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1. Introduction

Spurred by our recent discussions, and somewhat obliquely by Ken’s recent emails and

notes (which I still have not fully studied), I decided to write up some notes on ways to

include radiative cooling effects in our semi-empirical models of X-ray emission. To give

a specific focus, I decided to revisit the issue of how to explain the standard Lx ∼ Lbol

scaling law that has long been inferred empirically for massive stars, with the most recent

re-affirmation coming in the paper by Naze et. al. analyzing the Chandra Carina data.

As far as I know, the only serious attempt to explain this scaling in terms of the basic

Embedded Wind Shock (EWS) scenario is from the Owocki and Cohen (1999) analysis.

Assuming a standard ρ2 emission, that analysis was able to obtain a sublinear scaling of

Lx vs. Ṁ/v∞ by including the effects of b-f absorption in optically thick winds that had a

power-law variation in the X-ray volume filling factor fv.

Since in CAK theory, Ṁ ∼ L
1/α
bol , with α ≈ 0.6, it had seemed that such a sublinear

scaling of Lx ∼ Ṁα might be necessary to give Lx ∼ Lbol. However, as outlined in §3, Jon

and I have been looking at ways that a linear scaling of scaling Lx vs. Ṁ/v∞ could also give

Lx ∼ Lbol if one also accounts for a general scaling of luminosity with mass, e.g. Lbol ∼ M2.

Before getting to that, the analysis in the next section first generalizes the OC99 ap-

proach by accounting for radiative cooling through a new emission form that bridges the lim-

its between the previous effective assumption of adiabatic expansion with the high-density

limit of strong radiative cooling. For optically thick winds, this confirms the previous OC99

results of a potentially sublinear Ṁ/v∞ scaling for Lx, showing that it can indeed also be

obtained in the case with strong radiative cooling.

However, for the perhaps more realistic assumption that the wind-absorption is generally

quite weak (i.e. τ∗ order unity or less), we find a strictly linear Ṁ/v∞ scaling for radiatively

cooled shocks (even with a power-law variation of heating with radius), recovering then

the standard quadractic scaling Lx ∼ (Ṁ/v∞)2 in the limit of optically thin X-rays from

adiabatically cooled shocks. The latter likely applies to B main sequence stars, and so

explains the fact that they generally have Lx that falls well below the standard Lx ≈ 10−7Lbol
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found for the stronger winds of O stars and B supergiants. The former might explain this

stronger wind scaling if we account for the mass-dependence of the luminosity.

2. Parameter Scalings for X-ray Emission from Embedded Winds Shocks

2.1. Bridging Law for Adiabatic vs. Radiative Emission

To begin, let us write the total X-ray luminosity as a general volume integral of (possibly

b-f attentuated) X-ray emission,

Lx =

∫

η e−τ dV , (1)

where the local emissivity scales as

η = fvCρ2. (2)

Here ρ is the wind density, C is a constant that depends on the shock model and atomic

physics, and fv represents a volume filling factor for X-ray emission.

While previous work has often directly parameterized this factor as following some

power-law scaling with radius, e.g. fv ∼ r−q, in the present notes we wish to account for

the effect of radiative cooling, which is presumed to occur over some characteristic cooling

length that scales as,

ℓ =
mc

ρ
≡ 1

κcρ
. (3)

Here the cooling mass column mc depends on the energy of the embedded wind shocks, and

κc = 1/mc provides a convenient representation with units of opacity or mass-absorption

coefficient, i.e. cm2/g. In the simple model here, we assume that the shock energy is fixed,

and thus that κc is spatially constant. From eqns. (18) and (22) of Antokhin et al. (2003),

we find a numerical value

κc = 190E−2

kev cm2/g , (4)

where Ekev is the shock energy in keV.

If this cooling length is long compared to the local radius, i.e. if ℓ ≫ r, then we may

neglect radiative cooling, and simply compute the total X-ray luminosity in terms of the

volume-intergrated X-ray emission measure, as done in much (most) past work.

