
Knowing how the scale factor a(t) grew in the past and predicting how it will change
in the future is an important goal of cosmologists. The Friedmann equation tells us that
the growth ofthe scale factor is related to the energy density ofthe universe. It is useful
to divide the energy content into radiation (relativistic particles), matter (nonrelativistic
particles), and a cosmological constant. This is because each of these components has
an energy density with a different dependence on the scale factor.

A cosmological constant has an energy density u ¡ thaL is constant with time. To see
how the energy density ofradiation and matter behaves as the universe expands, consider
a volume V ihat expands with the universe, so that V (t) a a(t)3.If particles are neither
created nor destroyed, then the number density ofparticles, n, is diluted by the expansion
of the universe at the raÍe n(t) x V (t)-r q. a(t)-3, as illustrated in Figure 24.I. The
energy of the nonrelativistic particles is contributed entirely by their rest m ass, e : mc2 ,

which remains constant as the universe expands. Thus, for nonrelativistic particles, a.k.a.
"matter," the energy density has the dependence

u^(t) : n(t)e : n(t)mc2 x a(t)-3. (24.r)

The energy of relativistic particles, such as photons, has the dependence e(t):¡r¡
À(l) o< a(t)-r. Thus, for relativistic particles, a.k.a. "radiation," the energy density has
the dependence

u,(t):n(t)e(t):n(t)hclÀ.G) xa(t)-4. (24.2)

Given the different rates of decrease for the energy density, we find that the total energy
density u was contributed mainly by radiation at early times, when a (< 1 (Figure 24.2).
In the language of cosmologists, the early universe was "radiation dominated." If the
universe has a positive cosmological constant Â, then it becomes "lambda dominated"
if it reaches a sufficiently large scale factor.

24.1 r THE CONSENSUS MODET

In recent years, cosmologists (ordinarily a contentious bunch) have found themselves ap-
proaching an approximate consensus on the curvature, contents, and age ofthe universe.
The curvature is flat (or nearly so), implying that the energy density today is close to the
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critical density uo N u",0 N 5200 Mev m-3. To see how this energy density is allocated
among the different components, let's do a census of the universe.

Most of the energy density or photons is provided by the cosmic microwave back-
ground; although stars have been shining away for - l3 Gyr, starlight still provides less
than IÙVo of the total photon energy of the universe.l The current energy density of the
CMB, as computed in equation (23.I8), is a"-6,6 :O.260MeV m-3. The contribution
of the CMB to the critical density is thus

ecmb,o - 
&cmb'o : 9?99 l49j --'u- un 

:5'u x lo-'' (24'3)

The cMB is a relic of the time when the universe was hot and dense enough to be
opaque to photons. If we extrapolate to earlier times and smaller scale factors, we reach
a time when the universe was hot and dense enough to be opaque to neutrinos. Thus,
there should be a cosmic neutrino background (cNB) analogous to the CMB. A detailed
statistical mechanics calculation (of which we omit the details) reveals that the energy
density of the CNB should be

uup:0.68u"mb,0 : 0.177 MeV m-3, (24.4)

If neutrinos are low enough in mass to be relativistic today, the present density
parameter in radiation is

Or,0 : Ocmb,g f 0r,o : 1.689",o6,9 : 8.4 x 10-s. (24.5)

Thus, photons and neutrinos contribute a small fraction of the critical density today; about
1 part in 12,000. Most of the density must currently be provided by nonrelativistic matter
andlor a cosmological constant (or by some other, hitheno unsuspected, component).

The energy density of the cMB has been measured with high precision; the energy
density of the cNB has been computed using well-understood principles of physics. The
energy density of matter is not as well determined. If we add together the mass of all the
clusters of galaxies in our neighborhood, we find that the density of clustered matter is

O.1r.¡".,g È 0.2. (24.6)

This number doesn't include any smoothly distributed matter in the intercluster voids.
The best estimate for the current density of nonrelativistic matter, using all available
data, is

9*p x 0.3. (24.1)

lThus,althoughphotonnumberisnotstrictlyconserved,asweassumedwhencomputing u,aa-4,it,sa
better approximation than we might guess.
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The best estimate for the current density of baryonic matter (that is, stuffmade of protons,

neutrons, and electrons) is

oo*,0 :0.04. (24'8)

(We see how this number is determined in Section 24.3.)The majority of the matter in
the universe must consist of nonbaryonic dark matter, such as WIMPs.

The total mass density of baryonic matter today is

pb*y,0:0.04p",s:3.7 x 10-28 kg m-3. (24.9)

The number density of baryons is thus nb*y,oæ paary,o/mpN0.22m-3. This is much
lower than the number density of photons. The photon-to-baryon ratio in the universe is

approximately

4cmb,0 
- 4'11ì<_108T-3 x2xl¡s. (24.10)

nb*y,g 0.22m-3

Baryons are badly outnumbered by photons, by a ratio of 2 billion to 1.

