High-Resolution X-ray Spectroscopy of the Winds of Massive Stars

David Cohen Swarthmore College

Orion

Orion's belt stars

De Martin/Digitized Sky Survey

Great Nebula of Orion

Robberto/HST

Megeath/Spitze

Trapezium: massive, luminous stars at the center of the nebula

Bally/HST

Chandra X-ray Telescope image of the Orion Nebula Cluster

young, massive star: θ^1 Ori C

Color coded according to photon energy (red: <1keV; green 1 to 2 keV; blue > 2 keV)

Carina/Keyhole Nebula (HST)

massive stars:

20 to 100 M_{sun}

 $10^6 \, L_{sun}$

T ~ 50,000 K

Keyhole Nebula

Hubble Heritage

NASA and The Hubble Heritage Team (STScI) • Hubble Space Telescope WFPC2 • STScI-PRC00-06

Whirlpool/M51 (HST)

1000 yr old supernova remnant

Crab Nebula (WIYN)

wind-blown bubble: stellar wind impact on its environment

NGC 6888 Crescent Nebula (Tony Hallas)

Radiation-driven massive star winds

$$\dot{M} \sim 10^{-6} \,\mathrm{M_{sun}/yr}$$

UV spectrum: C IV 1548, 1551 Å

Prinja et al. 1992, ApJ, 390, 266

Velocity (km/s)

Power in these winds:

$$\frac{1}{2} \dot{M} v_{\infty}^{2} \approx 3 \times 10^{36} \text{ erg s}^{-1}$$
$$\approx .001 L_{*}$$

$$L_{\text{sun}} = 4 \times 10^{33} \text{ erg s}^{-1}$$

 $L_{\text{massive}} \approx 4 \times 10^{39}$

$$L_{\text{massive}} \approx 4 \times 10^{39}$$

while the x-ray luminosity

$$L_X \approx 10^{-7} L_*$$

To account for the x-rays, only one part in 10-4 of the wind's mechanical power is needed to heat the wind

Three models for massive star x-ray emission

1. Instability driven shocks

2. Magnetically channeled wind shocks

3. Wind-wind interaction in close binaries

Three models for massive star x-ray emission

1. Instability driven shocks

2. Magnetically channeled wind shocks

3. Wind-wind interaction in close binaries

Winds of massive stars are driven by radiation pressure

For the Sun, $\Gamma_{\rm edd} \sim 10^{\text{-}5}$ For massive stars, $\Gamma_{\rm edd}$ approaches unity

The Line-Driven Instability (LDI; Milne 1926)

Consider a positive velocity perturbation

Positive feedback: ion moves out of the Doppler shadow, sees more radiation, gets accelerated...

1-D rad-hydro simulation of a massive star wind

Radiation line driving is inherently unstable: shock-heating and X-ray emission Owocki, Castor, & Rybicki 1988

Shell-shell collisions induced by turbulence at the base of the wind flow

Predictions of the rad-hydro wind simulations:

- 1. Significant **Doppler broadening** of x-ray emission lines due to bulk motion of the wind flow (1a. Shock onset several tenths R. above the surface)
- 2. Bulk of the wind is cold and unshocked source of **attenuation** of the X-rays.

ζ Puppis in the Gum Nebula

ζ Puppis: 50 M_{sun}, 10⁶ L_{sun}

Chandra HETGS/MEG spectrum (R ~ 1000 ~ 300 km s⁻¹)

ζPup

H-like He-like

Low-mass star (Capella) for comparison

Capella

Capella low mass

The x-ray emission lines are broad: agreement with rad hydro simulations

But... they're also blue shifted and asymmetric Is this predicted by the wind shock scenario?

Wind Profile Model

Wind Profile Model

wind mass-loss rate

$$M = 4\pi r^2 v \rho$$

$$\tau_* = \frac{\kappa M}{4\pi R_* v_\infty}$$

radius of the star

wind terminal velocity

 τ =1 contours

 $\tau_* = 1, 2, 8$

-0.5

0

0.5

The basic wind-profile model

key parameters: $\mathbf{R_o}$ & τ_*

$$j \sim \rho^2$$
 for $r/R_* > R_o$,
= 0 otherwise

$$\tau = \tau_* \int_{z}^{\infty} \frac{R_* dz'}{r'^2 (1 - \frac{R_*}{r'})^{\beta}}$$

$$\tau_* \equiv \frac{\kappa M}{4\pi R_* v_\infty}$$

We fit these x-ray line profile models to each line in the <u>Chandra</u> data

And find a best-fit τ_* and R_o & place confidence limits on these fitted parameter values

Fe XVII

68, 90, 95% confidence limits

Wind opacity: photoelectric absorption

Abundances; ionization balance; atomic cross sections Verner & Yakovlev 1996

ζ Pup: three emission lines

Mg Lyα: 8.42 Å

Ne Ly α : 12.13 Å O Ly α : 18.97 Å

$$\tau_* = 1$$

$$\tau_* = 2$$

$$\tau_* = 3$$

$$\tau_* \equiv \frac{\kappa M}{4\pi R_* v_\infty}$$

Fits to 16 lines in the *Chandra* spectrum of ζ Pup

What about other massive stars?

ζ Ori: O9.5

ζ Ori: O9.5 - less massive

Mg XII Lyman- α : $\tau_* = 0.1$

Wind shock scenario: consistent with X-ray line profiles...

...but mass-loss rates must be revised downward!

A&A 438, 301-316 (2005)

DOI: 10.1051/0004-6361:20042531

© ESO 2005

Astronomy Astrophysics

Lower mass loss rates in O-type stars: Spectral signatures of dense clumps in the wind of two Galactic O4 stars*

J.-C. Bouret¹, T. Lanz², and D. J. Hillier³

- Laboratoire d'Astrophysique de Marseille, CNRS-Université de Provence, BP 8, 13376 Marseille Cedex 12, France e-mail: Jean-Claude.Bouret@oamp.fr
- ² Department of Astronomy, University of Maryland, College Park, MD 20742, USA e-mail: tlanz@umd.edu
- ³ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA e-mail: hillier@pitt.edu

THE ASTROPHYSICAL JOURNAL, 637:1025-1039, 2006 February 1
© 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE DISCORDANCE OF MASS-LOSS ESTIMATES FOR GALACTIC O-TYPE STARS

A. W. Fullerton¹

Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6, Canada; awf@pha.jhu.edu

D. L. Massa

SGT, Inc., NASA Goddard Space Flight Center, Code 681.0, Greenbelt, MD 20771; massa@taotaomona.gsfc.nasa.gov

AND

R. K. PRINJA

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; rkp@star.ucl.ac.uk
Received 2005 June 10; accepted 2005 October 4

Are there massive stars that do not fit this paradigm?

Yuri Beletsky (ESO)

β Crucis

aliases:

Mimosa

HD 111123

a massive (16 M_{sun}), luminous (34,000 L_{sun}), hot (30,000 K) star

> ...but not quite as hot, massive, and luminous as an O star: a B0.5 III star

β Crucis (B0.5 V): lines are narrow!

Fe XVII line

β Cru: O VIII Ly- α line

Conclusions

Normal massive stars have x-ray line profiles consistent with the predictions of the wind instability model.

Photoelectric absorption's effect on the profile shapes can be used as a mass-loss rate diagnostic: *mass-loss rates are lower than previously thought*.

Later-type massive stars have X-rays that are harder to understand, though...their emission lines are quite narrow.

