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LEARNING GOALS

15.1 PROPERTIES OF STARS ® What are giants, supergiants, and white dwarfs?
m How do we measure stellar luminosities? = Why do the properties of some stars vary?
B How do we measure stellar temperatures?
® How do we measure stellar masses?

15.3 STAR CLUSTERS
u What are the two types of star clusters?
15.2 PATTERNS AMONG STARS = How do we measure the age of a star cluster?
B What is a Hertzsprung-Russell diagram?
# What is the significance of the main sequence?
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“All men have the stars,” he answered, “but they are
not the same things for different people. For some, who
are travelers, the stars are guides. For others they are no
more than little lights in the sky. For others, who are
scholars, they are problems. For my businessman they
were wealth. But all these stars are silent. You—you
alone—will have the stars as no one else has them.”

—Antoine de Saint-Exupéry, from The Little Prince

| n a clear, dark night, a few thousand stars are visi-

A J ble to the naked eye. Many more become visi-

®e”  ble through binoculars, and a powerful telescope

reveals so many stars that we could never hope to count them.

Like each individual person, each individual star is unique. Like
all humans, all stars have much in common.

Today, we know that stars are born from clouds of interstel-
lar gas, shine brilliantly by nuclear fusion for millions to billions of
years, and then die, sometimes in dramatic ways. In this chapter,
we'll discuss how we study and categorize stars and how we have
come to realize that stars, like people, change over their lifetimes.

15.1 PROPERTIES OF STARS

Imagine that an alien spaceship flies by Earth on a simple but
short mission: The visitors have just 1 minute to learn every-
thing they can about the human race. In 60 seconds, they will
see next to nothing of any individual person’s life. Instead,
they will obtain a collective “snapshot” of humanity that
shows people from all stages of life engaged in their daily
activities. From this snapshot alone, they must piece together
their entire understanding of human beings and their lives,
from birth to death.

We face a similar problem when we look at the stars.
Compared with stellar lifetimes of millions or billions of years,
the few hundred years humans have spent studying stars
with telescopes is rather like the aliens’ 1-minute glimpse of
humanity. We see only a brief moment in any star’s life, and
our collective snapshot of the heavens consists of such frozen
moments for billions of stars. From this snapshot, we try to
reconstruct the life cycles of stars.

Thanks to the efforts of hundreds of astronomers study-
ing this snapshot of the heavens, stars are no longer myste-
rious points of light in the sky. We now know that all stars
have much in common with the Sun. They all form in great
clouds of gas and dust, and each one begins its life with
roughly the same chemical composition as the Sun: About
three-quarters of a star’s mass at birth is hydrogen, and
about one-quarter is helium, with no more than about 2%
consisting of elements heavier than helium. Nevertheless,
stars are not all the same; they differ in such properties as
size, age, brightness, and temperature. We "Il devote most of
this and the next two chapters to understanding how and
why stars differ. First, however, let’s explore how we mea-
sure three of the most fundamental properties of stars:
luminosity, surface temperature, and mass.

How do we measure stellar
luminosities?

If you go outside on any clear night, you'll immediately see
that stars differ in brightness. Some stars are so bright that
we can use them to identify constellations [Section 2.1].
Others are so dim that our naked eyes cannot see them at all.
However, these differences in brightness do not by them-
selves tell us anything about how much light these stars are
generating, because the brightness of a star depends on its
distance as well as on how much light it actually emits.
For example, the stars Procyon and Betelgeuse, which make
up two of the three corners of the Winter Triangle (see
Figure 2.2), appear about equally bright in our sky. However,
Betelgeuse actually emits about 5000 times as much light as
Procyon. It has about the same brightness in our sky because
it is much farther away.

brightness and location in our sky On the next cIear mght finda
favorite constellation and visually rank the stars by brightness.
Then look tg' see how that constellation is represented on the

star charts”in Appendix 1. Why do the star charts use different
size dots for different stars? Do the brightness rankings on the
star chart agree with what you see?

Because two similar-looking stars can be generating very
different amounts of light, we need to distinguish clearly
between a star’s brightness in our sky and the actual amount
of light that it emits into space (Figure 15.1):

When we talk about how bright stars look in our sky, we
are talking about apparent brightness—the brightness
of a star as it appears to our eyes. We define the apparent
brightness of any star in our sky as the amount of power
(energy per second) reaching us per unit area. (A more
technical term for apparent brightness is flux.)

Luminosity is the total

amount of power

(energy per second)

the star radiates

into space.

"t Apparent brightness is

the amount of starlight

Not to scale! reaching Farth {energy
per second per square
meter)

FIGURE 15.1 Luminosity is a measure of power, and apparent bright-
ness is a measure of power per unit area.
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When we talk about how bright stars are in an absolute
sense, regardless of their distance, we are talking about
luminosity—the total amount of power that a star emits
into space.