The available observational evidence has led cosmologists to a Consensus Model
of the Universe. This model is flat and contains radiation, nonrelativistic matter, and

a cosmological constant (a.k.a. Â or "lambda," a.k.a. "vacuum energy," a.k.a. "dark
energy"). Some of the currentproperties of the Consensus Model are listed in Table24.l.

For the Consensus Model, with its mix of radiation, matter, and cosmological con-
stant, the Friedmann equation (eq. 23,71) is

u/+\2 _8nG I ur,g , u^,o IH (t)' : ZZ |rf,f * -:; * , nJ , Q4.t1)

where I1(r) :àlq. Dividing AV n&, and using the definition of the critical density
(equation 23.73), we find that

H(t)z _ I
H& u",o

TABTE 24.1 The Consensus Model

Component Property

ur,0

q(t)4
u*,0

a.G)3
+ I utt (24.r2)

photons

neutrinos

total radiation

baryonic matter

nonbaryonic dark matter

total matter

Qz,o:5.0 x 10-s

Qu,o:3'4x10-s

o:8.4x 10-5

Qo*,0:0.04
Q¿.,0 :0.26
Qn,o:0'30

cosmological constant gn,o ry 0.70
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(24.r3)

(24.r',l)

or, in terms of the dimensionless density parameter e (equation 23.j6),

H (t)2 gr.o Q..o ^
,& : "QY* a1¡¡r+szn'

: ur,o 
- 

Or,o 
- 

8.4 x 10-5 :2.g x I'-aümp Q*p 0.3

The Friedmann equation thus provides us with a differential equation for the scale factor
a(t):

#: rol$.W +an,oo{,¡,f'/' . (24.14)

Givenvaluesfor Hs,?r,s, f)-,6, ând O¡,6, equation(24.14)canbeintegratedtoyieldthe
scale factor as a function of time, given our usual normalization a(ts) : 1. Unfortunately,
the solution of equation (24.14) doesn't have a simple analytic form. However, since the
right-hand side of equati on (24.14) is always positive for the consensus Model, \rye can
immediately predict that the universe will continue to expand forever. There is no Big
Crunch for the Consensus Model.

Since the three components (radiation, matter, and Â) have different dependences
on scale factor, there will be long stretches in the history of the universe when one
component dominates the energy density. At the momeÍfi, u ¡ > um,0 Þ ø, 6. At an earlier
time, and a smaller scale factor a*¡,fhe density of matter umwas equal to øn. This
equality tooË place when

um.o

"n: ñ 
Q4.1s)

or

amr,:(Ht': (#)"': (#)'/' :o.is (2416)

'When 
we observe a galaxy with redshift z :7/a-¡, - 1 : 0.33, we are looking back to

a time when matter was equal in density to the cosmological constant.
If we go to earlier times, there was a scale lactor ar* at which the density of radiation

ur was equal to the density of matter u^.'lhis equality took place when

Um,O _ ur,O

o7* - ol^'
or

arm (24.18)

This scale factor corresponds to a redshift z : 7/a,^ - 1 : 3600. This is higher than the
redshift at which the universe became transparent (z æ 1100), so we cannot directly see
the time of radiation-matter equality.

Early in the history of the universe, when the scale factor was small (ø 11 ar- x
0.00028), the universe was radiation-dominated. That is, the vast majority of the
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density was provided by photons and highly relativistic particles such as neutrinos. The

Friedmann equation (eq.24.14) in a radiation-dominated universe reduces to the form

da al.ßno
(24.re)

dt a.(t)

This equation has the solution

a(t) : lze)/l notl/2 , (24.20)

as the reader can verify by substitution. Since ø (t) q. tr/z irthe early universe, the horizon

size

ftodttnor1ù: | ^Jo a\t )
(24.2r)

does not diverge as / + 0, and we live in a universe with a finite horizon. The acceleration

in the early universe was negative:

.. 1ä: -- ^a(t) <0, (24.22)

indicating that ttie expansion of the early universe was slowed by gravity acting on

photons and other relativistic particles.

At intermediate scale factors, when ar* << a << aa¡, or 0.00028 << a 1{ 0.75, the

universe was matter-dominated. That is, the majority of the density was provided

by nonrelativistic particles, such as WIMPs, protons, and neutrons. During the matter-

dominated era, the Friedmann equation (eq.24.14) takes the simplified fotm

da ntl?ruo

dt aG)U2'

which has the solution

a(t):flraffinotft3, Q4.24)

again verifiable by substitution. Since a(t) u t2/3 dunng the matter-dominated era, the

acceleration was

ä : -1aU) .0. (24.2s)
9t¿

A matter-dominated universe, like a radiation-dominated universe, is decelerating.

