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ABSTRACT

We have conducted modeling studies of several gas cell shots on the Z ac-

celerator at Sandia National Laboratories in order to study the effects of the

irradiance of a low-density gas by a strong x-ray source. Thus far, we have suc-

cessfully matched a synthesized absorption spectrum to an experimental spec-

trum obtained from one of the shots, with especially good agreement for many of

the absorption lines. Our results have demonstrated we can successfully model

the photoionization experiments being conducted at Sandia, and can be used to

design new experiments for future shots at Sandia. Our analysis of the excita-

tion/ionization kinematics and physical conditions of the photoionized plasma

has also helped benchmark the atomic kinetics models for these plasmas, thereby

allowing for better interpretation of measured spectra from plasmas photoionized

by cosmic sources.
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1. Modeling

Our modeling procedure is a multi-stage simulation process which at each stage uses

the results of the previous stage(s) to compute another result. In other words, the result

of each simulation (except for the final simulation, since its output is the final result) is

used as an input for another simulation. Because each successive simulation is dependent

on the simulation(s) that preceded it, this modeling process has a well defined chronological

procedure. This procedure is outlined in a flow chart in Fig. 1.1.

There are three main stages of the modeling procedure: [1] compute the incident flux on

the face of the gas cell; [2] compute the position and time-depedent temperature and density

distributions of the gas in the cell; and [3] synthesize an emission or absorption spectrum.

For step [1] we use a 3-D viewfactor code to represent the experimental setup and calculate

the radiation field. The values of the albedos for the surfaces are assumed, and the time-

dependent pinch radius and power are taken from the experiment. The final result of this

step is a time-dependent incident spectrum for a representative surface element of the face of

the gas cell. Step [2] inputs the incident flux result of step [1] in addition to EOS and opacity

models for all of the gas cell materials, and then performs a hydrodynamics simulation that

computes the time-dependent temperature and density distributions of the gas in the cell.

This result is used along with the incident spectrum from [1] and detailed atomic level data

to synthesize an absorption or emission spectrum in step [3].

The codes implemented for these simulations are [1] VisRad (7), a 3-D viewfactor code,

[2] Helios (4), a 1-D Lagrangian hydrodynamics code, and [3] Spect3D (6), a spectral syn-

thesizer. Also employed for these simulations are AtomicModelBuilder (3), a program used

to create custom atomic models from the ATBASE atomic database, and Propaceos (PRism

OPACity and Equation Of State) (5), a program that generates equation of state (EOS) and

multigroup opacity models.

1.1. VisRad

The first component in our modeling procedure involves calculating the incident flux

at the face of the gas cell. For this task we employ the viewfactor code VisRad (1). While

the gas cell experiments are similar to the x-ray binary system in that the pinch generates

a large x-ray flux which can photoionize nearby cool gas, the laboratory experiments differ

from the cosmic system in that there are numerous surfaces that can absorb and reemit the

radiation emitted by the pinch or reflected by other surfaces. Certainly, in an astrophysical

environment, one might approximate the incident flux at a remote location using the inverse

square law given by (). In the gas cell experiments, however, this approximation is not a good
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Fig. 1.1.— Flow chart of modeling procedure.
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one to make since, as already mentioned, there are many metal surfaces which absorb and

reemit radiation. VisRad allows us to model all of these metal surfaces, and then calculate

the contribution of these surfaces to the incident flux at the face of the gas cell. See Figure

1.2 for a plot of the incident spectra on the center of the gas cell from the different surfaces

in the experiment. Notice that the contributions from the surfaces other than the pinch

are non-neglible for lower photon energies, which is precisely why it is necessary to use a

viewfactor code to calculate the incident spectrum on the gas cell.

Fig. 1.2.— Contributions to incident spectrum on the center of the gas cell at t = 100 ns,

the peak of x-ray emission from the pinch. Notice that the pinch contributes the bulk of the

high energy incident flux, but also that the contributions of the other surfaces, especially for

lower energies, are not neglible.