We can understand the difference between._apparent
brightness and luminosity by thinking about a 100-watt
light bulb. The bulb always puts out the same amount of
light, so its luminosity doesn’t vary. However, its apparent
brightness depends on your distance from the bulb: It will
look quite bright if you stand very close to it, but quite dim
if you are far away.

The Inverse Square Law for Light The apparent
brightness of a star or any other light source obeys an inverse
square law with distance, much like the inverse square law
that describes the force of gravity [Section 4.4). For example,
if we viewed the Sun from twice Earth’s distance, it would
appear dimmer by a factor of 2% = 4. If we viewed it from
10 times Earth’s distance, it would appear dimmer by a factor
of 10* = 100.

Figure 15.2 shows why apparent brightness follows an
inverse square law. The same total amount of light must
pass through each imaginary sphere surrounding the star.
If we focus on the light passing through the small square
on the sphere located at 1 AU, we see that the same amount
of light must pass through four squares of the same size on
the sphere located at 2 AU. Each square on the sphere at
2 AU therefore receives only % - % as much light as the
square on the sphere at 1 AU. Similarly, the same amount
of light passes through nine squares of the same size on the
sphere located at 3 AU, so each of these squares receives
only 3= § as much light as the square on the sphere at
1 AU. Generalizing, the amount of light received per unit

MATHEMATICAL INSIGHT 15.1

The same amount The surface area

of starlight passes of a sphere depends
through each on the square of its
sphere. radius (distance

from the star)

s0 the amount
of light passing
through each unit
of area depends on
the inverse square
of distance from the
star.

EIGURE 15.2 The inverse square law for light: The apparent bright-
ness of a star declines with the square of its distance.

area decreases with increasing distance by the square of the
distance—an inverse square law.

This inverse square law leads to a very simple and impor-
tant formula relating the apparent brightness, luminosity, and
distance of any light source. We will call it the inverse square
law for light:

luminosity

apparent brightness =
PP ) 47 X distance?

Because the standard units of luminosity are watts [Section
14.1], the units of apparent brightness are watis per square
meter. (The 41 in the formula above comes from the fact that
the surface area of a sphere is given by 47 X radius?.)

In principle, we can always determine a star’s apparent
brightness by carefully measuring the amount of light we
receive from the star per square meter. We can then use the
inverse square law to calculate a star’s luminosity if we can
first measure its distance, or to calculate a star’s distance if we
somehow know its luminosity.

The Inverse Square Law for Light

We can derive the inverse square law for light by extending the idea
illustrated in Figure 15.2. Suppose we are located a distance d from a
star with luminosity L. The apparent brightness of the star is the
power per unit area that we receive at our distance, d. We find this
apparent brightness by imagining a giant sphere with radius d (similar
to any of the three spheres in Figure 15.2) and surface area 47 X 4.
(The surface area of any sphere is 47 X radius?.) All the star’s light
passes through the imaginary sphere, so the apparent brightness at
any point on this sphere is simply the star’s luminosity, L, divided by
the sphere’s surface area; carrying out the division gives us the inverse
square law for light:

star’s luminosity

apparent brightness = = - -
surface area of imaginary sphere

4 X &

EXAMPLE: What is the Sun’s apparent brightness in our sky?
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SOLUTION:

Step 1 Understand: The Sun’s apparent brightness is the power
per unil area that we receive in the form of sunlight. We find this
power with the inverse square law for light, using the Sun’s lumi-
nosity and Earth’s distance from the Sun; for unit consistency,
we put the Earth-Sun distance in meters.

Step 2 Solve: The Sun’s luminosity is Leyn = 3.8 X 10%6 watts, and
Fartl’s distance from the Sun is d = 1.5 X 10" meters. The Sun’s
apparent brightness is therefore

L 38X 10°watts
am X & 4w % (1.5 X 10" m)?
= 1.3 X 10° watts/m”

Step 3 Explain: The Sun’s apparent brightness is about 1300 watts
per square meter at Farth's distance. This is the maximum power
per unit area that could be collected by a detector on Earth that
directly faces the Sun, suchas a solar power (or photovoltaic) cell.




THINK ABOUT LT
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; 5u pose Star A is four times as luminous as Star B. How will
{heir apparent brightnesses compare if they are both the same
distance from Earth? How will their apparent brightnesses
compare Ii,[/glar A is twice as far from Earth as Star B? Explain.

Meagu;ing Apparent Brightness We can measure a
qar’s apparent brightness by using a detector, such as a CCD,
(hat records how much energy strikes its light-sensitive sur-
face each second. For exa mple, such a detector would record
an apparent brightness of 2.7 X 107® watt per square meter
from Alpha Centauri A (the brightest of the three stars in
the Alpha Centauri system). The only difficulties we face in
measuring apparent brightness are making sure the detector
is properly calibrated and, for ground-based telescopes, taking
into account the absorption of light by Earth’s atmosphere.