In the future, when the scale factor becomes large (a )) amy ry 0.75), the universe

will become lambda-dominated. When the cosmological constant is the only significant

contributor to the energy density, the Friedmann equation (eq.24.14) takes the form

4:g\tonoo|). Q4.26)

(24.23)
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This equation has an exponential solution:

a(t) x eKt ,

where

K :ell2o+o: Gã e4.28)

'When 
the cosmological constant takes over, the universe will expand exponentially, with

an e-folding time of 16.7 Gyr.In the lambda-dominated universe, the Hubble parameter
will be

H:à:K:n'1?ouo. e4.2g)a

The Hubble constant really will be constant with time. In addition, when the universe is
lambda-dominated, the acceleration will be p o sitiv e :

ä: f"¡pHla(r) > 0. (24.30)

In a relativistic universe, a cosmological constant Â > 0 plays the role of a repulsive
force in a Newtonian universe; that is, it causes the relative speed of any two points to
increase with time.2

The Friedmann equation for the Consensus Model can be integrated numerically to
frnd a(t) for all times, not just those special epochs when a single component is dominant.
The resulting scale factoris shown in Figure24.3.Note thatthe transitions fromradiation
to matter domination, and from matter to lambda domination, are smooth and gradual.

with a complete knowledge of a(t), the time corresponding to any scale factor can
be computed. The scale factor of radiation-matter equality, or^ : 0.00028, corresponds
to a time

t,*:3.3 x 10-6ø;1 :47,000yr. (24.3I)

Despite the brevity of the radiation-dominated era, a lot of interesting physics was going
on back then, and cosmologists have focused a great deal of attention on it. The scale
factor of matter-lambda equality, emty:0.75, corresponds to a time

1,t^0.7041r: 9.8 Gyr. (24.32)

This should be compared to the current age of the universe in the Consensus Model,
which turns out to be

to:0.964411 : 13.5 Gyr. (24.33)

2Itcanbeshownthatifacomponentoftheuniversehasanenergydensityø xa-",Íhenifn<2,itwillcause
ä > 0. In general, components that cause ä > 0 are given the generic name of "dark energy." The "cosmological
constant" is a special case of "dark energy," with n :0.

(24.27)
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FIGURE 24.4 Current proper distance (in units of the Hubble distance) to a
galaxy with redshift z.

24.2 I THE ACCETERATING UNIVERSE

The Friedmann equation for the Consensus Model can be written in the form

a : Holy . ry . s;n'oo'f'/'' (24.3s)

By taking the derivative with respect to /, then doing a bit of algebra, we find an equation
for the second time-derivative of the scale factor:

.: ,,2 f or,o Qm.o ^ Ia: H6 
l--î - ,", * azr,6al ' Q4'36)

Note that on the right-hand side of equation (24,36), the terms involving radiation and
matter are negative (they slow down the expansion), while the term involving Â is
positive (it speeds up the expansion). At present, a(tù:1, so the acceleration of the
expansion is

äo: Hll-ç,,0 - 9*,0/2 -f Q,r,ol :0s5Hî e4si)

¡

Consensus Model

/ L-only

Matter-only
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for the Consensus Model. The speeding up of the expansion is a remarkable-and in

the context of Newtonian gravity, counterintuitive-result. What led cosmologists to

embrace the accelerating universe? The conclusion was based largely on measuring the

flux of standard candles at high redshifts.

Suppose we are looking at a standard candle, of known luminosity L, whose culTent

prop"iãirtunce is r : !.oQù.In a static, flat universe, the observed flux would be given

by an inverse square law:

L
Fstatic: firz. e4.39)

If the universe is expanding rather than static, the observed flux of the standard candle

will be lower than this value, for two reasons.

First, the expansion of the universe causes the energy of each photon from the standard

candle to decrease. The photon begins with an energy e, when it is emitted atfime te.

By the time we observe the photon at time 16, its energy will have dropped to the value

a(t")
t24.39)al) 

- "e a(tù 1. + z

wherc z is the measured redshift of the standard candle.

Second, the expansion of the universe will cause the time between photon detections

to increas time interval

6t",thepr r, bY the time

we detect them will be

stretched time interval

6to: 8te(7 + z).
The net result of these two effects-lower energy photons and a longer time interval

between photons-is that the observed flux / in an expanding (but spatially flat) universe

will be

4*oand:, "+-' Q4'40)' +Tr-\l + z)2

Converting from fluxes to apparent magnitudes, we can also write down the observed

apparent magnitude m in an expanding universe:

m:M *5log[r(1 *z)l-5, Q4.41)

where r is in parsecs. The distance modulus for a standard candle in an expanding (but

spatially flat) universe is thus

m- M:5logr *51og(1 iz) -5, (24.42)

where r is the current proper distance I oGù to the standard candle. Consider the proper

distances shown in Figure 24.4for three different flat universes. Since the exponentially

expanding, lambda-only universe has the largest proper distance r for a given redshift z,

it will trave the faintest standard candles at that redshift. Figure 24.5 shows the distance
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FIGURE 24.5 Distance modulus for an object with redshift z. The solid line
represents the Consensus Model; the dotted line, a flat, matter-only universe; and
the dot-dash line, a flat, lambda-only universe.

modulus for standard candles in our three different flat universes. At a very small redshift
(z 111), the distance modulus reduces to

m- Mr51oB (â")-sN43.ri _ Stogz, (24.43)

regardless of the values of 9.,6 and O¡,g. It is only at z > L that the differences between
models becomes large.

