form of the Hubble law: u(t) : H(t)r(t),
where 11(t) : a I a. The function H (/) is called the Hubble parameter. Its value at the
present day, Hs = H (ts), is called the Hubble constant.

Note how the Hubble law ties in with Olbers's paradox. If the universe is of finite
age, to - 1{1, then we expect that the horizon distance, the maximum distance from
which light has had time to reach us, will be of the order re - cto - c/I1e. The luminosity
density of starlight in the universe, computed in Section 223, is

n*L : PL:2.3 x 108t" MPc 3. (23.13)

The average surface brightness of the sky should then be approximately

n.L c (2.3 x r}sL"Irapc 3¡1+:oo vtpc;

4Í Hs 4r

- 8 x 10101" Mp. 'ster 
1 - 3 x 10 8'w --2 st..-1

\..
"sky (23.r4)

(23.r5)

When we compare this to the surface brightness of a Sun-like star,

E*=2.0 x 107Wm 2ster 1,

s Of course, in other non-Euclidean geometries, the flux fal1s off less rapidly than an inverse square 1aw, which
will only increase the problem.

)
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we find that )* - 6 x 101aXsq,. Thus, for the entire sky to have a surface brightness as

great as the Sun's, the universe would have to be 600 trillion times older thanitis-and
you'd have to keep the stars shining during all that time.

The primary resolution to Olbers's paradox is that the universe has a finite age. Stars
beyond the horizon distance are invisible to us because their light hasn't had enough time
to reach us. A secondary contribution to the darkness ofthe night sþ is the redshift of
distant light sources, close to the horizon, which reduces their flux as measured from
Earth.

A third observation on which modern cosmology is based was made in the year 1965:
The universe is filled with a cosmic microwave background (CMB). The discovery
of the CMB by Arno Penzias and Robert Wilson has entered cosmological folklore.
Using a microwave antenna at Bell Labs, they discovered a slightly stronger signal than
they expected from the sky. The extra signal was isotropic and constant with time. After
removing all sources of noise that they could, they realized that they were truly detecting
an isotropic background of microwave radiation. More recently, the Cosmíc Background
Explorer (COBE) satellite revealed that the CMB has a spectrum indistinguishable from
a Planck function (equation 5.86) to a very high degree of accuracy:

2hv3 I
Iv

c2 ,hv/kTs - 1'
(23,t6)

with a temperature

To:2.725 + 0.001K. (23.17)

That is, the CMB is just what we would see if we were inside a hollow blackbody at a
temperature of 2.125 K. The cunent energy density of the CMB is

4o.
ø0 : 

=4 
:4.1j x 10 la J m-3 : 0.260 MeV m-3, (z3.lg)

c

where o5s is the Stefan-Boltzmann constant. The average energy of a single CMB
photon, integrating over the complete Planck spectrum, is

eo:2.JkTo:6.34 x 10-a eV. (23.19)

The average photon energy 66 coffesponds to a wavelength ),s : hc leo ry 2 mm, in the
microwave range of the electromagnetic spectrum (hence the name cosmic microwave
background). The number density of CMB photons is

_^_uo _ 2.60 x lOsevm-3 :4.rrx 108m_3. (23.20)"o - ,, - 634 x 1o-4 "v
In an expanding Big Bang universe, cosmic background radiation arises naturally

if the universe was initially very hot in addition to being very dense. Suppose the
initial temperature was T >> 104 K. At such high temperatures, the baryonic matter in
the universe was completely ionized (Figure 23.2), and scattering of photons from the
free electrons rendered the universe opaque. A dense, hot, opaque medium produces
blackbody radiation, with a Planck spectrum. However, as the universe expanded, it
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FIGURE 23.2 (a) The ionized, opaque universe before recombination. (b) The
transparent universe after recombination.

cooled..When the temperature dropped to f - 3000 K, ions and free electrons combined
to form neutral atoms. 'When the universe no longer contained a significant number of
free electrons, the liberated blackbody photons started streaming through the universe,
without furlher scattering.

At the time the unive¡se became transparent, the temperature of the background
radiation was I - 3000 K, about the temperature of an M star's photosphere. The
temperatureof thebackgroundradiationtodayis Zo:2.125K, afactorof 1100 lower.
Why has the background radiation cooled? It's a consequence of the expansion of the
unlverse.

