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1. Background

In her email of Feb. 7, Lida (Oskinova) comments on our recent OC06 preprint on the

effect of porosity for X-ray line profiles, particularly in relationship to the Oskinova, Feldmier,

& Hamman (OFH) model for a “fractured wind” made up of radially compressed “pancakes”.

It seems in particular that the OC06 “porosity” length has a potentially close correspondence

to the radial separation distance between the thin pancakes in the OFH model. There

moreover seems to be a potential emerging consensus that reducing b-f absporption to a level

that can give the observed, nearly symmetric X-ray profiles requires quite large separations

or porosity lengths, i.e. h > R∗.

Spurred by this prospect of a congenial reconcilation of what has been till now two

rather different perpsectives, I have recently implemented this pancake formalism within my

general Mathematica analysis of porosity, with the aim to compare line profiles for the two

models of porosity.

2. OFH Radially Compressed Pancake Model for Anisotropic Porosity

In the OFH model, the individual pancakes are assumed to be geometrically thin, with

a local radial separation h between pancakes. For a wind with local average density ρ, the

pancake column density is ρh. Thus with radially oriented pancakes, the optical depth of

the pancake to a ray with radial direction cosine µ is

τc = κρh/µ . (1)

In the OFH model, the pancakes are assumed to be released at a fixed temporal frequency

no, and so they then spread spatially according to the accelerating velocity of the wind, given

by a beta-law. The radial variation of the shell separation can thus be written in the form

h(r) = v(r)/no = h∞(1 − R/r)β , (2)
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where h∞ ≡ v∞/no is the asymptotic radial separation between clumps at large radii, given

in terms of the clump release frequency no and the terminal flow speed v∞. Also, R is the

stellar radius, and, for simplicity, our analysis here will take a velocity exponent β = 1.

For this anisotropic porosity, we will find it more convenient to use the absorption form

for the effective opacity, as given by, e.g., eqn. (4) of OC06,

κeff

κ
=

1 − e−τc

τc

. (3)

The effective optical depth integral (analagous to eqn. (7) of OC06), to a position z along a

ray with impact parameter p is now written as,

teff [p, z] =

∫ ∞

z

(

1 − e−τc(z′)
) κρ

κρh/µ
dz′ (4)

=

∫ ∞

r

(

1 − e−τc(r′)
)

dr′/h(r′) (5)

where the latter simplification uses the relations z2 ≡ r2 − p2 and µ = z/r to substitute

dz′ = dr′r′/z′ = dr′/µ. This shows that the optical depth of the region where the clumps

are optically thick is just given by the number of radial clumps separations crossed along the

path.

For evaluating this integral, it is reasonable to approximate the 1-e factor as a step

function, with the step occuring at the radius r1 where the clumps along a given ray with

impact parameter p become optically thick, defined by τc(r1) ≡ 1. In terms of the ray

coordinate z1 =
√

r2
1 − p2, this requirement can be written as

z1r1 = τ∗h∞ , (6)

where

τ∗ ≡
κṀ

4πv∞R
, (7)

and for convenience, we are scaling all lengths in units of the stellar radius R. The require-

ment can be solved explicitly to give

z1(p, τ∗h∞) =

√

−p2 +
√

p4 + 4τ 2
∗h2

∞ . (8)

The corresponding radius can obtained from r1 =
√

p2 + z2
1 . Figure 1 plots z1 vs. p for

various τ∗h∞.

For the intervals r > r1(p), the ray optical depth integral recovers the form for a smooth

wind, which for a simple (‘beta=1’) velocity law, can be evaluated though analytic form (see,
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Fig. 1.— Plot of z1(p, τ∗h∞) vs. impact parameter p for various τ∗h∞ (0.5 and from 1 to 8, in

unit steps), showing location where pancakes become marginally optically thick to photons

along the ray with associated impact parameter p.
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e.g., OC01 and OC06),

tsm[p, z, z′] =
1

z∗

[

arctan

(

z′

z∗

)

+ arctan

(

z′

r′z∗

)]z′

z

, (9)

where z∗ ≡
√

p2 − 1.

For the intervals r < r1, the integral just represents a summation over the shell sepa-

ration lengths h; in the present case of h(r) ∼ v(r) with β = 1, the integration gives the

analytic form

tan[p, z, z′] =
1

h∞
[r + log(r − 1)]z

′

z . (10)

The overall effective optical depth can thus be written

teff [p, z]

τ∗
= tsm[p, z,∞] ; z ≥ z1 (11)

= tan[p, z, z1] + tsm[p, z1,∞] ; 0 ≤ z ≤ z1 (12)

= tan[p, z, 0] + th[p, 0, z1] + tsm[p, z1,∞] ; − z1 ≤ z ≤ 0 (13)

= tan[p, z,−z1] + th[p,−z1, 0] + tan[p, 0, z1] + tsm[p, z1,∞] ; z ≤ −z1 (14)

With the ray optical depths in hand, we can readily convert to optical depth as a

function of radius and direction. Using the scaled velocity law w ≡ v/v∞ = (1 − R/r),

this can then be converted to a function of scaled inverse radius y = 1 − 1/r, and scaled

wavelength x = (λ/λo − 1)c/v∞.