As an example, consider a type Ia supernova with an absolute magnit:ude M :
-20.0 mag.If it is seen at a redshift z : 1, then its apparent magnitude in the Consensus
Model will be m:24.7 mag. Its apparent magnitude in the flat, lambda-only model will
bem :24.7 mag,0.6 mag fainter than in the Consensus Model. Its apparent magnitude in
theflat,matter-onlymodelwillbelø:23.5mag,0.6magbrighterthanintheConsensus
Model.

Using the apparent magnitude of distant fype Ia supernovae to distinguish among
different models requires accurate photometry of apparently faint sources. It's difficult,
but it can be done. Figure 24.6 shows the results from two different surveys of type
Ia supernovae. The observational results are compared to three different models. In
Figure 24.6a, the top line is the result expected in the Consensus Model; the bottom

t\-only 7

Matter-only
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FIGURE 24.6 (a) Distance modulus versus redshift for type Ia supemovae' (b)

Difference between the data and the predictions for an empty (Q : 0) universe'

line is the result for a flat, matter-only universe; and the middle line is for a negatively

curved universe with SZ.,s :0'3 and Â :0. The data are best fitted by the Consensus

Model; this is better seen in Figure 24.6b, which shows the difference between the data

and the predictions of the negatively curved Q*p:0.3 model.

Since the radiation density is negligible, the criterion for flatness is g. * Qrr : 1, rep-

resented in Figure 24.7 by the dashed line running diagonally downward from left to

right. Positively curved universes (labeled "Closed") lie above and to the right; nega-

tively curved universes (labeled "Open") lie below and to the left. The solid line that

runs diagonally upward from left to right divides universes with ä¡ > 0 (labeled 'Ac-
celeration") from universes with äo .0 (labeled "Deceleration")' Finally, the slightly

curved line that runs nearly horizontally from (o- :0' o^ :0) divides the Big chill

3 At 
" 

.1, the role of radiation is negligible, so the supernova fluxes tell us nothing about the density of

radiation, Qr,6.
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tIGURE 24.7 The values of SL*,saîd Q^,0 that best fit the relation between

m - M and z for type Ia supernovae. The solid and dashed lines represent two
slightly different samples of supernovae.

universes (labeled "Unbounded Expansion") from the Big Crunch universes (labeled

"Recollapse").4
The concentric ovals in Figure 24.7 show the region of parameter space that gives

the best fit to the available supernova data. (The smallest, innermost oval gives the best
fit, but the largest, outermost oval cannot be excluded atthe 99.5Vo confidence level.)
Decelerating universes can be strongly ruled out by the supernova data, as can Big Crunch
universes. It is the supernova data that have led cosmologists to conclude that we live in
a universe whose expansion is accelerating, leading to an exponentially chilly future for
our universe,

Notice, however, that the supernova data cannot by themselves distinguish between
positively curved, flat, or negatively curved universes. The curvature of the universe is
constrained by looking at the angular size ofdistant objects, as outlined in Section 23.3.
The most distant things we can see in the universe are hot and cold spots in the CMB. The
angular size of these spots has been measured by the Wilkinson Microwave Anisotropy
Probe (WMAP) and by ground-based and balloon-borne experiments. It is the preferred

4 Your curiosity may be piqued by the wedge labeled "No Big Bang" in the upper left comer. These models,
when extrapolated backwa¡d in time, have å :0 when ¿ > 0; that is, they stafed their expansion in a state

where the density was low compared to the extraordinarily high initial density we expect in a true Big Bang
unlverse.

Unboundeð{xpansion
Recollap SE
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angular size of the structure in the CMB that provides the best evidence for the flatness

of the universe (S2 æ l). It is only when we combine the CMB results (the universe is

flat) with the supernova results (the universe is accelerating) that we reach the Consensus

Model, with S¿rx æ 0.3 and grr æ 0.7'
If the cosmological constant is truly constant with time, then we face an accelerating

future. The Local Supercluster will remain gravitationally bound (we don't have to worry

about the Virgo Cluster and the Local Group being yanked apart)' but more distant

superclusters will move away from us with exponentially increasing velocity.

24.3 . THE EARLY UNIVERSE

To understand the origins of the universe, we want to look as far back in time as

possible. The oldest photons we see today are the photons of the CMB. As described in

Section 23. 1 , when the initially hot and dense universe became sufflciently cool, protons

and electrons combined to form neutral hydrogen atoms:

p + e- --> H 'f y. Q4.44)

At this time, the universe became transparent, since the photons of the cosmic back-

ground radiation no longer scattered off free electrons.