Consider a region of volume V that expands along with the universe, so that V (t) cx

a(t)3 , where a (r) is the scale factor. The blackbody radiation within this volume can be

thought of as a photon gas with energy density y : (4qslc)Ta and pressure P : u 13.
The photon gas within our volume obeys the first law of thermodynamics:

dQ: dE + PdV, (23.21)

where d Q is the amount of heat flowing into or out of the volume, and d E is the change

in the internal energy of the photon gas. In a homogeneous and isotropic universe, there
is no flow of heat, since everything is at the same temperature; thts, dQ: 0. The first
law of thermodynamics, applied to a gas in an expanding universe, then becomes

*: - rr,>{. e3.22)dt "dt

ForthephotonsoftheCMB,theinternalenergyis E(t):u(t)V(t):(4%slc)T(t)4V(t)
and the pressure is P(¡) : Ql3)u(t) : (4qsl3c)T (t)4. Equation (23.22) then becomes

19st (a7'dT v +r4+\:-!':'70!!, (23.23)
c \ dt dt/ 3c dt'
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or, with a little algebraic manipulation,

ldT

s33

tdv
Tdt 3Vdt

(23.24)

Since V (/) q. a(t)3 as the universe expands, equation (23.24) can be rewritten in the form

ldT lda
Tdt a dt'

(23.2s)

or

lmrt : -Lln o\dt' dt'
(23.26)

This implies the simple relation T (t) a a(t)-r; the temperature of the CMB drops as

the universe expands. Note that it also implies e(r) x a(t)-r for the average photon
energy and À(/) x ø(r) for the average photon wavelength. The background radiation
has dropped in temperature by a factor of 1100 since the universe became transparent
because the scale factor has grown by a factor of 1 100 since then.

The observations we have noted so far-the dark night sky, the Hubble law, and the
CMB-all fit neatly within the framework of the Hot Big Bang model for the universe,
in which the universe was initially very hot and dense but has since cooled as it expanded.
Although an exact treatment of how the universe expands requires knowledge of general
relativit¡ many of the most important aspects of the expanding universe can be explained
using purely Newtonian dynamics.

23.2 . COSMOTOCY À TA NEWTON

Let's compute, using Newton's law of gravity and second law of motion, how the scale
factor a(t) depends on time. Consider a homogeneous sphere of matter, with fixed total
mass M. The sphere is expanding (or contracting) homogeneously, so that its radius r(r)
is changing with time (Figure 23.3). Place a test mass, of infinitesimal mass m, at the
surface of the sphere. The gravitational acceleration of the test mass will be

d2r GM
dt2 r(ù2

(23.27)

If we multiply each side of equation (23.27)by dr ldt and integrate over time, we find

:(#)':#*0, (23.28)
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FIGURE 23.3 A sphere of fixed mass M and variable radius r(r)

where k is the constant of integration. Equation (23.28) is an energy conservation
statement. The sum of the kinetic energy per unit mass and the gravitational potential
energy per unit mass is a constant (k) for a bit of mass at the sphere's surface.6

The future of an expanding, self-gravitating sphere falls into one of three classes,
depending on the sign ofthe constant fr. First, consider the case k > 0. In this case, the
right-hand side of equation (23.28) is always positive. Therefore, the left-hand side of
the equation never goes to zero, and the expansion continues forever. Second, consider
the case k < 0. In this case, the right-hand side of equation (23.28) goes to zero at a
maximum radius r-* : GM /k, and the expansion stops. However, at the maximum
radius, the acceleration, given by equation (23.27), is still negative, so the sphere will
then contract. Third and last, consider the case fr : 0. This is the boundary case in which
dr ldt asymptotically approaches zero as / -+ oo.

The three possible fates of an expanding sphere in a Newtonian universe are analogous
to the three possible fates of a ball thrown upward from the Earth's surface. First, the
ball can be thrown upward with a speed greater than the escape speed uesc. In this case,
the ball goes upward forever. Second, the ball can be thrown upward with a speed less
than the escape speed. In this case, the ball reaches a maximum height, then falls back
down. Third and last, the ball can be thrown upward with a speed exactly equal to u"r..
In this case, the speed ofthe ball asymptotically approaches zero as t -+ oo.

Equation (23.28), describing an expanding (or contracting) sphere, can be rewritten
in such a way that it applies to a sphere of arbitrary radius and mass. The mass M,which
is constant, can be written in the form

tt:!p|)r(t)3.
J

Since the expansion is isotropic about the center of the sphere, we can write

r(t) : q(¡¡rt,

(23.29)

(23.30)

6 Note also that the expansion velocity, dr f dt, enterc equation (23.28) only as its square. This means that a

contracting spherc(dr/dt < 0) is simply atime reversal ofan expanding sphere (dr/dt > 0).
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where a(t) is the dimensionless scale factor and 16 is the current radius of the sphere.

Using these relations, equation (23.28) can be written in the form

l4u'-!c,lora"G)z +k, (23.3r)

or, dividing each side of the equationAy rla212,

(!\' :Ypo¡ +24J=. (23.32)
\o / 3 '- ''' rl a1¡¡z'

Theleft-handsideofequation(23.32)isthesquareoftheHubbleparameter,Ë1(/) =àla.
Thus, we now have an equation that links the expansion rate of the universe to its
mass density p. Equation (23.32) is called the Friedmann equation, after the Russian

cosmologist Alexander Friedmann, who first found it (using a relativistically correct
derivation) in the 1920s.