But if this cooling length is short compared to the local radius, i.e. if ℓ ≪ r, then we can

expect that for some local “heating fraction” fq (set by LDI-generated EWS), the resulting

volume fraction fv of X-ray emitting gas will be proportinonal to fq, but locally reduced by

a factor ℓ/r.
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To cover both asymptotic regimes, we may write a simple “bridging law” between the

radiative and adiabatic cooling limits, yielding for the net volume filling factor,

fv =
fq

1 + r/ℓ
, (5)

which can be readily confirmed to yield the appropriate limits.

Applying these scalings, the volume emission integral becomes,

Lx =

∫

fqρ
2

1 + κcρr
e−τ dV. (6)

Within the bridging model, this form is quite general, and can even be applied to X-ray

line emission if one includes a profile function in the integrand. We’ll return to this in §3.3,

which shows line profiles Jon has computed for the radiative cooling limit. But for now, let’s

explore how this model affects the scaling of Lx with Ṁ and v∞.

2.2. Exospheric Scaling for Constant Speed Wind

To proceed, let us consider a simple “exospheric” scaling to account for any attenuation

from the exponential absorption term,

Lx ≈ 4π

∫

∞

Ri

fqρ
2

1 + κcρr
r2dr (7)

with Ri ≡ Max[Ro, R1], where Ro is the onset radius for the X-ray emission, and R1 is the

radius for unit radial wind optical depth, i.e. τ(R1) ≡ 1. Under the further simplification of

a constant wind speed v = v∞, we have for bound-free (b-f) absorption opacity κbf ,

R1 ≡
κbfṀ

4πv∞
≡ τ∗R∗ . (8)

In analogy with this unit-optical-depth radius, let us also define a characteristic radius for

onset of adiabatic cooling,

Ra ≡ κcṀ

4πv∞
. (9)

Let us further assume that the heating fraction has power-law scaling in radius

fq(r) ≡ fqo

(

Ro

r

)q

. (10)

Combining all these scalings, we find that emission integral now takes the form

Lx = 4πCq

[

Ṁ

4πv∞

]2
∫

∞

Ri

1

r + Ra

dr

r1+q
, (11)

where, for notational simplicitiy, we defined a combined scaling constant Cq ≡ CfqoR
q
o.
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2.2.1. Constant heating case in adiabatic and radiative limits

For the radially constant heating case with q = 0, eqn. (11) integrates to

Lx = 4πCq

[

Ṁ

4πv∞

]2

ln [1 + Ra/Ri]

Ra

(12)

=
Cq

κc

[

Ṁ

v∞

]

ln [1 + Ra/Ri] (13)

In interpreting this in terms of the overall scaling of Lx with Ṁ/v∞, let’s consider the

various limits for the key radii Ra and Ri.

First, for optically thick winds with R1 > Ro and thus Ri = R1, note then that the ratio

Ra/R1 = κc/κbf is independent of Ṁ/v∞, implying then a direct linear scaling, Lx ∼ Ṁ/v∞.

Note this applies for both the radiative (Ra ≫ Ro) and adiabatic (Ra ≪ Ro) wind limits.

For optically thin winds, with R1 < Ro and thus Ri = Ro, the ratio Ra/Ri = Ra/Ro

now scales in proportion to Ṁ/v∞. For radiative shocks with Ra ≫ Ro, this now gives an

additional logarithmic dependence on Ṁ/v∞; but since this is weak, the overall scaling is

still roughly linear,

However, for optically thin, adiabatic winds – with both R1 ≪ Ro and Ra ≪ Ro –,

the expansion of the ln(1 + Ra/Ro) in small Ra/Ro gives now an additional factor propor-

tional to Ra ∼ Ṁ/v∞, recovering then the overall quadratic scaling Lx ∼ (Ṁ/v∞)2 that is

characteristic of emission from shocks cooled by adiabatic expansion.