As we look outward in space, we look backward in time. Thus, we (and every other

observer in the universe) are surrounded by a spherical last scattering surface, illustrated

in Figure 24.8. The last scattering surface is where photons underwent their last scattering

from a free electron before streaming freely through the newly transparent universe. The

last scattering surface is the surface of the glowing, opaque ionized gas that filled the

early universe.5

The universe became transparent, and photons underwent their last scattering, at

a temperature 7i, : 3000 K. The of last scattering wâS 41, :
TolT¡:2.125K13000K:9'1x aredshift zß:I/aß-l:
1100. In the Consensus Model, th was /1, :2.5 x 10-sH;1 :
0.4 Myr. Thus, the CMB gives us a glimpse of what the universe was like 400,000 years

after the Big Bang.
At every point of the sky, the CMB has a blackbody spectrum. Although the average

temperature of the CMB is 7o : 2"725K,the actual temperature varies slightly across the

celestial sphere. Color Figure 30 shows a plot of the temperature of the CMB, as derived

lromWMAP data. The temperatures show a dipole distortion, with one hemisphere of the

sky being blueshifted to higher temperatures, and the other hemisphere being redshifted

to lower temperatures. This dipole distortion is simply a Doppler shift, caused by the

motion of WMAP through space.6 Once we subtract away the orbital motion of WMAP

about the Sun (u È 30 km s-1), the orbital motion of the Sun about the Galactic Center

s We can think ofit as an inside-out photosphere, since the photosphere of a star is also the surface ofa glowing,

opaque, ionized gas.
6 WM¿,p is at the Earth's L2 point (see Figure 1 1.3), and not in a low Earth orbit.
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Horizon

F¡GURE 24.8 Observer surrounded by the "last scattering surface."

(u x 220 km s-1), and the orbital motion of the Galaxy relative to the center of mass of
the Local Group (u È 80 km s-1), we find that the Local Group is moving in the direction
of Hydra, with a speed u4x 630 km s- 1. Thus, the dipole distortion of the CMB is telling
us about motion of the Local Group here and now (which is undeniably interesting but
doesn't tell us directly about the early universe).

Color Figure 31 shows the remaining low-amplitude temperature fluctuations after

the dipole Doppler distortion has been subtracted. The angular size of the hot and cold
spots in this image are what cosmologists use to determine the curvature of space. The
amplitudeof thefluctuationsisnotlarge: typically, 6T lT - 10-5.Thesmalltemperature
fluctuations result from small density fluctuations at the time of last scattering. A pho-

ton that happens to find itself in a dense region when the universe becomes transparent

will lose energy as it climbs out of the gravitational potential well that is associated with
the dense region, and will thus become redshifted to lower temperatures. Conversel¡
a photon that happens to be in a low-density region will be blueshifted to higher tem-

peratures. The low-amplitude density fluctuations that were present at t x 0.4 Gyr have

grown with time to the high-amplitude density fluctuations that we see at /0 ry 13.5 Gyr
(superclusters, clusters, galaxies, etc.)

The opacity of the early universe draws a frustrating veil over the first 400 millennia
of the history of the universe. Nevertheless, cosmologists can still deduce indirectly what
was happening back then. For instance, we know that in the early universe, neutral
hydrogen atoms couldn't exist because some of the cosmic background photons had

energies larger than the hydrogen ionization energy (X : 13.6 eV). If we go farther back

in time, we should reach a time at which bound atomic nuclei could exist because some

of the cosmic background photons had energies larger than the nuclear binding energy

¡

Last scattering surface

t
Transparent

Opaque
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(typically several MeV). Thus, just as there was a time when protons and electrons

combined to form neutral hydrogen atoms (at t N 0.4 Myr), there must have been an

earlier time when protons and neutrons combined to form atomic nuclei. This time is
known as the era of Big Bang nucleosynthesis (BBN).

Consider, for simplicity, a deuterium (D) nucleus. This is the simplest of all compound
nuclei; it consists of a proton and neutron bound together with a binding energy B =
2.22MeY. A gamma-ray photon with e > B can photodissociate deuterium:

D -l y --> p I n. (24.45)

This reaction can run in the opposite direction, too; a proton and neutron can fuse to
fo¡m a deuterium nucleus, with a gamma-ray photon carrying offthe excess energy:

p*n-->Diy. (24.46)

Deuterium synthesis (equation 24.46) has obvious parallels to the radiative recombina-
tion of hydrogen (equation 24.44).In each case, two particles become bound together,
with a photon carrying away excess energy. The most striking difference between the
processes is the different energies involved. The photodissociation energy of deuterium
is B : 2.22MeY: (1.6 x 10s)(13.6 eV). The energy released when a deuterium nu-
cleus is formed is 160,000 times the energy released when a neutral hydrogen atom is
formed; thus, we expect the temperature at the time of nucleosynthesis to be 160,000
times greater than the temperature at the time of last scattering, when neutral hydrogen
formed. This implies a nucleosynthesis temperature

4,u": 4zì, : (1.6 x 10s)(3000 K) :5 x lOs K. (24.4i)
x

In the Consensus Model, the universe had this temperature aL an age /nu" - 400 s -
-.4'/ mrn.'