1.1.1. Constructing a Workspace

Before the incident spectrum on the gas cell can be calculated, however, the experimental

setup must first be constructed in the VisRad simulation workspace. Similar to how an

experimentalist might set up the experiment on the actual Z-machine, the experimental

setup is modeled piece by piece by constructing wire-frame structures and applying surface

elements to them. For example, the face of the gas cell is modeled as a square wire frame,

with 25 surface elements. The square surface elements are the constituent pieces of the gas
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cell, in this case each having 1
5

the width and height of the total object representing the gas

cell. As will be shown in Section 1.1.3, the surface elements are key to computing the incident

radiation on the gas cell, since each viewfactor is a function between two surface elements.

As a result, the number of total surface elements is directly related to the degree of accuracy

of the viewfactor simulation. The tradeoff, of course, is that the number of viewfactors

increases rapidly as more surface elements are created, thereby causing the computation

time to increase as the number of surface elements increases.

The objects are positioned and oriented in a 3-D spatial grid in the same positions and

orientations they would have in the actual experiment. Material properties that govern the

object’s rate of absorption and emission – like albedo (how reflective the object is), x-ray

conversion efficiency, power, and laser reflectivity (not really useful or important for modeling

the gas cell experiments, but a crucial parameter for modeling inertial confinement fusion

(ICF) experiments) – can also be specified for the surfaces in the VisRad workspace. See

Fig. 1.3 for screenshots of the underlying wireframe structure of the workspace objects and

the metal surfaces colored by emission temperature for a simulation time just before the

peak of the pinch emission and Table 1 for a list of the positions, orientations, dimensions,

and material properties of all objects in the VisRad model of the gas cell experiment.

1.1.2. Input Parameters

VisRad supports multiple time-step simulations in which dimensions or material proper-

ties of objects in the workspace can change with time. The time-dependence of these object

parameters can be specified by inputting a table of time-dependent values. It is important

to recognize (important enough that this issue will be revisited again in section 1.1.3) that

while adding time-dependence to the parameters in the experiment forces the simulation

results to be time-dependent, the simulation result for any single time-step is independent

of the flux distribution at any other time-step.

In the gas cell experiment, the radius of the pinch decreases as the experiment progresses,

so we inputted a time dependent table of values for the radius of the pinch. These time-

dependent radial values are plotted in Figure 1.4.

As mentioned earlier, VisRad gives the user the option to specify values for the material

properties of the object; namely, the albedo, x-ray conversion efficiency, power, and laser

reflectivity. Just as we could for the dimensions of the object, we can also make any one of

these material properties time dependent by importing a table of times and corresponding

property values. For the Z -pinch, the power increases as the radius decreases up until a peak

time, and then decreases after the peak. This behavior is shown in Figure 1.5.
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Fig. 1.3.— To the left is a screenshot of the wireframe grid modeling the experimental setup

for the gas cell experiment. To the right is a screenshot from the viewfactor simulation,

showing emission temperature of the surfaces at a time right before the peak emission of the

pinch.

It is important to note that the time-dependent pinch radius and power are not inferred

from other quantities or the result of any modeling simulation; rather, these time-dependent

pinch data are directly measured in the actual experiment. The radius is measured using a

combination of a framing x-ray pinhole camera (FPC) and the Energy-Space-Time (EST)

1-D streaked imager. The power is measured using a filtered x-ray diode array (XRD) in

conjunction with a bolometer.(8) The other important parameter in modeling the experi-

ment, i.e. the surface albedos, are not measured directly in the experiment and are instead

inferred from the incident spectrum on the gas cell.

Using the time-dependent radial and power data, one can calculate the time-dependent

emission temperature of the pinch. In general, we can relate the flux through a unit area on

a surface to the luminosity by the equation

f = L/A, (1.1)

where f is the surface flux, L is the luminosity, and A is the surface area of the radiating

object. Now, if we approximate the pinch as a blackbody, we can apply the Stefan-Boltzmann

law, which states that the total energy radiated per unit time (i.e. the power) per unit surface
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Fig. 1.4.— Time-dependent radius of the

pinch. The red line is simply an asymptote

at y = 0. The jagged feature preceding 100

ns is the result of the interpolation of data

points.