For a given value of the Hubble parameter, H(t), there is a critical mass density
p"(t) for which k:0, and the universe is exactly on the boundary between eternally
expanding (k > 0) and eventually recollapsing (k < 0). The value ofthe critical density
is, from equation (23.32),

3H G)2p"(t): -# (23.33)

At the present moment in the real universe, Ho:70 km s-l Mp"-t and the value of the

critical density is

3H?
o",o: ffi:9'2 x to-27 kgm-3: r'4 x l0rrM"Mp"-3' (23'34)

If the average density of the universe is greater than this value, then (if our Newtonian
analysis is adequate) the universe will eventually collapse in a "Big Crunch." If the

average density is less than or equal to this value, then it will expand forever in an

increasingly tenuous "Big Chill." Is the average density greater than or less than p",6?

It's not immediately obvious. Although p",6 is equivalent to a density of one hydrogen

atom per 200 liters-much more tenuous than even the lowest density coronal gas in the

interstellar medium-you must remember that most of the universe consists of very low
density voids.

In a strictly Newtonian universe, the fate of the universe-Big Crunch or Big Chill-
is determined solely by the ratio of the average mass density to the critical density.

However, if a cosmological constant is present, then this ratio of densities no longer
uniquely determines the ultimate fate of the universe. A cosmological constant is an

entity that provides a positive acceleration (ä > 0) to the expansion ofthe universe. The

cosmological constant was introduced by Einstein in the context of general relativity.
Since the Newtonian view is that gravity is always an attractive force (ä < 0), it will be

necessary for us to dabble in general relativity in order to understand the cosmological
constant and the possibility of an accelerating universe.
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COSMOLOGY À tA EINSTEIN

In Newton's view of the universe, space is static, unchanging, and Euclidean. In Eu-
clidean, or "flat," space, all the axioms and theorems of plane geometry (as codified by
Euclid around 300 BC) hold true. In Newton's view, an object with no net force acting
on it moves through this Euclidean space with a constant velocity. However, when we
look at real celestial objects (comets, planets, asteroids, and so forth) we find that their
velocity is not constant; they move on curved lines with continuously changing speeds.

Why is this? Newton would say, "Their velocities are changing because there is a force
acting on theml the force called gravity."

Newton derived a useful formula for computing the gravitational force between two
objects. Every object in the universe, said Newton, has a property that we may call the

"gravitational mass." Let the gravitational mass of two spherical objects be m, and M ,,
and let the distance between their centers be r. The gravitational force acting between

the objects is

23.3 .

Fgru,
GMrm,

12
(23.3s)

where G is the Newtonian gravitational constant. The gravitational mass of an object is

a nonnegative number, so the Newtonian gravitational force is always attractive, with
Fg*u I 0. Newton also provided us with a useful formula that tells us how objects move

in response to a force. Every object in the universe, said Newton, has a property that we

may call the "inertial mass." If the inertial mass of an object is m¡,then if a net force F
is applied to it, Newton's second law of motion tells us that its acceleration will be

a: F/m¡, (23.36)

In equations (23.35) and (23.36), we use different subscripts to distinguish between the
gravitational mass ¡øs and the inertial Írâss r??;. One of the fundamental principles of
physics (a rather remarkable one, if you stop to think about it) is that the gravitational
mass and the inertial mass of an object are identical;

ffig:ffii (23.31)

The equality of gravitational and inertial mass is known as the equivalence principle.
The gravitational acceleration a of an object under the influence of a sphere of mass M,
will generally be

(23.38)

Ifthe equivalence principle didn't hold true, then different objects would fall at different
rates in the Earth's gravitational field. The observati onthala: -9.8 m s-2 for all objects
near the Earth's surface is supporling evidence that the equivalence principle holds true.

o:!sv:-rye)
flt¡ \t
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FIGURE 23.4 Equivalence principle (teddy bear version)

It is the equivalence principle that led Einstein to devise his theory of general relativity.

To see why, let's do a thought experiment.T Suppose you wake up one morning to find
that you've been sealed inside a small, opaque, soundproofbox. You are so startled by

this, you drop your teddy bear. Observing the falling bear, you f,nd that it falls toward

the floor with an acceleration a: -9.8 m s-2. "Whew!" you say with relief. 'At least I
am still on the Earth's surface, and not being abducted by space aliens." At that moment,

a window in the side of the box opens to reveal that you are in an alien spacecraft that

is being accelerated aÍ- a :9.8 m s-2 by a rocket engine. When you drop a teddy bear,

or any other object, in a small, sealed box, the equivalence principle allows two possible

interpretations, illustrated in Figure 23.4: (I) The bear is moving at a constant velocity,

and the box is being accelerated upward by a constant nongravitational force; or (2)

The box is moving at a constant velocity (which may be zero), and the bear is being

accelerated downward by a constant gravitational force. The observed behavior of the

bear is the same in each case.