No detector can record light of all wavelengths, so we
necessarily measure apparent brightness in only some small
range of the complete spectrum. For example, the human eye
is sensitive to visible light but does not respond to ultraviolet
or infrared photons. When we perceive a star’s brightness, our
eyes are measuring the apparent brightness only in the visible
region of the spectrum.

When we measure the apparent brightness in visible
light, we can calculate only the star’s visible-light luminosity.
Similarly, when we observe a star with a spaceborne X-ray
telescope, we measure only the apparent brightness in X rays
and can calculate only the star’s X-ray luminosity. We will
use the terms total luminosity* and total apparent bright-
ness to describe the luminosity and apparent brightness we
would measure if we could detect photons across the entire
electromagnetic spectrum.

One important complication often arises when we try
to calculate a star’s luminosity from its apparent brightness:
The inverse square law for light works perfectly only if the
starlight follows an uninterrupted path to Earth. In reality,
the light of most stars passes through at least some clouds
containing interstellar dust on its way to Earth, and this dust
can absorb or scatter some of the star’s light [Section 16.1].
Today, thanks largely to our modern scheme of stellar classi-
fication, we can usually measure the effect of interstellar dust
and account for it when we apply the inverse square law for
light. A century ago, before astronomers knew of the exis-
tence of interstellar dust, astronomers often underestimated
stellar distances because they did not realize that the dust was
making stars appear less bright than they really are.

(MA ’ Measuring_(usmiq Distances Tutorial, Lesson 2

Measuring Distance Through Stellar Parallax The
most direct way to measure a star’s distance is with stellar
parallax, the small annual shifts in a star’s apparent position
caused by Earth’s motion around the Sun [Section 2.4].
Recall that you can observe parallax of your finger by holding
it at arm’s length and looking at it with first one eye closed
and then the other. Astronomers measure stellar parallax

" . -
Astronomers sometimes refer to the total luminosity as the bolometric luminosity.

Every January, distant stars Every July
we see this: we see this;
5!

As Earth the position of a
orbits the nearby star appears
to shift against the

Sup...
: background of
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stars.

Not to scale
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FIGURE 15.3 [[EIN0Tx Parallax makes the apparent position
of a nearby star shift back and forth with respect to distant stars over the
course of each year. The angle p, called the parallax angle, represents
half the total parallax shift each year. If we measure p in atcseconds, the
distance d to the star in parsecs is 1/p. The angle in this figure is greatly
exaggerated: All stars have parallax angles of less than 1 arcsecond.

by comparing observations of a nearby star made 6 months
apart (Figure 15.3). The nearby star appears to shift against
the background of more distant stars because we are observ-
ing it from two opposite points of Earth’s orbit.

We can calculate a star’s distance if we know the precise
amount of the star’s annual shift due to parallax. This means
measuring the angle p in Figure 15.3, which we call the star’s
parallax angle and is equal to half the star’s annual back-and-
forth shift. Notice that this angle would be smaller if the star
were farther away, so we conclude that more distant stars have
smaller parallax angles.

All stars are so far away that they have very small paral-
lax angles, which explains why the ancient Greeks were never
able to measure parallax with their naked eyes. Even the
nearest stars have parallax angles smaller than 1 arcsecond—
well below the approximately 1 arcminute angular resolution
of the naked eye [Section 6.2]. For increasingly distant stars,
the parallax angles quickly become too small to measure even
with our highest-resolution telescopes. Current technology
allows us to measure parallax accurately only for stars within
a few hundred light-years—not much farther than what we
call our local solar neighborhood in the vast, 100,000-light-
year-diameter Milky Way Galaxy.

By definition, the distance to an object with a parallax
angle of 1 arcsecond is 1 parsec (pc). (The word parsec comes
from combining the words parallax and arcsecond.) Because
all stars have parallax angles smaller than one arcsecond, they
are all farther than 1 parsec away. If we use units of arcsec-
onds for the parallax angle, p, a simple formula allows us Lo
calculate distances in parsecs:

1

d (in parsecs) = e arcseconds)

For example, the distance to a star with a parallax angle of
! arcsecond s 2 parsecs, the distance to 2 star with a parallax
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angle of 1—10 arcsecond is 10 parsecs, and the distance to a star
with a parallax angle of 755 arcsecond is 100 parsecs.

Astronomers often state distances in parsecs, kiloparsecs
(1000 parsecs), or megaparsecs (1 million parsecs). However,
with a bit of geometry; it’s possible to show that 1 parsec is
equivalent to 3.26 light-years (see Mathematical Insight 15.2).
We can therefore modify the above formula slightly to give
distances in light-years: -

1

o Tohie =326 X —/—————
d (in light-years) p (in arcseconds)

In this book, we’ll generally state distances in light-years rather
than parsecs.