Fig. 1.5.— Time-dependent power of the

pinch. Notice that the power of the pinch

peaks at approximately 100 ns, and then de-

creases at a similar rate to its increase before

the peak.

area (i.e. the flux) is directly proportional to the fourth power of its temperature, which we

will call its emission temperature. Thus,

f = σT 4
em, (1.2)

where the proportionality constant σ is the Stefan-Boltzmann constant. Solving for the flux

in either equation, we obtain

Tem =

[
L

Aσ

] 1
4

. (1.3)

Figure 1.6 is a plot of the time-dependent pinch emission temperature.

An interesting feature of the emission temperature plot is the assymmetry about the

peak of the emission. On the power plot, the data is very symmetric about the peak at

t = 100 ns, but on the emission temperature plot there is a shoulder to the right of the peak.

At first, one might think that the emission temperature curve behavior should mimic that

of the power curve, but (1.3) tells us that for a constant power (i.e. times symmetric about

the power peak)

Tem ∝ A− 1
4 ∝ R− 1

4 (1.4)

since if we approximate the pinch as a cylinder, A = 2πRh, where R is the radius and h is the

height. Thus, if we consider two times symmetric about the pinch power peak, t = 96 ns and
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Fig. 1.6.— Time-dependent emission temperature of the pinch.

t = 104 ns for example, the power of the pinch at both of those times will be nearly constant,

so the emission temperature will depend solely on the radius of the pinch. Since at a later

time the pinch radius will be smaller, the emission temperature of the pinch will be higher

at that time. This is precisely why there is a shoulder in the pinch emission temperatures

for later times, and is also why the emitted flux of the pinch following the peak at t = 100

ns is greater than the emitted flux preceding the peak (since according to (1.2) the flux is

proportional to the fourth power of the emission temperature).

1.1.3. How does the code work?

As described by MacFarlane (1), the 3-D viewfactor code VisRad computes the radiative

flux incident on a single surface i element by solving the radiosity equation given by

Bi − αi

∑
j

FijBj = Qi, (1.5)

where Bi is the emitted flux from surface i (erg s−1 cm−2), αi is the surface albedo, Qi is the

source term, and Fij is the viewfactor between surface i and surface j. The first term on the

left, Bi, is the amount of flux emitted by the surface i itself. Using the Stefan-Boltzmann
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equation (Eq. 1.2), we can convert this flux into an emission temperature, given by

Tem,i =

[
Bi

σ

] 1
4

. (1.6)

The second term on the left of Eq. 1.5 is the amount of radiated flux from all other surface

incident upon surface i that is reflected from surface i. The limits of the albedo coefficient αi

are 1, for a fully reflective surface, and 0, for a fully absorbant surface. The summation adds

up the contributions from all other surfaces j by computing for each surface j the viewfactor

between surface i and j (the fraction of energy leaving surface j and arriving at surface i,

see section 1.1.4) and then multiplying that by the emitted flux of j. Thus, this summation

computes the total radiative flux from all other surfaces j incident upon surface i:

qin
i =

∑
j

FijBj, (1.7)

where qin
i is the incident flux (erg s−1 cm−2). Once again, we can apply Eq. 1.2, and convert

this flux to a radiation temperature, given by

Trad,i =

[
qin
i

σ

] 1
4

. (1.8)

We are further interested in how the incident flux varies with frequency (i.e. what the

incident spectrum on surface i looks like), since the surfaces in the experiment will emit at

a wide range of frequencies. Assuming each surface element to emit like a blackbody, the

spectrum of each element will be given by the Planck function Bν(Tem,j), where Tem,j is the

emission temperature of surface j. Now, it can be shown that the Planck function integrated

over all frequencies gives ∫ ∞

0

Bν(Tem,j) dν =
σT 4

em,j

π
, (1.9)

which implies that the emitted flux at a single frequency is given by

Bj(ν) = πBν(Tem,j). (1.10)

Substituting this new expression for the radiated flux from surface j in Eq. 1.7, our final

expression for the frequency-dependent incident flux on surface i is

qin
i (ν) =

∑
j

FijπBν(Tem,j). (1.11)

Computing the incident flux for each frequency produces an incident spectrum for surface

i. Often, we choose the surface element at the center of the gas cell as representative of the
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(a) (b)

Fig. 1.7.— (a) VisRad screenshot of workspace after the simulation has completed. The

highlighted portion of the gas cell is the representative surface element we use to measure

the incident spectrum on the gas cell. (b) The spectrum incident upon the highlighted surface

element at t = 100 ns and an equivalent blackbody of temperature equal to the radiation

temperature of the highlighted surface element.

entire face of the gas cell, and output the spectrum incident on that surface. The result is

shown in Fig. 1.7.