Once a significant amount of deuterium forms, it can be converted to heavier nuclei.
For instance, tritium 13tt¡ is made by the reaction

D * n -->zH+ y. (24.48)

Light helium 13He; is made by the reaction

D t p --r 3He + y. (24.49)

Ordinary helium (aHe) can be made by reactions such as

3H+p--ane¡y (24.50)

and

3He + n --, aHe ¡ y. (24.5r)

7 This is a slight overestimate of the age; when Steven Weinberg entitled his book on BBN Tl¡¿ First Three

Minutes, he was using a more accurate calculation.
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FIGURE 24.9 Mass fraction of nuclei (and free neutrons) during the time of
BBN,

Once aHe is rêached, the orderly march of nucleosynthesis to larger atomic numbers hits
a roadblock. There are no stable nuclei with atomic number 5. If we try to add a proton
to 4He to make 5Li, it won't work; sl-i is not a stable nucleus. If we try to add a neutron to
4He to make 5He, it won't work; sHe is not a stable nucleus. Vy'e can make small amounts
of lithium by the reactions

aHe+D-->6Li¡y (24.s2)

and

aH" + 3H -->7Li+ y, (24.53)

but then we hit another roadblock. There are no stable nuclei with atomic number 8. If
we try to fuse two 4He nuclei together to form 8Be, it won't work; 8Be is not a stable
nucleus.S

In summary BBN works rapidly and efficiently up to aHe, but few nuclei heavier
than helium are produced. The precise yields ofthe different elements and isotopes can
be computed using a computer code that takes into account the cross-sections for the
different nuclear reactions. Results of a typical BBN code are shown in Figure 24.9. At
t È 1 s, almost all the baryons are in the form of free protons (labeled H in the figure)
and free neutrons (labeled n).

8As you may recall from Section 15.3, the instability of 8Be is the main reason why the triple aþhaprocess in
stars requires such high temperature and density; a 4He nucleus must be slammed into the 8Be nucleus during
the brief interval before it falls ap
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Because protons have a lower rest energy than neutrons, the laws of statistical me-

chanics state that protons will be more numerous than neutrons in the early universe.

By t x 100 s, when nucleosynthesis kicks into high gear, there are seven protons for
every neutron in the universe. Consider a representative group of two neutrons and 14

protons. The two neutrons swiftly combine with two of the protons to form a single
4He nucleus, leaving 12 lonely protons left over.g At / È 104 s æ 3 hr, the temperature
has dropped too low for further nuclear reactions and the epoch of BBN is over. At this
point,themassfractionofhydrogenis XxT2l16NO.Tsandthemassfractionofhelium
is Y æ 4116 x 0.25. Only tiny amounts of elements other than 1H and 4He are present.

A basic prediction of BBN is that helium contributed 25Vo of thebaryon density even
before the first generation of stars began to pollute the universe with heavy elements.
Observations of gas and stars reveal that hydrogen is invariably mixed with helium. The
helium mass fraction of the Sun is I : 0.250, but the Sun is contaminated by helium
formed in earlier generations of stars. 'When we look at interstellar gas that hasn't been
run through the stellar mill, the helium mass fraction can be as low as I :0.24, but not
any lower. This is in good agreement with the predictions of BBN.

24.4 t THE VERY EARLY UNIVERSE

So far we have accentuated the positive when discussing the Hot Big Bang universe in
general, and the Consensus Model in particular. However, the standard Hot Big Bang
scenario, in which the universe was dominated by radiation at early times, has a pair
of problems that have pluzzled cosmologists. These are the flatness problem and the
horizon problem. Let's examine the flatness problem first.

The curvature of the universe is related to its energy content by the Friedmann
equation,

rcc2 IH(t¡2:Y"r,
r!,0 a(t)2

(24.s4)

If we divide each side by H (t)2, we can rewrite the Friedmann equation in the form

.- ^21: CI(r) - +--]-. e4.ss)
,?.0 aQ¡z ¡11¡¡z'

If the density parameter is exactly equal to 1, then the universe is perfectly flat. At the
present moment, the observational results are consistent with the limits

11- CIol < 0.1. (24.s6)

9 The solitary life ofthe protons ends 400,000 years later, when they find electron sidekicks and become neutral
hydrogen atoms.



24.4 fhe Very Early Universe 569

V/hy should the value of the density parameter be so close to 1 today? \W'e might just shrug
and say, "It's a coincidence." However, when you extrapolate the value of O (r) back into
the past, the closeness of g to 1 becomes more difficult to dismiss as a coincidence.