To summarize, for a wind with spatially constant heating (q = 0), we find

Lx ∼
[

Ṁ

v∞

]

; R1 ≫ Ro (14)

∼
[

Ṁ

v∞

]

log(Ṁ/v∞) ; R1 ≪ Ro ≪ Ra (15)

∼
[

Ṁ

v∞

]2

; R1, Ra ≪ Ro . (16)
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Fig. 1.— The modified-beta function Fβ(x, q) vs. x, plotted on a log-log scale for q = 0, 1/2,

1, and 3/2, as labelled. Note the linear scaling for small x ≪ 1 (cf. green line labeled “x”).

For large x, the q = 0 case diverges logarithmicaally, but other cases simply asymptote to a

fixed values set by 1 + 1/q (horizontal dashed lines).

2.2.2. Power-law heating case in adiabatic and radiative limits

More generally, for q 6= 0 models that assume heating has a power-law variation in

radius, we find

Lx = 4πCq

[

Ṁ

4πv∞

]2

Fβ[Ra/Ri, q]

RaR
q
i

(17)

=
4πCq

κcR
q
i

Ṁ

4πv∞
Fβ[Ra/Ri, q] . (18)

Here

Fβ(x, q) ≡ |(−1)qβ(−x, q, 0)|
xq

, (19)

where β is the incomplete beta function. Note that, for q = 0, this just recovers the loga-

rithmic scaling of eqn. (13), i.e., Fβ(x, 0) = log(1 + x).

For selected representative values q =0, 1/2, 1, and 3/2, figure 1 plots the variation of

Fβ vs. argument x on a log-log scale. Note that the variation is linear at small x, and for



– 6 –

q 6= 0 just approaches a constant for large x,

Fβ(x, q) ≈ x ; x ≪ 1 (20)

→ 1 +
1

q
; x ≫ 1, q 6= 0 . (21)

We can readily apply these limits to derive power-law-heating scalings for Lx for optically

thick vs. thin winds, and for radiative vs. adiabatic shock emission.

For optically thick winds, we again have Ri = R1 ∼ Ṁ/v∞, so that eqn. (18) now gives

a sublinear scaling for Lx ∼ (Ṁ/v∞)1−q. This sublinear scaling was already found in the

OC99 analysis of adiabatic shocks with power-law heating in an optically thick wind. But

we now see that it apples equally wel for both adiabatic and radiative shock emission.

For optically thin winds with an Ri = Ro that is independent of Ṁ , the scaling from

(18) again becomes linear for radiative shocks, but quadratic for adibatic shocks.

So the summary scalings for power-law heating models with fq ∼ r−q are thus:

Lx ∼
[

Ṁ

v∞

]1−q

; R1 ≫ Ro (22)

∼
[

Ṁ

v∞

]

; R1 ≪ Ro ≪ Ra (23)

∼
[

Ṁ

v∞

]2

; R1, Ra ≪ Ro . (24)

3. Implications for Observed Lx/Lbol Scaling

3.1. Numerical estimates for Ra and R1

Let us next estimate numerical values for the adiabatic radius Ra in terms of assumed

wind parameters Ṁ and v∞. Applying eqn. (4) into eqn. (9), we find

Ra

R∗

= 140
Ṁ6

E2
kevV1000 R∗/R⊙

, (25)

where Ṁ6 ≡ Ṁ/10−6M⊙/yr and V1000 ≡ v∞/1000 km/s. For example, for ζ Puppis with

Ṁ6 ≈ 3, V1000 ≈ 2.5, and R∗/R⊙ ≈ 20, and using the observed X-ray energy to estimate

Ekev ≈ 0.5, we find Ra ≈ 33 R∗.
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In next considering the unit-optical-depth radius R1, it is important to note that b-f

absoprtion has a similar inverse-square energy dependence, though now for the photon (vs.

shock) energy. But if we assume these two energies have some fixed ratio, Es/Eγ, then the

ratios κbf/κc = R1/R)a will also be fixed constants, with some characteristic value.