3. Optical Depth for a “Stretch” Form for Isotropic Porosity

Before computing X-ray line profiles, let us consider a hybrid form for the previous

OC06 isotropic porosity model. Specifically, instead the OC06 assumption that the porosity

length expands in proportion to the local radius, h(r) = h′r, let us assume that, in ananlogy

with the above formulation OFH anisotropic model, the porosity length stretches with the

wind flow speed, h(r) = h∞v(r)/v∞ = h∞(1 − 1/r) (where we have again taken a simple

β = 1 form for the velocity law).

We will thus dub these respectively the “expansion” vs. “stretch” forms for isotropic

porosity.

For the OF06 form for the porosity “bridging law”, the ray optical depth for an isotropic

stretch porosity model becomes (cf. OC06 eqn. (9))

teff [p, z]

τ∗
=

∫ ∞

z

dz′

(r′2 + τ∗h∞)(1 − 1/r′)
, (15)
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where we are still writing all lengths in units of the stellar radius R. Fortunately, in this

case the integral can also be evaluated analytically, yielding

teff [p, z]

τ∗
=

tsm[p, z,∞] + τ∗h∞ tiso[p, z,∞]

1 + τ∗h∞
(16)

where tsm is defined in eqn. (9) above, and

tiso[p, z,∞] ≡
1

zh



arctan

(

z′

zh

)

+
arctan

(√
τ∗h∗z′

zhr′

)

√
τ∗h∗





z′→∞

z′=z

, (17)

with zh ≡
√

p2 + τ∗h∞.

4. X-ray Line Profiles for Anisotropic vs. Isotropic Porosity Models

With these analytic optical depth expressions in hand, we can model the associated

X-ray emission line profiles using the parameterized emission model introduced by OC01.

As in OC06, we focus here on the simple case of pure density-squared emission (q = 0)

beginning at a minimum emission radius Rmin = 1.5R.

Figure 2 compares results for the anisotropic porosity model (right column) with the

expansion and stretched forms of the isotropic porosity (left and middle columns). As in

OC06 (cf. their figure 3), the curves show X-ray line profiles vs. scaled wavelength x ≡
(λ/λo − 1)c/v∞, overplotted in each panel for optical depth parameters τ∗ = 0.1, 1, 3, 5, and

10 (black, blue, violet, red, green), and normalized to have peaks decrease by 5% for each

step in τ∗. The individual panels compare results for various porosity scales and models.

For all three model columns, the rows show results for increasing porosity scale, i.e. h′ or

h∞, with values as labeled at the left of each row. The vertical dashed lines mark the line

centers.

Note that the profiles for all 3 porosity models are generally quite similar for compa-

rable porosity scales, although there are some some differences in details. For example, in

the anistropic models, the increase in intensity occurs first near line center, reflecting the

greater transverse transmission of radiation through the midplane between the front and

back hemispheres. Because the expansion form of the isotropic model has a porosity that

continues to increase with radius, for a given scale factor, the overall symmetrization of the

profile is greatest in this model. However, in comparing the two models with the velocity

stretch scaling of porosity, the symmetrization is stronger for the anisotropic case, indicating

that assuming such a “pancake” form for the clumps does indeed somewhat enhance porosity

effects.
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Fig. 2.— Comparison of X-ray line profiles for this anistropic porosity model (right column)

vs. analogous expansion (left) and stretch (middle) forms for isotropic porosity models See

text for details.
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Nonetheless, in all models, achieving nearly symmetric profiles for optically thick cases

(τ∗ ≥ 1) requires quite large porosity lengths, h > R∗ or more.

Overall, these results thus seem to point to a reconciliation between the OFH anisotropic

pancake model and the OC06 isotoropic porosity model, with the OFH radial separation

length between clumps playing a similar role to the OC06 “porosity length”. The correspon-

dence is particularly close if one uses the velocity stretch form for the spatial variation of

the OC06 porosity length, h(r) = h∞v(r)/v∞, instead of radial expansion form h(r) = h′r.

Finally, I have also developed Mathematica code for computing X-ray line profiles from

models consisting of spherically symmetric thin shells. It turns out that, even with relatively

large shell separations, such models do not generally give very symmetric line profiles. This

shows that the lateral reshuffling associated with the pancake model is quite essential to

obtaining the reduced absorption of a porosity model. I may add further details of these

shell model profiles to later versions of these notes.


