X-rays from Magnetically Channeled Winds of OB Stars

> David Cohen Swarthmore College

with M. Gagné, S. St. Vincent, A. ud-Doula, S. Owocki, R. Townsend

What can X-rays do for us?

Identify embedded, active young OB stars

Can they discriminate magnetic sources from nonmagnetic ones?

Diagnostics of the properties of the hot (>10⁶ K) plasma in the extended atmospheres of magnetic OB stars

(Somewhat) passive probe of cooler circumstellar material

Context θ¹ Ori C and the MCWS mechanism Other applications of MCWS and X-rays

<mark>soft</mark> medium hard

Orion Nebula Cluster: ~1Myr

soft medium harcl

dashed arrows point to very early B stars

Tr 14: ~0.5 - 2 Myr

<mark>soft</mark> medium hard

NGC 6611: ~5Myr

soft medium hard What's happened to the hard, variable O stars by 5 Myr?

Let's focus on one well-understood magnetic hot star: θ¹ Ori C

Dipole magnetic field (> 1 kG) measured on θ^1 Ori C

Wade et al. (2006)

Magnetic field obliquity, $\beta \sim 45^{\circ}$, inclination, i ~ 45°

Babel and Montmerle (1997a,b)

Channeling, confinement, shock-heating

Steady state? Cooling disk?

Insights such as centrifugal acceleration

FIG. 1.—Temperature map for the postshock region in the approximation of a steady-state shock. The shock front is indicated by a heavy solid line and wind trajectories (or magnetic field lines) by dashed lines. Upper panel: closed magnetosphere, $L_{\rm A} = 1.49$ ($B_*^{\varepsilon} \simeq 370$ G). Lower panel: closed and open magnetosphere, $L_{\rm A} = 1.39$ ($B_*^{\varepsilon} \simeq 300$ G).

Fortuitous access to all viewing angles of the magnetic field

Cartoon showing viewing angles of θ^1 Ori C for *Chandra* observations. Phase 0 is when the disk is viewed face-on (α =4 deg), while phase 0.5 occurs when the disk is viewed edgeon (α =87 deg)

Note: slow rotation (centrifugal force negligible); field consistent with large-scale dipole Rotational modulation of the X-ray emission simply from variation in the occultation of the x-ray emitting magnetosphere by the star

To 1st order: depth of eclipse depends on how close the shock-heated plasma is to the star

Chandra broadband count rate vs. rotational phase

Model from MHD simulation

Subsequent numerical MHD simulations by ud-Doula & Owocki (2002, etc.)

Interplay between magnetic tension and wind kinetic energy – self-consistent field configuration

Dynamical treatment (what happens as material accumulates at the tops of closed magnetic loops?)

Aside: enhanced UV wind absorption at disk-on viewing angles rather than pole-on viewing angles

Complementary analyses: RRM, RFHD

2-D MHD simulation of θ^1 Ori C: density

courtesy A. ud-Doula

2-D MHD simulation of θ^1 Ori C: temperature

courtesy A. ud-Doula

2-D MHD simulation of θ^1 Ori C: speed

courtesy A. ud-Doula

Predictions from MHD simulations (and original analysis of Babel and Montmerle):

Strong shocks – plasma very hot (few 10⁷ K)

Post-shock plasma moving quite slowly (Doppler broadening of X-ray emission lines should be quite modest – will there be a dependence on viewing angle?)

Bulk of hot plasma is in the closed field region (< Alfven radius; $\eta(r) < 1$)

Differential emission measure

(temperature distribution)

Wojdowski & Schulz (2005)

MHD simulation of θ¹ Ori C reproduces the observed differential emission measure

Line profiles: resolved, but narrow

Distribution of X-ray line widths in θ^1 Ori C

Gagné et al. (2005)

There's one more powerful x-ray spectral diagnostic that can provide useful information to test the wind-shock scenario:

Certain x-ray **line ratios** provide information about the location of the x-ray emitting plasma

Distance from the star via the line ratio's sensitivity of helium-like f/i ratios to the local UV radiation field

Helium-like ions (e.g. O⁺⁶, Ne⁺⁸, Mg⁺¹⁰, Si⁺¹², S⁺¹⁴) – schematic energy level diagram

The upper level of the forbidden line is very long lived – *metastable* (the transition is dipole-forbidden)

While an electron is sitting in the metastable ³S level, an ultraviolet photon from the star's photosphere can excite it to the ³P level – this decreases the intensity of the forbidden line and increases the intensity of the intercombination line.

The *f/i* ratio is thus a diagnostic of the strength of the local UV radiation field.

If you know the UV intensity emitted from the star's surface, it thus becomes a diagnostic of the distance that the x-ray emitting plasma is from the star's surface.

Model of f/i ratio dependence on dilution factor (radius)

helium-like magnesium Mg XI in θ^1 Ori C

Single source radius assumed Data constrain: 1.0 < R_{fir} < 2.1 R_{*}

He-like f/i ratios have the potential for discriminating MCWS from wind-wind sources –

close to photosphere in the former case, not so much in the latter

MHD with rotation revealed the potential for breakoutdriven magnetic reconnection ...source of x-ray flaring in σ Ori E (B2Vp)?

MHD simulation of MCWS: higher magnetic confinement and rapid rotation

Note, though: confinement parameter of σ Ori E is much higher than in this MHD simulation

temperature

Not much emission measure at very high temperatures from the reconnection (but maybe with larger confinement parameter?)

Another application: slowly rotating magnetic B star with a more complex field – τ Scorpii (B0.2 V)

Donati et al. (2006)

f/i ratios imply location of hot plasma between 2 and 3 R*...

T \sim 20 MK – is there enough room in the closed field region for wind to accelerate to the required velocity?

Rotational modulation?

Conclusions

Magnetic OB stars with strong, large-scale dipole fields have distinctive X-ray properties:

High X-ray luminosities

Hard emission

Narrow lines

Rotational modulation (if magnetic obliquity .ne. 0)

Specific, quantitative diagnostics for studying MCWS (but only some utility for identification)

More...

Smaller scale magnetic structures...may have different effects on X-rays

Centrifugally driven breakout and reconnection? But X-rays may not be very sensitive to it