Now suppose you are still in the sealed box, being accelerated through space by a

rocket at a :9.8 m s-2. You grab the flashlight you keep on the bedside table and shine

a beam of light perpendicular to the acceleration vector (Figure 23.5). Since the box is

accelerating upward, the path of the light will appear to you to be bent downward toward

the floor, as the floor of the box accelerates upward to meet the photons. However, thanks

to the equivalence principle, we can replace the accelerated box with a stationary box

experiencing a constant gravitational acceleration. Since there's no way to distinguish

between these two cases, we are led to the conclusion that the paths of photons will

7 This thought experiment, as well as some other arguments in Chapters 23 and24, arc takenfrom Introduction

to Cosmology (Barbara Ryden, 2003).

1
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FIGURE 23.5 Equivalence principle (flashlight version).

be curved in the.presence of a gravitational field. Gravity affects photons, Einstein
concluded, even though they have no mass.

Contemplating the curved path of the photons, Einstein had another insight. A funda-
mental principle of optics is Fermat's principle, which states that light travels between
two points along a path that minimizes the travel time.8 In a vacuum, where the speed
of light is constant, this translates into the requirement that light takes the shortest path
between two points. In Euclidean space, the shortest distance between two points is a
straight line. In the presence of gravity, however, the path taken by light in a vacuum is
a curved line. This led Einstein to conclude that space is non-Euclidean.

The presence of mass, in Einstein's view, causes space to be curved. More broadly, in
the theory of general relativity, mass and energy (which Newton thought of as very dif-
ferent things) are interchangeable, via the equation E : mc2. Moreover, space and time
(which Newton thought of as very different things) form a four-dimensional spacetime.
A more complete summary of Einstein's viewpoint, then, is that the presence of mass-
energy causes spacetime to be curved. This gives us a third way of thinking about the
motion of the teddy bear in the box: (3) No forces are acting on the bear; it is simply
following a geodesic in curved spacetime.g

In general, computing the curyature of spacetime is a complicated problem. Since the
distribution of mass and energy is inhomogeneous on small scales, the curvature of space
and time is also inhomogeneous, with strong curvature near black holes and neutron stars,
and weak curyature in intergalactic voids. However, on scales bigger than 100 Mpc, the
spatial distribution of mass and energy appears homogeneous and isotropic. Thus, we

8 More precisel¡ Fermat's principle requires that the travel time be an extremum. Under most circumstances,
the path minimizes travel time rather than maximizes it.
9 The word "geodesic," in this context, is shorthand for "the shortest distance between two points."

I r=o
_Y____
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FIGURE 23.6 A flat, two-dimensional space (plane).

conclude that the curvature of space is also homogeneous and isotropic on large scales.

The assumption of homogeneity and isotropy vastly simplifies the problem. There are

only three basic geometries that space can have under such restrictive conditions. Since

picturing the,curvature of three-dimensional space is difficult, we'11 start by considering
the curvature of two-dimensional spaces, whose pictures can be neatly drawn on paper;

later, we'll generalize to three dimensions.
First of all, space could be flat, or Euclidean. A picture of a flat two-dimensional

space, otherwise known as a plane, is given in Figure 23.6.Inflat space, all of Euclidean
geometry holds true. For instance, in flat space, a geodesic is a straight line. If a triangle
is constructed in flat space by connecting three points with geodesics, the angles at the

vertices (a, p, and 7 in Figure 23.6) must obey the relation

u*þ-lY:tt, (23.39)

when the angles are measured in radians. A plane has an infrnite area,lO and has no edge

or boundary.
Another two-dimensional space with homogeneous, isotropic curvature is the surface

of a sphere, as illustrated in Figure 23.1 . On a sphere, a geodesic is a portion of a great

circle.l1 If a triangle is constructed on the surface of a sphere by connecting three points

with geodesics, the angles atits vertices (a, þ, and y inFigure 23.7) mustobey the

relation

a -l þ -l y :r i Alr2", (23.40)

where A is the area of the triangle and r" is the radius of the sphere. Spaces in which
a i þ -l y > Í aïecalled positively curved spaces. A sphere has a finite area, 4trf;,
but no edge or boundary.

l0 Figure 23.6, of course, only shows a portion of a plane.
ll ff the Earth is approximated as a sphere, a line of constant longitude falls along a great circle. The equator

is a great circle, but other lines of constant latitude are not.
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Ff GURE 23.7 A positively curved, two-dimensional space (sphere).

In addition to flat spaces and positively curved spaces, there exist negatively curved
spaces. An example of a negatively curved, two-dimensional space is the hyperboloid,
or "saddle shape," ,shown in Figure 23.8. Consider a two-dimensional space of constant
negative curvature, with radius of curvature rr.If aftiangle is constructed on this surface
by connecting three points with geodesics, the angles at its verlices (a, þ, and y in
Figure 23.8) must obey the relation

a-lþIY:1r-Alr?, Q3.41)

where A is the area of the triangle. A surface of constant negative curvature has infinite
area, just as a plane does.