For each time step in the simulation, VisRad recomputes the radiosity balance using

Eq. 1.5. This means that the code calculates an emission and radition temperature for

every surface element at each time step. To be clear, though, the emission and radiation

temperatures calculated at each step are not dependent upon any other time step in the

simulation. That is, at each time step, the flux distribution is determined from a coupled

set of steady-state power balance equations, and this distribution is independent of the

distribution at any other time.
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1.1.4. Calculation of Viewfactors

As mentioned in section 1.1.3, the viewfactor between surface i and j is physically the

fraction of energy leaving surface i and arriving at surface j. At each time-step of the simu-

lation, VisRad recomputes the mutual viewfactor between each surface, so in understanding

how VisRad computes the incident flux on the face of the gas cell it is crucial that we under-

stand how these viewfactors are calculated. To begin, let us first consider a plane surface,

dAi, which is emitting an intensity of radiation along the surface normal given by I0. The

intensity is related to the flux in the following way (for a blackbody emitter):

F (T ) = σT 4 = πI(T ). (1.12)

Thus, we can write, using Lambert’s Cosine Law (see Fig. 1.9.a):

Iθi
= I0 cos θi =

σT 4

π
cos θi. (1.13)

The angular size of the solid angle through which this intensity is emitted at an angle θi is

given by

dΩθi
= sin θidθdφ, (1.14)

so the intensity of radiation through the differential solid angle at an angle of θi is

Iθi
dΩθi

=
σT 4

π
cos θi sin θidθdφ. (1.15)

The fraction of this intensity that will hit surface dAj is the ratio of the area of dAj

projected into the plane of the solid angle divided by the area of the solid angle at a distance

Rij . The area of dAj projected into the plane of the solid angle is simply dAj cos θj (recall

Lambert’s Cosine Law), so the ratio of this area to the area of the solid angle at Rij is

ratio =
dAj cos θj

R2
ij sin θidθdφ

. (1.16)

The product of this ratio of areas and the intensity of radiation (through the solid angle

dΩθi
) is the total intensity incident upon surface dAj from surface dAi.

dIij =
σT 4 cos θi cos θjdAidAj

πR2
ij

. (1.17)

Since σT 4 is proportional to the energy emitted by dAi, then the differential viewfactor

between surface dai and surface dAj is

dFij =
cos θi cos θjdAidAj

πR2
ij

. (1.18)
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VisRad computes the viewfactor between each surface in the workspace by integrating the

differential viewfactors over all surface elements of each surface. The result of this integration,

Fij is used to calculate the incident flux on each surface element in the workspace.

1.1.5. Spatial variation of incident flux on the face of the gas cell

Since the calculated incident flux on only one surface element of the gas cell is taken

as representative of the incident flux hitting the entire face of the gas cell, it is important

to investigate the spatial variation of the flux incident on each surface element of the face

of the gas cell to ensure this approximation is not an unreasonable one to make. If we take

all surface elements of the face of the gas cell to be relatively equidistant from the pinch,

then the fraction of the pinch the surface element sees will dictate how much flux is incident

upon that surface element. Whether a given surface element sees none, a fraction, or the

entire pinch is dependent on two factors: (1) the vertical and azimuthal position of the

gas cell, and (2) the slot geometry of the current return can. The current return can is a

gold cylindrical hohlraum surrounding the pinch through which the positive current returns

to the outer apron after passing through the pinch. In order to allow radiation from the

pinch to propagate to the gas cell, holes or slots are cut into the current return can. If

the position of the gas cell is held constant, then the geometry of these slots (their size and

location) completely determines how much of the pinch each gas cell surface element can see.

