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Error/Uncertainty Analysis 
 
When we talk about “error” in science, we are not using the term in the 
everyday sense of a “mistake.” Instead, “error” is a way of quantifying how 
confident we are that a measurement is the “true” or “correct” value.  The 
term “uncertainty” is often used interchangeably (and gives a more accurate 
description of what we’re describing here), but the phrase “error analysis” is 
in common usage. This document discusses estimation of these uncertainties, 
how those uncertainty values propagate (i.e. translate into uncertainties on 
values calculated from measured quantities), and how the value of the 
uncertainty gives guidance on the number of significant digits to write for a 
value.   
 
First, every quantity you measure or estimate has some uncertainty 
associated with it, so in every lab you should give an estimate of the 
experimental uncertainty associated with your actual measurements.  In 
arriving at this estimate, you should consider factors such as: 
 

• the precision of your instrument (e.g. is your ruler marked off in millimeters 
or centimeters?), 

• your own proficiency with the instruments (if you are using a centimeter 
ruler, can you confidently read to the nearest centimeter or the nearest half-
centimeter?), and 

• any variation of the quantity you are trying to measure (how well can you 
use a ruler to measure the location of a moving ball at a given time?)  

 
Second, you will almost always use your measured values to calculate some 
other values of interest.  Thus, these calculated values will have some 
uncertainty as well, so you must propagate these uncertainty estimates in 
order to calculate the uncertainty estimates for all the important quantities 
calculated from your actual measurements.  In other words, how do the 
experimental uncertainty estimates translate into an uncertainty in the final 
answer?   
 
Determining how uncertainty estimates propagate is not difficult.  Imagine 
that you have measured two distances: a distance x1 equal to 348 cm with an 



Astro 1 Error and Uncertainty p. 2 of 4 

error estimate of 5 cm, and a distance x2 equal to 821 cm with an error 
estimate of 9 cm.  If you calculate the total distance or the difference in 
distances, what is the uncertainty estimate for these two quantities?  Your 
first thought might be to add the two uncertainty estimates together. This is 
a good first approximation, but we can do better. We expect the error in the 
new distance to be more than that of either x1 or x2 individually, but it is 
likely to be less than the sum of the two errors.1 An easy (and correct) way to 
get an uncertainty estimate between these two extremes is to add the 
uncertainties in quadrature. This means to add the squares of the 
uncertainties together, then take the square root (like the Pythagorean 
theorem in geometry). In our example: 
 

€ 

combined uncertainty = 52 + 92 = 106 ≈10.3 cm 
 

Since the distances were measured only to the nearest centimeter, and we see 
that in fact our answer is uncertain by a full 10 cm, it does not make sense to 
report an uncertainty with a precision of 0.1 cm. So the answers are: 
 

x2 + x1 = 1,169 cm with an error estimate of 10 cm, 
x2 – x1 =  473 cm with an error estimate of 10 cm. 

 
A convenient way of writing these results is 
 

x2 + x1 = (1169 ± 10) cm        and        x2 – x1 = (473 ± 10) cm. 
 
Another example of this compact way of writing uncertainties for numbers 
written in scientific notation: if we measure the speed of light to be 3.1 x 108 
m/s with an uncertainty of 0.1 x 108 m/s, we generally write this as (3.1 ± 
0.1) x 108 m/s. 
 
Now let’s imagine that you have measured the time t it took an object to go 
the total distance x1 + x2.  Let’s say t is equal to 3.4 seconds with an 
uncertainty estimate of 0.2 seconds.  If you calculate the velocity of the 
object, what is the uncertainty estimate for it?  Simply adding the 
uncertainties in quadrature does not work in this case since distance and 
time are in different units. Instead, we can add the uncertainty estimates 

                                                
1 This is true as long as the uncertainty on each measurement is random (equally likely to 
go in either direction). 
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as percentages (again in quadrature) in order to get the uncertainty 
estimate of the product or quotient as a percentage.  So in this case, 
 

€ 

% x1 + x2( ) =
10 cm
1169 cm

⋅100 = 0.86%,

% t( ) =
0.2 s
3.4 s

⋅100 = 5.9%,

% v( ) = 0.86%( )2 + 5.9%( )2 = 6.0%.

 

 
So the velocity v is equal to 343.8 cm/s (1169 cm divided by 3.4 s) with an 
uncertainty estimate of 6.0% of the velocity, or 20.6 cm/s (6.0% of 343.8 
cm/s).  Again, the size of the uncertainty gives us guidance on how many 
significant digits to write down.  It makes little sense to keep track of digits 
representing more than two digits of the error estimate, (i.e. an uncertainty 
of 20.6 cm/s means we’re not sure of the tens digit of the answer, let alone 
the tenths), so the final result is written 
 

v = (344 ± 21) cm/s. 
 

At times, you will be using laboratory analysis software to 
calculate results, and the program will calculate uncertainty 
values for you.  A particularly common example is that a 
software fitting package will give you an uncertainty estimate on 
the slope of a best-fit line you fit to some measured values.  Feel 
free to use these values where appropriate and note in your 
report what software package was used to obtain them. 
 
Finally, it’s good to keep in mind the distinction between random errors and 
systematic errors. Random errors are just as likely to be positive as negative 
(too high or too low), and they arise from incompleteness in data and our 
finite abilities to measure things. For example, the fact that a political poll 
doesn’t ask every single voter for their preference but only a finite subset will 
inevitably lead to random errors. But it may also lead to systematic errors if, 
for example, there is correlation between how likely someone is to be 
included in the poll and what their position on the candidate or issue is. The 
classic example in the early era of political polling involves the different 
likelihoods that a voter will have a telephone depending on their party 
affiliation.  
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For another example of the distinction, consider the errors associated with 
measuring the length of an object with a ruler. If your hand is shaking, 
random errors will appear in your data. But if the ruler is mislabeled so that 
each demarcated inch is really just 7/8th of an inch, then a systematic error 
will be introduced (in the sense that all measurements will be too big).  
 
Note that for random errors, repeated measurements (e.g. adding more 
people to the polling sample) will lead to better and better cancelation of 
errors and a lower overall error. But the same is, unfortunately, not true for 
systematic errors.    