If you want a two-dimensional surface to have homogeneous, isotropic curvature, only
three cases fit the bill: it can be uniformly flat, it can have uniform positive curvature,
or it can have uniform negative curvature. The same holds true for three-dimensional
spaces. Thus, the curvature of homogeneous, isotropic space can be specified by just
two numbers, r and rr. The number rc, called the curvature constant, is rc : 0 for flat
space, rc - al for positively curved space, and rc : -I for negatively curved space. If
r is not zero, then r", which has dimensions of length, is the radius of curvature of
the space. Generally, r"(r) is a function of time, with rc(/) : a(t)rc,o if the space is to
remain homogeneous and isotropic.

So what is the curvature of the universe-positive, negative, or flat? As early as the

year 1829,long before Einstein's parents were twinkles in his grandparents' eyes, the
mathematician Nikolai Ivanovich Lobachevski, one of the founders of non-Euclidean
geometry, proposed observational tests to determine the curvature of the universe. In
principle, measuring the curvature is simple. Just draw a triangle, then measure its area

,4andtheanglesø, B,andy atitsvertices.Fromequations(23.39),(23.40),and(23.4I),
we know that

a-rþ*y:n+*, Q3.42)
ri.o
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FICURE 23.8 A negatively curved two-dimensional space (hyperboloid).

where r is the curvature constant and r",g is the present radius of curvature' Thus, we

can compute

tc d-fþ-fy-n
(23.43)

,",0 A

Unfortunately for this elegant plan, the deviation of ø * þ I y ftom ø radians is tiny
unless the area of the triangle is comparable to rl,o. Really, really big triangles are

required.
'We can conclude that if the universe is curved, with r : t1, the radius of curvature

cannot be much smaller than the Hubble distance, c I Ho x 4300 Mpc' To see why this

is true, consider looking at a galaxy of diameter D that is at a distance d f:om the Earth
(Figure23.9).Inaflatuniverse,inthelimitD {1 d,wecanusethesmallangleformula
to compute the angular size ø of the galaxy:

D
dflat: 

¡,
(23.44)

where the angle a is in radians. However, in positively or negatively curved space, the

angular size is no longer proportional ro lld,
In a space with uniform positive curvature, the angular size is

DD
cuPos: ,".r"1"(dlk,ùt; 

(23'45)

In a positively curved universe, the mass--energy content acts as a magnifying gravi-

tational lens, making galaxies appear larger than they would in flat space. There are

two interesting consequences of equation (23.45). First, the angular size blows up when

d : Írr,s', that is, when a galaxy is at a distance equal to half the circumference of the
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--T
Linear--4 size D

I

d, Q3.46)

curved universe g lens.l3 If a galaxy is at a
r'",6, !üo can use e* f 2 when x )) 1. With this

lì'

(23.47)

Distance d

FICURE 23.9 Angular size of a distant galaxy.

universe, it fills the entire sky.12 No such enormous, sky-filling galaxies are seen. Second,
since the universe has a finite circumference Co - 2vr",g, an object seen at a distance
d will also be seen, with the same angular size, at a distance d + Cs, and at a distance
d l2Co, and at a distance d + 3Co, and so forth, ad nauseum. No such periodic galaxy
images are seen. If the universe is positively curved, its radius of curvature must therefore
be comparable to or grealer than the Hubble distance.

In a space with uniform negative curvature, the angular size of a galaxy is

In a negatively curved universe, objects at a distance much greater than the radius of
curvature will appear exponentially tiny. Since galaxies are resolved in angular size,
with ø > 1 arcsec, out to distances comparable to the Hubble distance, we conclude that
if the universe is negatively curved, its radius of curyature must be comparable to or
greater than the Hubble distance.

The conclusion of cosmologists, using geometrical arguments like the ones given
above, is that the universe is consistent with being flat (rc :0). Although we cannot rule
out the possibility of slight positive or negative curvatu¡e, the radius of curvature in that
case would be bigger than the Hubble distance, and would have negligible effects on the

12 As a two-dimensional analogy, suppose that you were at the north pole of the Earth and a light source were
at the soutb pole. Ifthe light were constrained to follow great circles on the Earth's surface, it would flow along
all the lines of longitude stretching away from the south pole and converge on your position at the north pole.
No matter which way you turned, you would see the south pole beacon.
13 Or a demagnifying rear view minor: "Objects in mirror are closer than they appear."

Angular size a
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small bit of the universe within a Hubble distance of us.14 To make life simpler, we will
assume, in many of the following equations, that the universe is perfectly flat.

23.4 I METRICS OF SPACETIME

Astronomers study events that are widely spread out in space, and also widely spread

out in time. Thus, it is useful for them to be able to compute the distance between two
events in a four-dimensional spacetime. Computing the distance between two points in
a flat, three-dimensional space is easy. If one point is at (¡, y, z) and the other is at

(x * dx, y I dy, z i dz), the distance dlbetweenthem is given by the formula

dlz : d.x2 + dy2 + dz2. (23.48)

A formula such as equation (23.48) that gives the distance between two points is known
as a metric. Equation (23.48) uses the convention, common among relativists, that
¿¿z : çd.t)2, not d([.2); omitting the parentheses reduces visual clutter. The metric of
flat space appears different when different coordinate systems are used. For instance, in
spherical coordinates, the metric of flat space is

. dt2 : d.r2 + r2(de2 + sin2 edq2¡. (23.49)

By extension, we can compute the four-dimensional spacetime distance between two
events, one at (/, x, !, z) and the other at (t + dt, x I dx, y + dy, z I dz). According
to special relativity, the spacetime distance between these events is

dl2 : -c2dt2 + d.*2 + dy2 + dz2 (23.50)

: -r2dt2 + dr2 + 12çdoz + sin2 edq2¡.