Equation (24.55) tells us

tl- e(f)l " *#r,rr. (24.s1)

During the matter-dominated era, a(t) a t2/3 alrrd H (t) : à la a t-1 . Thus, during the
matter-dominated era, the difference between O and 1 greìü at the rate

11- g(¡)l- s.t2/3 qa(t). (24.58)

During theradiation-dominated era,a(t) o.tr/2 and H(t): ala cr.t-r,Thus, during the
radiation-dominated era, the difference between O and 1 grew at the rate

11- g(/)1, at xa(t)2. (24.59)

If we extrapolate back to the time of BBN (/no" - 3 min), we compute that the deviation
of g from one was

11- o(/nuc)l < 10-14. Q4.60)

At the time deuterium and helium were forming, the density of the universe was equal
to the critical density with an accuracy of 1 partin 100 trillion. Ourvery existence depends

on the astonishingly close match between the actual density and the critical density in
the early universe. If, for instance, the deviation of S2 from 1 at the time of Big Bang
nucleosynthesis had been 1 part in 100 thousand instead of one part in 100 trillion, the
universe would have collapsed in a Big Crunch or expanded to a low-density Big Chill
after only a few years. In either case, galaxies, stars, planets, and cosmologists would
not have had time to form.

The flatness problem is simply the statement that f2 was very, very close to 1 in the
early universe. It would be satisfying if we could find a physical mechanism for flattening
the universe early in its histor¡ rather than invoking a highly implausible coincidence.

The horizon problem is simply the statement that the universe is nearly homogeneous
andisotropic on large scales. Why is this aproblem? To see why large-scale homogeneity
and isotropy is puzzling in the standard Hot Big Bang scenario, consider two antipodal
points on the last scattering surface, as shown in Figure 24.10. S_ince the last scattering
of CMB photons took place long ago (trs æ 0.4 Myr æ 3 x 10-5rs), the cur:rent proper
distance to the last scattering surface is only slightly smaller than the horizon distance.
In the Consensus Model, the last scattering surface is at a distanc" I p - 0.981¡o. from
us. Thus, two antipodal points on the last scattering surface are currently separated by a
distance 1.961,¡or. Since the two points are farther apart than the horizon distance, they
are not in causal contact. That is, they haven't had time to send messages to each other.

In particular, they haven't had time to come into thermal equilibrium with each other.

Nevertheless, the two points have the same temperature, once the dipole distortion is
subtracted, to within I part in 105.

¡
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Horizon

FIGURE 24.1O 'lhe distance between antipodal points on the last scattering

surface.

How can two points that haven't had time to swap information be so nearly identical

in their properties? It would be satisfying if we could find a physical mechanism for

homogenizing the universe early in its history, rather than invoking a highly implausible

coincidence.
The first satisfying solution to the flatness and horizon problems was provided by

Alan Guth, who put forward the inflationary theory in 1981. In a cosmological context,

"inflation" is the statement that there was a very early period when the acceleration of the

expansion was positive (ä > 0). As usually implemented, inflationary theory supposes

that the universe was temporarily dominated by a cosmological constant z\; very much

larger than the cosmological constant .À present today.

When the universe is dominated by a cosmological constant, it expands exponentially

(equation 24.27):

a(t)xeHit, (24.61)

where

n._(8r_c!tltr2. e4.62)
\Jc-/

To see how inflation can solve the flatness and horizon problems, suppose that the uni-

verse had a period of exponential growth in the middle of its early radiation-dominated

phase. For simplicity, let's suppose the exponential expansion switched on instanta-

neously at a time f¡, and lasted until some later time f¡, when it switched off instanta-

Last scattering surface

0.98 dho.0.98 dho,
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neously. Inthissimplecase,thescalefactorgrowsduringtheinflationaryera(/;<t<t¡)
by a factor

a(t ¡) N

o,(i,) 
:'^ ' (24'63)

where N, the number of e-foldings of inflatton, ts

N : HiUr - t). (24.64)

If the duration of inflation, t f - t¡, was long compared to the Hubble time during inflation,

I1¡1, then N was large and the growth of the scale factor was exponentially huge.

For concreteness, let's take one popular model for inflation. According to Grand

Unified Theories of particle physics, or GUTs, there was a phase transition that took place

at a time /cur È 10-35 s, when the strong nuclear force separated from the electroweak

force. In the GUT model of inflation, exponential growth began at the GUT time,

t¡NtcurÈ 10-3ss, with a Hubble parameter H¡NtcirÈ 1035s-1, and lasted for
N - 100 e-foldings. In the GUT model, the growth in scale factor during inflation was

a(t¡) _ erco _ 1043, e4.65)
a(tí)

all happening in a time - 100t6u1 - 19-33 t.
How does inflation resolve the flatness problem? In an exponentially expanding

universe, equation (24.5'7) can be written in the form

11- g(r)l o<
11

"(t)'H(t)'q ¿r4'

If we compare O at the beginning of inflation (t : t¡) to Ç2 at the end of inflation
(t : t¡ : t¡ -f N lH¡), we find

11-s)(//)l :e-2Nlr-o(¡;)1. Q4.67)

If the universe were strongly curved prior to inflation, with

11- O(/')l- 1, (24.68)

then 100 e-foldings of inflation would flatten it like the proverbial pancake, and then

some:

11-a(r/)l -e-2oo -19-87. Q4.69)

Thecurrentlimits onthe densityparameter, l1 - S2ol ' 0'1, imply thatN > 60 if inflation
took place at the GUT time.