To estimate this value, let us consider results from the Cohen et al. (2010) analysis of

X-ray line emission from ζ Puppis. From fig. 12 of that paper, we can estimate that, for the

ca. factor 2 reduction in CNO abundances (and taking Eγ = Es, the b-f absorption opacity

(averaged over edges) is approximately a factor κ/κc = 1/8 smaller than this effective opacity

for cooling. (For standard solar abundances, the reduction would perhaps be a factor 1/4.)

As a check, note for example that this implies lines near ∼ 1 keV in ζ Pup have τ∗ =

R1/R∗ ≈ 1.5, in agreement with results in fig. 13 of Cohen et al. (2010).

3.2. Link between Lx ∼ Ṁ/v∞ and Lx ∼ Lbol

Since the wind of ζ Pup is among the strongest of all O-stars, we can anticipate that

most of the stars observed for the standard Lx ≈ 10−7Lbol empirical law are typically quite

optically thin, i.e. R1 < Ro. However, the factor 4-8 higher values for Ra imply that these

stars should generally have Ra > Ro, and so follow the radiative forms for shock emission.

As such, the relevant predicted scaling for O-stars should be the linear mass-loss relation

given in eqn. (23), switching then to the steeper, quadratic scaling (24) for lower mass B-

stars.

To connect from Ṁ to Lbol, let us use the CAK scaling relation

Ṁ ∼ L
1/α
bol M1−1/α , (26)

where M is the stellar mass. Using also the scaling v∞ ∼ vesc ∼
√

M/R∗, we find

Lx ∼ Ṁ

v∞
∼ L

1/α
bol M1/2−1/α

√

R∗ (27)

If we take a stellar structure scaling Lbol ∼ M s, then, ignoring for now the
√

R∗ factor, we

find

log(Lx) ∼
α + 2s − 2

2αs
log(Lbol) . (28)

To reproduce the empirical Lx ∼ Lbol relation, we thus require

s =
2 − α

2 − 2α
. (29)
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For the standard CAK power index α = 2/3, this requires s = 2, which actually is not an

unreasonable mass-luminosity scaling for massive stars.

So this seems somewhat promising. But it really needs to be tested by seeing if the

linear-wind-density scaling given in (27) might actually also give a acceptable, or perhaps

even a tighter, fit to the observed Lx.
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Fig. 2.— X-ray line profiles, overplotted for various models and parameters, as labelled.

3.3. Effect on X-ray Line Profiles

Upon showing this analysis to Jon, he offered to implement the new emission scaling in

his X-ray line-profile code. Figure 2 compares results for the adiabatic (black) and radiative

(red) limits for shock emission with a spatially constant heating, i.e. q = 0. The left and

right panels are respectively for optically thin (τ∗ = 0.01) vs. and marginally thick (τ∗ = 1

line. The effect is quick striking, with the radiative emission (red curves) much broader, due

the weaker radial decline implied by the ρ vs. ρ2 scaling.

Recall that previous models with ρ2 generally give quite good fits to observed lines

without invoking any radial variation in the X-ray volume filling factor, i.e. fv = constant.

Thus we can certainly rule out such radiative shock models with q = 0.

But note the blue curve that shows a corresponding radiative model with q = 1, i.e.

with shock heating that declines as inverse radius after the shock onset, fq ∼ 1/r. This is

actually very close to the adiabatic, constant filling factor models shown in black, and so

would presumably also provide a quite good fit to observed line-profiles!
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Indeed, one can readily see that the adiabatic q = 0 model and the radiative q = 1

models have very similar radial scalings for the emissivity. Specifically, their ratio differs

simply by the scaled velocity law, ηrad(r, q = 1)/ηad(r, q = 0) = w(r) = v(r)/v∞.