The metric given in equation (23.50) is called the Minkowski metric, and the spacetime

in which it holds true is called Minkowski spacetime. Note that the sign of the term in-
volving time ec2dP)is opposite to that of the terms involving the spatial coordinates.ls

The Minkowski meffic applies only in the context of special relativit¡ which deals with
the special case in which spacetime is not distorted by the presence of mass or energy.

Thus, the Minkowski metric represents a static, empty, spatially flat universe.

In an expanding (or contracting) universe, the metric we use to measure spacetime

distances is called the Robertson-Walker metric. If space is flat, then the Robertson-
Walker metric takes the form

dt2 : -c2dt2 + o(t)2ldrz + r2(d02 + sin2 edç2¡1. (23.51)

la Similarly, a small bit ofthe Earth's curved surface is reasonably well described by a flatmap. A flat map ofthe

entire Earth results in distortions of size or shape (think of Greenland or Antarctica in a Mercator projection),

but a flat map of Ohio doesn't have perceptible distortions.
15 Some textbooks use the opposite sign convention d42 : c2dt2 - dx2 - dy2 - dz2.This is purely a formal

convention and has no physical meaning. It's like the arbitrary pronouncement that electrons have negative

charge and protons have positive; physics would be unchanged if we assigned + to electrons and - to protons.
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(r, e, Q)

^

(0, 0,0)

FIGURE 23.10 An observer looks at a galaxy.

Notice how the spatial component of the Robertson-Walker metric is scaled by the
square of the scale factor a(t). The time variable / in the Robertson-Walker metric
is the cosmic time, which is the time measured by an observer who sees the universe
expanding uniformly around him or her. The spatial variables (r, e , Ð in the Robertson-
Walker metric are the comoving coordinates of a point in space. If the expansion of the
universe is perfectly homogeneous and isotropic, then the comoving coordinates of any
point remain constant with time.16

Suppose you arb observing a distant galaxy and want to know how far away it is.
Since we are in an expanding universe, when we assign adislance I between two objects
(such as an astronomer and a galaxy), we must specify the time r at which that distance is
correct. For convenience, let's set up a coordinate system in which you are at the origin
and the galaxy is at a comoving coordinate position (r, 0, ô), as shown in Figure 23.10.
The proper distance lr(t) between two points in space is the length of the geodesic
between them when the cosmic time is fixed at the value /, and the scale factor is thus
fixed at the value q(t).The proper distance between an observer and a galaxy in a flat
universe can be found by using the Robertson-Walker metric of equation (23 .51) at fixed
time ¡:

d¿2 : a(t)2fdr2 ¡ r2çd02 + sin2 0dq2¡1. e3.52)

Along the geodesic between the galaxy and observer, the angle (0, Q) is constant, and
thus

dn. : a(t)d.r. (23.53)

The proper distance I p(t) is found by integrating over the radial comoving coordinate r:

îr(.,(t) : q(¡¡ | dr : a(t)r. (23.54)' Jo

16 Similarly, if the Earth were uniformly expanding or contracting with time, the latitude and longitude of any
point would remain constant with time.
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The normalization a(ts) : 1 for the scale factor means that the comoving coordinate r
is simply the current proper distance to the galaxy: r : I p(to) .

Unfortunately, the proper distance lr(/o) to a distant galaxy is impossible to measure,

since we don't have gigaparsec-long tape measures that can be extended infinitely rapidly.

As astronomers, we are condemned to a passive role; we learn what we can about the

galaxy in Figure 23.10 by gathering up the photons that it emits. A photon that we collect

at time f0 was emitted at an earlier timet" < /6. Photons travel on geodesics through

spacetime; more precisely, they travel on null geodesics. A null geodesic is a geodesic

for which dL : 0 along every infinitesimal section of its path. Given equatio n (23 .51), a

photon must satisfy the relation

,2dt2 : a(t)2ldr2 + r2(d02 + sin2 edq2¡l Q3.55)

as it travels through an expanding, spatially flat universe. A photon traveling from the

galaxy at (r, 0, d) to an observer at the origin follows a beeline with 0 and / constant.