How does inflation resolve the horizon problem? Consider the entire universe di-
rectly visible to us today, that is, the region bounded by the surface of last scattering

(Figure 24.10). Currently, the proper distance to the surface oflast scattering is

lo1ù :0.981¡o.(rs) : 14,000 Mpc. (24;70)

q e-zHir (24.66)
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Ifinflationendedatatime tf-10-33 s,thiscorrespondsto ascalefactoraf-8x70-27
in the Consensus Model. Thus, immediately after inflation, the portion of the universe

visible to us today was cramrned into a sphere of radius

Lr(t¡):a¡[,(tù (24,7l)

- (8 x lo-27)(1.4 x 104 Mpc) - 1g-22 Mpc - 4 m.

Immediately after inflation, all the mass--energy destined to become the hundreds of
billions of galaxies we see today was contained in a sphere a few yards in radius. This
may boggle your mind. If so, be prepared for additional boggling. If there were N - 100

e-foldings ofinflation, then prior to the inflationary epoch, the currently visible universe

was contained in a sphere ofradius

{.oQ) - e-rjjtr{t¡) - 19-43 -. Q4.72)

What matters for the solution of the horizon problem is not that this distance is small
(which it certainly is!) but that it is smaller than the horizon distance at t¡, fhe start of
inflation. Since the universe was radiation-dominated before inflation, the preinflationary
scale factor was a(t) : a¡(t /t¡)2, and the horizon distance at /r was

tno,G) - ,o, lo #h - 2c4 - 6 x t0_27 m, (24.73)

assuming that inflation began at the GUT time, t¡ - 10-35 s. This horizon distance is
over 16 orders of magnitude bigger than the size of the currently visible universe at time

4 . Thus, everything we see today had plenty of time to swap photons back and forlh prior
to inflation and come to thermal equilibrium.

The detailed particle physics behind inflation is beyond the scope ofthis book. The

usual driving mechanism behind inflation involves a scalar field being caught in a "false
vacuum state" for a finite length of time. A false vacuum state is one for which the
potential energy of the field is not the global minimum. It takes some length of time
for the scalar field to transit to the global minimum of the potential (the true vacuum
state). During the time of transition, the energy of the scalar field plays the role of a

cosmological constant. A scalar field in a false vacuum state is sometimes compared
to a supercooled liquid. Freezing would lower the energy of the supercooled liquid, but
until some disturbance initiates the freezing, it temporarily remains in the higher-energy,
liquid state. rù/hen the freezing finally occurs, the latent heat of fusion is released and

waÍns the surroundings. Similarly, when a scalar field goes from a false vacuum to the
true vacuum, the energy released in going from a higher to lower potential energy warms
up the universe, returning the temperature of the universe to what it was before - 100

e-foldings of inflation chilled it down.
It is tempting to extrapolate the scale factor back to / :0, and a:0, representing

an infinite density singularity. One shortcoming of general relativity, however, is that it
doesn't take quantum effects into account. A complete "quantum gravity" theory has not
yet been devised. However, it is speculated that time is quantized in units of the Planck
time
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(24.74)rPl -
Gli

-
:5 x 10-44 s,

r/2

and that talking about times earlier than the Planck time may not be physically meaning-
ful. Although invoking quantum gravity prevents us from having to contemplate infinitely
dense initial conditions, the properties att N tptwere fairly mind-boggling in themselves.
AttN /pl,thenumberdensityof particleswouldhavebeenn - 19104m-3,andtheav-
erage parlicle energy would have been E - 16zs eV; that's an energy comparable to the
kinetic energy of a cruising passenger jet, concentrated in a single elementary particle.
From this incredibly dense, hot state evolved the complex universe we see around us

today.

PROBLEMS

24.r

24.2

24.3

24.4

24.s

(a) Given that the cuffent scale factor is a(re):1, aI what scale factor did the

temperature of the cosmic background radiation equal the temperature of the

Sun's photosphere?
(b) At what scale factor did it equal the temperature of the Sun's center?
(c) If the current mass density of the universe is equal to 0.3pr,s, what was the mass

density of the universe when the temperature was equal to that of the Sun's center?

Compare this mass density to the average density of the Sun.

Explicitly calculate the redshifts for the following:

(a) The universe goes from radiation-dominated to matter-dominated.
(b) The universe goes from matter-dominated to dark-energy-dominated.

At the time this problem was written, the highest-redshift quasar known was CFHQS
J2329-0301, which has a redshift z:6.43.
(a) What was the scale factor ¿ of the universe at the time the quasar light we are

observing now left the quasar?

(b) How old was the universe at the time the light left the quasar?

(c) What is the distance modulus of the quasar?

Suppose that star formation stops today, everywhere in the universe.

(a) At what time /6" will the last stars die out?
(b) What will be the scale factor a(t¿i) at that time?

Estimate how high the temperature of the universe must be for proton-proton pair
production to occur. What was the approximate age of the universe when it had cooled
enough for proton-proton pair production to cease?