Similarly, once the geometry of the slots in the current return can has been established, then

the position of the gas cell becomes critical to determining how much of the pinch different

parts of the gas cell can see. If the gas cell is placed too high, the upper portions of the

gas cell will have a reduced or no view of the pinch because of obscuration by the top flange

and cover. If the gas cell is centered on an azimuthal angle that places it directly behind

one of the current return can walls, then only the outer edges of the gas cell will have an

unobscured view of the pinch. Shown in Figure 1.10 are the views of the pinch from several

different locations on the gas cell. Notice that the surface elements labeled “CENTER” and

“SIDE” see the entirety of the pinch, while the surface element labeled “TOP” sees only a

fraction of the pinch because part of its view is blocked by the top flange and cover.1 The

partially obscured view of the pinch from the upper surface element of the gas cell is the

1As you may have noticed, in the VisRad screenshot from the “TOP” position the top portions of the
pinch are actually visible through the cover and top flange. This is a feature of the VisRad program known
as scaffolding which forces surfaces to be displayed as wire frames if they are obstructing the view of objects
behind them along the line of sight of the viewer. While this feature is useful for viewing the workspace
in its entirety, for the purposes of the viewfactor simulation all surfaces are solid and have no property of
transparency unless specified otherwise.
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reason why in Figure 1.8 there is a vertical temperature gradient on the face of the gas cell

for peak times in the pinch emission. This gradient is also shown quantitatively in Figure

1.11.

Also included in Figure 1.11 is a plot of the incident spectrum on each of the three

representative surface elements at t = 100 ns in the viewfactor simulation. Not suprisingly,

the flux incident on the “SIDE” and “CENTER” surface elements is nearly the same, whereas

the flux on “TOP” surface element is lacking the high energy shoulder that the other two

spectra have. As was shown in Figure 1.2 the pinch is the major contributor of the high

energy flux at t = 100 ns, so it makes sense that the surface element that sees only a fraction

of the pinch would receive only a fraction of the high energy flux from the pinch.

This study of the spatial variation of the incident flux on the face of the gas cell demon-

strates that given our current placement of the gas cell, a vertical temperature gradient

appears at the peak of the pinch emission due to the partial obscuration of the view of

the pinch from the upper portions of the gas cell. It is unclear how pronounced an effect

this temperature gradient might have on the emission and absorption spectra we measure,

but is certainly something to keep in mind if discrepancies between the synthesized and

experimental spectra appear.

1.2. Helios

In the gas cell experiments, a sample of gas initially at a low temperature and uniform

density is bombarded on one side by a large high energy flux. The rapid non-uniform heating

that results from this asymmetric energy flux bombardment gives rise to hydrodynamic

motion of the gas in the cell in the form of shock and compressional heating. If we are

to synthesize an accurate absorption and/or emission spectrum for the gas in the cell, it

becomes vital for these experiments to know how the temperature and density distributions

of the gas as in the cell change with time, since these distributions will directly effect how

radiation is transfered by the gas.

The code employed to calculate the hydrodynamic motions (ultimately calculating time-

dependent temperature and density distributions) of the gas in the cell of these experiments

is Helios (2), a one-dimensional radiation-magnetohydrodynamics code that models the dy-

namic evolution of high energy plasma. For the purposes of this investigation, the mag-

netohydrodynamic feature of this code is not used, but magnetic fields become much more

important when modeling coronal plasmas in objects like the Sun.