This implies

c2dt2 : açt¡2dr2 (23.56)

along every inflnitesimal segment of the photon's radial path. Rearranging equation

(23'56)' we find 

^ dt _ ,t* : Or, Q3.57)

in which the left-hand side depends only on I and the right-hand side depends only on

r. Integrating along the photon's path,

,o dt
lo' 

o, :, (23.s8)
a(t)

Since the comoving distance r is equal to the current proper distance .(. o(to), this implies

that the proper distance is related to the scale factor by the relation

f,odt(.,(tn¡:¿ | (23.59)
I+ a(t)

In a static universe, where a(t):1for all time, equation (23.59) states that the

proper distance to a galaxy is equal to the speed of light times the photon's travel time:

.(.0: c(ts - r"). If the universe has been steadily expanding since /, andts,thena(r) was

smaller in the past than it is now, and thus 't r(tù > c(ts - t.). In general, although the

current proper distance lr(ts) isn't something we can measure, it's something we can

compute if we know a(r).
Although we can't directly measure the current proper distance of a galaxy, there

is a consolation prize; we can measure the galaxy's redshíft. The redshift z tells us

something useful: the scale factor a(t") atthe time the observed light was emitted. When

we considered the cooling of the CMB, we learned that the wavelength of light expands

along with the expansion of the universe: À(l) u a(t). This applies to all photons, not

just CMB photons. If we observe a galaxy's emission line with wavelength À6 at time fe,
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it was emitted with a shorter wavelength )t" at an earlier time t". The relation between
observed wavelength ).6 and emitted wavelength À, is

L" 
-Loq(t) q(to)

(23.60)

Using the definition of redshift,

Lo-L"
z (23.61)

(23.64)

(23.6s)

we find that the redshift is simply related to the scale factor at the time of emission:

7* z-y:ry4: +. e3.62)Ào a(t) a(te)

If we observe a quasar with z : 6.4,we are observing it as it was when the universe had
a scale factor a(t") : U7 .4: 0.135.

The most distant objects we can see, in theory are those for which the light emitted
at time / : 0 is just now reaching us ât / : 16. The proper distance to such an object is
called the horizon distance. In the limit te --> O, equation (23.59) tells us that the current
horizon distance is

(23.63)

As an example, let's suppose that the scale factor is a power-law, with a(t) : (t / ts)n .If
n < 7,the horizon distance is finite, with

l¡n Go) :, ['o +Jo a(t)

l¡or(ts) : c

Since the Hubble constant is

Ho:

I,^
dt _ cto

(tltù" l-n

no t:to tg

the horizon distance can also be written in the form
nc{nor(tù: l_rHo, Q3'66)

when 0 < n < l. Thus, if we want to know the exact relation between the Hubble distance
c / Hs and the horizon distance, we need to know the functional form of a (r).

23.5 ¡ THE FRIEDMANN EQUATION

In the context of general relativity, the form of ø(r) as well as the curvature constant r and
radius of curvature t",ç lta dictated by Einstein's field equations. In general relativity,
the field equations link the curvature of spacetime at any point to the energy density
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and pressure at that point.17 The equation that links ø(t), rc, and rr,s is the Friedmann

equation. We have already seen the Newtonian version of the Friedmann equation; it's
the energy conservation equation for the expanding sphere (equation 23'32):

t 8rG 2k1
(23.67)

-1

(/) r_-
,3 o(t)z

The relativistically correct form of the Friedmann equation is

/ à\2 \rG rcc2 I 
^\;) :fi"r,¡- A;&.; (23.68)

Equation (23.63) is offered without proof. (A derivation should be done only by a highly
trained relativist; please don't try this at home!)

Consider the changes made in going from the Newtonian form of the Friedmann

equation to the relativistically correct form. First, the mass density p has been replaced

by an energy density ø. Relativistic particles, such as photons, have an energy e : hc /)'
that contributes to the energy density. Not only do photons respond to the curvature of
spacetime, they also contribute to it.

Second, in going from the Newtonian to the relativistic form, we make the substitution

2k rcc2
_l_-

1'1'16 r-",o

In the Newtonian model, the constant k told us whether the universe was gravitationally

bound (k < 0) or unbound (k > 0). In the relativistic model, the constant r tells us whether

the universe is positively curved (r > 0) or negatively curved (r . 0).

Third and last, in going from the Newtonian to the relativistic form, we add a new term,

Itl3, fo the right-hand side of the equation. The Greek letter "À" is the symbol for the

famous (or perhaps infamous) cosmological constant. The cosmological constant has a

checkered history going back to the year 1917, when Einstein published his first paper

on the cosmological implications of general relativity. In a formal mathematical sense,

À is a constant ofintegration resulting from solving Einstein's field equations, which are

a set of differential equations. In addition, however, the cosmological component can be

given a physical meaning.ls
A close look at the Friedmann equation (eq. 23.68) shows that adding the .¿\ term is

equivalent to adding a new component to the universe that has a constant energy density

c2L
" 8nG

l7 The field equations a¡e therelativistic equivalent ofPoisson's equation, whichlinks the gravitationalpotential

at any point to the mass density p at that point.
lsPedantic note: we are using the convention that 

^ 
has units of l/[time]2. Other authors use a value of -¿\

that differs by afaclor lfc2,and thus has units of l/[ength]2. Just a warning, in case you want to go browsing

through the cosmological literature.

