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Notes on the Emission Line Profile of a Spherically Symmetric,
Expanding Shell

David Cohen

I should not have taken you through the long preamble about multi-variable
integrals and Jacobians:

dVol = dxdydz =
0
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For our problem, this discussion was unnecessary: As we’ll see below, the r2

term doesn’t matter for a thin shell at fixed r and, more importantly, the sin

term comes in “naturally” from geometrical considerations.  In fact,
Geneviève derived it at the board, as I’ll show below).

Also, my (temporary) insistence on the additional cosθ “projected area” term

was incorrect; it is not relevant in this case (but, notice how cosθ’s keep

popping up in the first couple of sections of Rybicki & Lightman).

[Actually, this effect confused me and Stan (who, being a theorist, is much
more adept than I at this kind of stuff, and also was a post-doc with George
Rybicki at Harvard in the 80’s) for a whole afternoon in my office back in
October when we were starting to work on this project: If the shell were
totally thin, then you would need the cosine projection term – you
effectively see none of the side of a spherical shell or of any infinitely thin
surface whose normal is perpendicular to your line-of-sight (i.e. viewing
angle).]

But the key to this problem is that we’re doing a volume integral – we care
about the amount of X-rays being emitted from each unit volume of the
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(thin, but not infinitely thin) shell; This emission is isotropic and not affected
by absorption…

So, given these assumptions, let’s restate the problem and derivation with a
little more care and a lot more clarity.

First, the overall luminosity, L, (photons/sec) is assumed to the same for
every volume element in the shell, and is given by:

dL = dV ,

where η is the “volume emissivity”, or photons/sec/cm3.  You can put all

sorts of physics into this term, such as density dependence.  For now, we’ll
leave it general and constant within the shell.  And dV is the differential
volume element.

Let’s start by writing an expression for the volume of the portion of the shell
that is between θ and dθ:

dV = 2 pRd ∆R.

z

pR
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Here,
2 p is the circumference of the ring of constant θ (p is what

Geneviève called d at the blackboard).

Rd  is the arc-length of the ring in the θ-direction (thanks, Eric,

for pointing out the need for the R).

R is the thickness of the shell (for now, I won’t express this as a

differential since the shell, while thin, may not be
infinitessimally so – and in any case, we won’t be integrating
over R).

So we have:

dL = dV = 2 pRd ∆R.

Expressing p in terms of θ:

p = Rsin .

Note that this is essentially where the geometrical factor in the volume
integral—the Jacobian—comes in.  It basically says that each dφ is smaller,

the closer one gets to the “poles” (θ=0, 180 degrees).  Note that the dφ is

hidden in the 2π.  We don’t need to express it explicitly because of

symmetry.

Substituting the last equation into the previous one:
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dL = dV = 2 R2 ∆Rsin d .

Note that the dimensions work out: Volume proportional to R2∆R.

Now, we want to know the differential luminosity as a function of
wavelength, λ.  Our assumption is that each volume element of the shell

emits at the same wavelength, λO.  This wavelength is effectively infinitely

narrow, but due to the Doppler shift we can observe a range of wavelengths
from = − vshell c  to = vshell c.  Where vshell is, of course, the velocity of the

shell, which we’re assuming to be constant throughout the shell.

But, the radial velocity (i.e. the velocity toward or away from us) is given
by:

O

=
−vr

c ,

where λ represents the difference between the observed Doppler shifted

wavelength and the emitted, or laboratory, wavelength—usually denoted ∆λ,

but I want to keep the extraneous notation to a minimum.  Note that the
negative sign just enforces the convention that negative velocities
correspond to blue shifts, while positive velocities correspond to redshifts.
Expressing vr in terms of θ:

= − O vshell

c cos .

Now, differentiating both sides:

d = − O vshell

c d(cos )
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and noting that

d(cos ) = − sin d

we have:

d = Ovshell

c sin d

or

sin d = d c

O v shell .

And back to our differential luminosity:

dL = 2 R2∆Rsin d .

Substitute in the radial velocity – Doppler shift differential:

dL = 2 R2∆R
c

Ovshell

d
.

Expressing this as the differential luminosity per unit wavelength:

dL

d
= 2 R2 ∆R

c

Ovshell

= cons tan t       on   − Ovshell

c
< < Ovshell

c

    = 0  otherwise.
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This is just our line profile:

There is no dependence on λ (under our assumptions).

Physically what’s happening is that the angular dependence of the size of the
rings on the shell (Rsinθ) is combining with the dθ from the width of the

rings to exactly cancel the sinθdθ dependence of the differential wavelength

on the differential radial velocity.

Let’s recall: The  “shell model” is important because:

1. It’s easy to solve
2. Shock waves tend to heat thin regions
3. (Most importantly) You can build more realistic models by summing

over many shells (which can have η(r)).

This type of philosophy is very productive for doing science:

• Keep things simple.

λo
λovshell/c-λovshell/c

η2πR2∆Rc/λovshell
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• Always have a physical picture in mind.
• Build up gradually to a realistic model, always keeping complicating

details to a minimum (but never forgetting what approximations you’re
making).

Now, I think we can work our way up to reading the paper I wrote with Stan
(which involves nothing more than assuming a velocity structure for the
wind, making η a function of radius, and including absorption by the (cold

part of the) wind).   But first, we should read pp. 1-15 of Rybicki and
Lightman:

• It is important to understand flux, intensity, and optical depth
• Work your way up to the “formal solution”
• But don’t worry too much about momentum flux, radiation energy

density, or radiation pressure.

When you do look at Owocki & Cohen, you’ll notice a few things (we’ll
have to talk about these, and more, of course):

• We dispense with the θ – v – λ mapping and instead use the Dirac delta

function to make the correspondence between position in the wind and
wavelength in the line.

• Wind absorption is accounted for by a simple exponential term, but it
gets somewhat complicated by the fact that cylindircal coordinates are
the natural system for absorption in a wind, rather than spherical
coordinates.

• µ=cosθ

We’ll discuss more on Friday about stellar winds, velocity laws, etc.