As discussed in detail by MacFarlane et al. in (2), Helios solves a series of partial

differential equations in order to calculate the time-dependent temperature and density dis-
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tributions. These equations are derived from conservation considerations, and are as follows:

Mass Conservation

In a Lagrangian hydrodynamic system, the mass of each volume element is conserved

because the spatial grid moves with the mass. In this system, the mass of each volume

element is given by

dm0 = ρ(r)rδ−1dr, (1.19)

where ρ is the mass density, r is the spatial coordinate, and δ = 1 for the planar geometry

of the gas cell. The mass conservation criterion can then be expressed explicitly as

∂V (r)

∂t
=

∂

∂m
(rδ−1u), (1.20)

where V (r) is the specific volume, ρ−1, in units of (cm g−1), and u is the fluid velocity in

units of (cm s−1). This equation says that the rate of change of the volume per unit mass is

equal to the derivative (with respect to the mass) of the rate at which the mass is moving

(since the spatial coordinate goes to 1 for δ = 1). Essentially, this means that the rate of

the change of the specific volume (the volume per unit mass) at a certain radius must equal

the rate at which mass is leaving (or arriving) at that radius. One might think of this as

the specific volume stretching to accomodate new mass and compressing to compensate for

lost mass. As expected, this implies that the the spatial grid moves with the mass in this

system.

Momentum Conservation

If we approximate the flow of the plasma as a single fluid (electrons and ions flow

together at the same rate), then the equation of momentum conservation is

∂u

∂t
= −rδ−1 ∂

∂m0
(Pe + Pi + Pr + q) (1.21)

where Pe, Pi, Pr are the electron, ion, and radiation pressures respectively, and q is known

as the Von Neumann artificial viscosity. If we think of pressure as an energy density, having

units of (erg cm−2) for a planar geometry, then the derivative with respect to mass has units

of force per unit mass, or acceleration (cm s−2), which as expected matches the units of the

derivative of the fluid velocity on the left. This equation, therefore, is merely a restatement

of Newton’s second law, F = ma, where the left side of the equation is the acceleration and

the right side is the force scaled by the mass (since the pressure for a planar geometry is

simply the force scaled by the spatial coordinate).

The Von Neumann artificial viscosity term is included to effectively smooth shocks by
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spreading out a rapid increase in pressure over a small number of zones (rather than having

a discontinuous pressure increase over a single zone).

Energy Conservation

The equations of energy conservation, written in terms of temperature diffusion equa-

tions (for a two temperature model for the electrons and ions) are given by

Cv,e
∂Te

∂t
=

∂

∂m

(
rδ−1ξe

∂Te

∂r

)
− ωei (Te − Ti) −

[
∂Ee

∂V
+ Pe

]
∂V

∂t
Te + RAbs − REmis + Ψ + Se

(1.22)

and

Cv,i
∂Ti

∂t
=

∂

∂m

(
rδ−1ξi

∂Ti

∂r

)
+ ωei (Te − Ti) −

[
∂Ei

∂V
+ Pi

]
∂V

∂t
Ti − q

∂V

∂t
(1.23)

where T is the temperature (◦ K), Cv is the specific heat capacity (erg ◦K−1 g−1), ξ is the

thermal conductivity (erg s−1 cm−1 ◦ K), E is the specific internal energy (erg g−1)...

As inputs for this calculation, equation of state (EOS) and opacity databases...

1.2.1. Propaceos

1.2.2. Ion Temperature and Mass Density Output

1.2.3. Non-LTE vs. LTE

In general, a closed system is said to be in thermodynamic or thermal equilibrium if

there is no net flow of energy through that system. As an example, consider a box filled

with gas. If we think of this system as containing both gas particles and radiation (in the

form of photons), then our requirement for thermodynamic equilibrium is that there is no

net flow of energy between the particles, and no net flow between the gas particles and the

ambient radiation field in the box. The most simple example of such a system would be

one at absolute zero, where the particles are not moving and are not emitting any radiation

(since they have no energy). It is possible, however, to achieve thermal equilibrium for a

temperature other than absolute zero, as long as you thermally insulate or close the system.

In such a system, the temperature is held uniform because every process that could change

the energy distribution, like the emission of a photon, is balanced by its inverse process, in

this case the absorption of a photon. This process/inverse process balance is also true for

the particles themselves. For a given uniform gas temperature the particles are characterized

by a specific distribution of velocities known as the Maxwell-Boltzmann distribution. Now,
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for any collision in which the kinetic energies of any particles pair are changed, there is

another collision of a second pair of particles of initial kinetic energies equal to the final

kinetic energies of the first pair which results in second pair having kinetic energies equal

to the initial kinetic energies of the first pair. In other words, collisions occur and energy

is transferred between particles, but overall for the system the velocity (or energy, since

KE = 1
2
mv2) distribution is conserved for a system in thermal equilibrium.