Bottom line: the radiative model with q = 1 provides a more physically appropriate

alternative to the previous adiabatic, q = 0 approach. Moreover, the linear vs. quadratic

scaling of such radiative model with Ṁ/v∞ provides a possibility of reconciling with the

empirical scaling Lx ∼ Lbol, if one assumes a mass-luminosity relation Lbol ∼ M s with s ≈ 2.
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Fig. 3.— The function FH(x, y, q) vs. x, plotted on a log-log scale for q = 0, 1/2, 1, and 3/2,

as labelled. The left and right panels are for respectively y = R∗/Ri = 2/3 and y = 1/10.

The general behavior is very similar to that for the Fβ function introduced in the above

constant-wind-speed analysis, and plotted in figure 1; namely it is linear for small x ≪ 1

(cf. green line labeled “x”), and asymptotically constant (q > 0) or logarthmically divergent

(q = 0) for large x.

4. Addendum from 17Apr11: Effect of Wind Velocity Law

The above scaling analysis assumes, for simplicity, a constant wind speed. But we can

also readily examine the effect of including a wind velocity law assuming the standard β = 1

form,

w(r) ≡ v(r)

v∞
= 1 − R∗/r . (30)

Application in eqn. (7) shows that the emission integral for the power-law heating case (cf.

eqn. (11)) now takes the form,

Lx = 4πCq

[

Ṁ

4πv∞

]2
∫

∞

Ri

r−q

r − R∗ + Ra

dr

r − R∗

. (31)
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Direct integration now yields

Lx =
4πCq

κcR
q
i

[

Ṁ

4πv∞

]

FH [Ra/(Ri − R∗), R∗/Ri, q]

1 + q
, (32)

where

FH [x, y, q] ≡ ln [1 + x] ; q = 0 (33)

≡ 2F1[1, q, 1 + q, y] − 2F1[1, q, 1 + q, y(1 + x) − x]

q/(1 + q)
; q > 0 , (34)

with 2F1 the Hypergeometric function.

Compared to the function Fβ defned in eqn. (21), this FH function has somewhat dif-

ference arguments, depending separately now on y = R∗/Ri as well as a modified adiabatic

radius ratio x = Ra/(Ri − R∗). But for any y, the overall behavior vs. x is quite similar to

the Fβ(x, q) derived for the constant-wind-speed case, including the linear variation at small

x ≪ 1, and the asymptotically constant (for q > 0) or logarithmic (for q = 0) scaling for

large x ≫ 1. Figure 3 illustrates this explicitly for both optically thin (Ri = Ro = 1.5R∗;

left panel) and optically thick winds (Ri = Ro = 10R∗; right panel).

Given this, and noting the essentially identical forms of eqns. (18) and (31), we thus

conclude that inclusion of a velocity law does not change the overall Lx scalings shown in

eqns. (22) – (24). In practice, for most O-star winds, we thus again expect the linear scaling

given in eqn. (23), with then the same prospects as developed above for explaining empirical

Lx vs. Lbol scalings.

5. Addendum from 21Apr11: Effect of Shock Mixing

The inherent thinness of radiative shock cooling zones makes them subject to various

thin-shell instabilities. These can be expected to lead to an unknown level, but potentially

substantial, level of mixing between cool and hot material, Since cooler material radiates more

efficiently, and in softer wavebands toward to UV vs. X-rays, such mixing could significantly

reduce the effective emission of X-rays. While there have been some numerical simulations

of the complex structure that can arise from instabilities (e.g. Walder & Folini (1998, A&A

320, L21-L24), there unfortunately does not appear to be any detailed study of how this can

effect the net X-ray emission.