(Ð

(23.6e)

(23.70)
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Thus, any component of the universe whose energy density is constant with time will
play the part of a cosmological constant. One such component is the yacuum energy.
In quantum physics, a vacuum is not a sterile void. The Heisenberg uncertainty princi-
ple allows particle/antiparticle pairs to spontaneously appear and then annihilate in an
otherwise empty space. Just as there is an energy density ø associated with real parti-
cles, there's an energy density øuu" associated with the virtual particles and antiparlicles.
The vacuum energy density øru. is a small-scale quantum effect that is unaffected by the
large-scale expansion ofthe universe; hence, øuu" remains constant as the universe ex-
pands. (Unfofunately, quantum field theory cannot tell us the expected numerical value
of uuu",)

Let's rewrite the Friedmann equation in terms of the energy density of the universe,
including the energy density ll^ associated with the cosmological constant:

t'x2 8nG- *r2 I

lÐ :\fru,{')+u^(t)*unt-Ah e3'7r)

We've subdivided the energy density into three categories. First, the radiation density
ø, is the energy density contributed by relativistic particles, such as photons. Second,
the matter density u*isthe energy density contributed by nonrelativistic particles such
as protons, neutrons, electrons, and WIMPs. For nonrelativistic particles, L4*: p*c2.
Finally, the lambda density, a.k.a. the vacuum density, is the constant energy density
provided by the cosmological constant z\.

The fact that our universe is flat (or very close to it) means that the total energy density
is equal to the critical energy density (or very close to it). For per{ect flatness (r :0),

u, * u^ | t't¡: t',t'", (2332)

where the critical energy density is

ll": Prc2
3H(t)2c2

(23.73)
8nG

Since the Hubble parameter is currently Ho : JO km s-l Mp"-1, this translates into a
current critical density

3H?c2
u"'0: 

å;: 8'3 x 10-10Jm-3:5200Mevm-3' (23'14)

This is one of the more fascinating results of general relativity. Because the universe is
flat on large scales, we know the average energy density ofthe universe! Even ifwe don't
know how much is contributed by each component, we know that the total must come
to 5200 ¡1"Y --3.1e

Since the critical density u"(t) is vital to an understanding of the curvature and
expansion of the universe, cosmologists frequently express the energy density of the

19 Thafs the calorie content of a standard candy bar spread over a million cubic meters.
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(23.',ls)

universe in terms of the dimensionless density parameter

u(t)s¿(/): 

-'
u'(t)

If Q < 1, the universe is negatively curved; if CI > 1, the universe is positively curved.
Saying "The universe is flat" is equivalent to saying "Omega equals one." By extension,
we can write down a density parameter for each component of the universe:

a,tt¡:!'(!), e*(t):fu! o^{r¡= -14-. e3.i6)u(lr) ur\t) uc(t)

Knowinghow theuniverse expands with timerequires knowing how much energy density
is in radiation, matter, and the cosmological constant today, and knowing how the energy
density of radiation and matter evolves with time. (There are various exotic cosmologies
that contain other components, like cosmic strings and domain walls and various types of
dark energy, but for simplicity, we'Il stick to a universe with just radiation, nonrelativistic
matter, and a cosmological constant.)

PROBLEMS

23.1 Suppose that we smooth the Earth so that it's a perfect sphere of radius Re : 6371 km.
If we then draw on its surface an equilateral triangle with sides of length L : 1km,
what will the sum of the interior angles be?

23.2 Imagine a universe full of regulation basketballs, each with mâss m66 :0.62kg and
radius 166 :0.12m.
(a) What number density of basketballs, n 66, is required to make the mass density

equal to the current critical density, pr,':3H3 l(8t G)?
(b) Given this density of basketballs, how far on average would you be able to see in

any direction before your line of sight intersected a basketball?
(c) In fact, we can see galaxies at a distance dxc/HoN4300Mpc. Does the

transparency of the universe on this length scale place useful limits on the number
density of intergalactic basketballs?

23.3 Just as the universe has a cosmic microwave background dating back to the time when
the universe was opaque to photons, it has a cosmic neutrino background dating back
to the earlier time when the universe was opaque to neutrinos. The calculated number
density of cosmic neutrinos is nr:3.36 x 108 m-3.

(a) How many cosmic neutrinos are inside your body right now?
(b) What average neutrino mass, ,??r, would be required to make the mass density of

cosmic neutrinos equal to the critical density p..s?
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23.4 Suppose you are in a Newtonian universe whose density is equal to the critical density

p",¡. The scale factor ø(t) is implicitly given by the relation

¿2 8nGp,,s I

"": 3 ot'

(a) What is the functional form of a (r), given the boundary condition a - | at t - ts?

(b) What is /6 in terms of the Hubble constant, É16?

(c) In our universe, Ho:'l}kms-lMp.-l and the oldest stars have an age

t*: 13 Gyr. Are these two observations consistent with a Newtonian universe

thathas Po: þr,o?

23,5 Prove that a redshifted blackbody is still a blackbody but at a temperature T I $ I z)'