Of course, closed systems in thermodynamic equilibrium are idealizations of the truth,

because practically speaking it is never possible to fully isolate a system from its surround-

ings. Though, we can approximate a condition of thermal equilibrium for a system if the

distance over which the temperature changes is large compared to the distance over which

a particle or photon collides with another particle (known as the mean free path). This

approximate condition of thermal equilibrium is known as local thermodynamic equilibrium

(LTE), and is a valid approximation for a region of nearly constant temperature in which

the photons and particles contained in the system cannot escape (because they collide with

another particle first).

Relevant to our investigation is the determination of whether the gas in the cell is in

LTE. Certainly, it would seem that as long as the gas in the cell is bombarded from one side

by a high energy density flux, there will be a non-zero net flow of energy through the system

(since the temperature of the gas closest to the pinch will be higher than the temperature

of the gas farther from the pinch). It is possible that the net flow of energy will tend toward

zero both for early times when the pinch emission is neglible and for late times when the

pinch has turned “off” after its peak emission, but the features (absorption and emission)

for a time-integrated spectrum will be dominated by the state of the gas at the peak of

the pinch emission rather than early or late pinch emission at the beginning or end of the

experiment respectively. Thus, in trying to accurately model the hydrodynamic evolution

of the gas in the cell, we are much more concerned with what the gas is doing at or around

the peak pinch emission than we are with what it is doing at then end (or beginning) of the

experiment.

Assuming that the part of the experiment in which we are most interested is not well

approximated by LTE, it then becomes necessary to track the atomic rate equations at

each time step of the simulation. For a uniform electron temperature set by LTE, the level

populations are set by the Boltzmann (for excited states) and Saha (for ionization states)

equations. However, for our case where the temperature is not uniform over a distance

significantly larger than the mean free path, there is not a single temperature we can use

to calculate the level populations from the Saha and Boltzmann equations. Instead, for a

non-LTE calculation, Helios calculates the level populations at each time step by solving a

set of multi-level atomic rate equations. This modification can make a significant difference
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in the calculated temperature distribution, as shown in Fig. 1.12.

1.3. Spect3D

1.3.1. Atomic Model Builder

1.3.2. Absorption and Emission Spectra
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Fig. 1.8.— Compiled snapshots of the VisRad simulation for different times. In each snap-

shot, the gas cell is pictured in the middle column, and the pinch and diode assembly are

pictured in the left and right columns.
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(a) (b)

Fig. 1.9.— (a) Diagram of Lambert’s Cosine Law. This law simply says that the amount of

radiation an observer receives is proportional to the ratio of the amount of surface area the

observer can see to the total surface area. (b) Diagram showing the parameters necessary

for computing the viewfactor between two surfaces elements.
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“TOP” “CENTER” “SIDE”

(a) (b) (c)

Fig. 1.10.— Views of the pinch from surface elements located at the (a) TOP, (b) CENTER,

and (c) SIDE of the gas cell. In each column, the top image is a screenshot captured from

a viewing position directly behind the relevant surface element of the gas cell. The relevant

surface element for each column is highlighted in blue in the diagram immediately below the

VisRad screenshot.
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(a) (b)

Fig. 1.11.— (a) Time-dependent radiation temperature of three representative surface el-

ements of the face of the gas cell, and (b) the incident spectrum on each of these surface

elements at t = 100 ns.
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Fig. 1.12.— Comparison of ion temperature distributions at t = 100 ns for three independent

simulations. Notice that in non-LTE mode, Helios calculates a higher average ion tempera-

ture at the peak of the pinch emission. The DCA label (Detailed Configuration Accounting)

for each material in the simulation refers to how the opacities of each material are calculated.

If a material is labeled as non-DCA, then multigroup opacities are used from a Propaceos

data table. Otherwise, if a material is labeled as DCA, then frequency-dependent opacities

are calculated based on the atomic level populations at each time-step. These populations

can be calculated using either a LTE or a non-LTE model.