To examine the potential effect of such mixing on X-ray scalings, let us make the plau-

sible ansatz that the reduction should, for shocks in the radiative limit ℓ/r ≪ 1, scale as
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some power of the ratio of the cooling length ratio, ℓ/r, To ensure that the mixing effect goes

away in the adiabatic limit, we can assume a similar ‘bridging law’ scaling for an “mixing

reduction factor” for X-rays,

fxm =
1

(1 + r/ℓ)m
, (35)

where m > 0 is some “mixing power index”. To account for mixing with this model, we thus

simply multiply the integrand for X-ray emission by this factor.

To write a fully general form, let us consider yet one more generalization to our model.

Namely, let us also allow for the possibility that the X-ray onset may not be as a step function,

but rather increases itself as some power s of the scaling wind speed, w(r) = v(r)/v∞, while

still possibly declining outward as radial power q,

fq(r) = fqo H[r − Ro] [w(r)]s
[

r

Ro

]q

, (36)

where H(x) is the Heavidside step function, with unit value for postive x, and zero otherwise.

With these two further added power scalings, we can write the X-ray emission integral

in the (perhaps too?) general form,

Lx = 4πCq

[

Ṁ

4πv∞

]2
∫

∞

Ri

dr

rq+s (rw + Ra)
1+m (rw)1−m−s

. (37)

Note that for the β = 1 velocity assumed in eqn. (30), we have rw = r − R∗; thus for

β = 1 and m = s = 0, we simply recover eqn. (31).

Indeed, for β = 0 and thus w = 1, we recover for s = m = 0 the constant-wind-speed

scaling of eqn. (11).

But, as written, eqn. (37) even allows us now also to account for non-unit values of the

β velocity index. So far I’ve only been able to find analytic expressions for the β = 1 case,

which for general values of q, s, and m turns out to involve yet another obscure function (the

“Appell Hypergeometric function”). Evaluation turns out to be quite tricky though, and so

I’ve found it simpler just to evaluate the integral numerically.

Inspection of (37) shows that the Ra term sets the length scale of the integrand, so that

in the radiative shock limit Ra ≫ Ri, we can extract a 1/R1+m
a factor that now makes the

mass-loss-rate scaling potentially sublinear, Lx ∼ (Ṁ/v∞)1−m. Once this overall factor is

extracted, the remaining integral function again just follows a simple “bridging” behavior

between the radiative (Ra ≫ Ro) and adiabatic (Ra ≪ Ro limits.
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As a specific example, let us consider the relevant case of an optically thin wind (RI =

Ro = 1.5R∗ with an inverse radius decline in heating (q = 1), but now with various s and

mixing exponents m. The integral turns out to have the form

Lx = 4πCq

(

Ṁ

4πv∞

)2

1 + m√
1 + s

Fm[Ra]

R1+m
a

(38)

≈ 4πCq

κ1+m
c

[

Ṁ

4πv∞

]1−m
1 + m√
1 + s

Ra

Ra + 1/(1 + s)/(1 + m)3
, (39)

where the latter approximation follows from full numerical integration.

For example, figure 4 overplots Fm(x) vs. x ≡ (1 + s)(1 + m)3Ra for select values of m,

for both s = 0 (left) and s = 1 (right). The clearly shows the very good fit to the simple

bridging law Fm(x) ≈ x/(1 + x), plotted as the black curve.
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Fig. 4.— Numerical integration plot for Fm(x) vs. x = (1 + s)(1 + m)3Ra for cases with

velocity-dependent heating exponent s = 0 (left) and s = 1 (right), overplotted for selected

values of the mixing exponent m=0, 0.2, 0.4 (blue, purple, red). The black curve represents

the simple bridging law x/(1+x). This bridging behavior is very similar to that for the Fβ

and Fh functions introduced in previous models; namely it is linear for small x ≪ 1 (cf.

green line labeled “x”), and asymptotically constant for large x.

Bottom line: for m > 0 this mixing effect can lead to a sublinear scaling of the X-ray

luminosity with the mass-loss rate, Lx ∼ (Ṁ/v∞)1−m.