Parallax was the first reliable technique astronomers devel-
oped for measuring distances to stars, and it remains the only
technique that tells us stellar distances without any assump-
tions about the nature of stars. If we know a star’s distance
from parallax, we can calculate its luminosity with the inverse
square law for light. We now have parallax measurements
for thousands of stars, which is a large enough number that
astronomers have been able to draw some general conclu-
sions about them. As we’ll see later, these lessons have taught
astronomers how to estimate luminosities for many more
stars, even without knowing their distances. Astronomers
today often use the inverse square law for light to calculate
distances to objects for which we can reliably estimate lumi-
nosities, as well as to calculate luminosities of objects for which
we have measured distances.

MATHEMATICAL INSIGHT 15.2

The Parallax Formula

We can derive the formula relating a star’s distance and parallax angle
by studying Figure 15.3. The parallax angle p is part of a right triangle,
and from trigonometry you may recall that the sine of angle p is the
length of the side opposite this angle divided by the length of the
hypotenuse. Because the side opposite p is the Earth-Sun distance of
1 AU and the hypotenuse is the distance d to the object, we find
length of opposite side _1AU
RS length of hypotenuse ~ d

Solving for d, the formula becomes

1 AU

d =-
sin p

By definition, 1 parsec is the distance to an object with a parallax angle
of 1 arcsecond (1"), or ﬁ degree (because 1° = 60" and 1' = 60").
Substituting these numbers into the parallax formula and using a
calculator to find that sin 1" = 4.84814 X 107, we get

1 AU 1AU
1 parsec = — T m—
sin1”  4.84814 X 1076
That is, 1 parsec = 206,265 AU. Converting units, we also find that
1 parsec =3.09 X 103 km = 3.2¢ light-years (because 1 AU = 149.6
million km and 1 light-year = 9.46 X 102 km).

We need one more fact from geometry to derive the parallax
formula given in the text. As long as the parallax angle, p, is small, sin
p is proportional to p. For example, sin 2" is twice as large as sin 1",
and sin3" is half as large as sin 1”. (You can verify these examples
with your calculator.) If we use 17 instead of 1" for the parallax angle

= 206,265 AU

496 PART V STARS

Parallax measurements have given us detailed knowleq "
of what our local solar neighborhood is like. For eXample
we know of more than 300 stars within about 33 }ight-yQar;
(10 parsecs) of the Sun. About half are binary star SYStemg
consisting of two orbiting stars, or multiple star Systemg
containing three or more stars. Most are tiny, din red
stars—so dim that we cannot see them with the naked eye,
despite the fact that they are relatively close. A few nearby
stars, such as Sirius (8.6 light-years), Altair (17 Iight-years)‘
Vega (25 light-years), and Fomalhaut (25 light-years), are
white in color and bright in our sky, but most of the bright-
est stars in the sky lie farther away. Because so many nearby
stars appear dim while many more distant stars appear
bright, stellar luminosities must span a wide range,

The Luminosity Range of Stars Now that we have
discussed how we determine stellar luminosities, it’s time
to take a quick look at the results; these results have been
drawn both from stars for which we have parallax measure-
ments and from those for which we determine distance in
other ways. We usually state stellar luminosities in compari-
son to the Sun’s luminosity, which we write as Lgy,, for short.
For example, Proxima Centauri, the nearest of the three stars
in the Alpha Centauri system and hence the nearest star be-
sides our Sun, is only about 0.0006 times as luminous as the
Sun, or 0.0006Ls,,. Betelgeuse, the bright left-shoulder star
of Orion, has a luminosity of 38,000Ls,,, meaning that it is

in the formula above, we get a distance of 2 parsecs instead of
1 parsec, Similarly, if we use a parallax angle of 157, we get a distance
of 10 parsecs. Generalizing, we get the simple parallax formula given

in the text:
il

d(i =
(in parsecs) p (in arcseconds)

EXAMPLE 1: Sirius, the brightest star in our night sky, has a
measured parallax angle of 0.379". How far away is Sirius in parsecs?
In light-years?

SOLUTION:

Step 1 Understand: We are given the parallax angle for Sirius in
arcseconds, so we use the parallax formula to find its distance.
Because the parallax angle is between 0.1” and 1", we expect the
answer to be a distance between 1 and 10 parsecs.

Step 2 Solve: Substituting the parallax angle of 0.379" into the
formula, we find that the distance to Sirius in parsecs is

1
d (in parsecs) = Tl 2.64 pc

Because 1 parsec = 3.26 light-years, this distance is equivalent to

light-years

2.64 parsecs X 3.26 = 8.60 light-years

parsec

Step 3 Explain: From its measured parallax angle, we have found
that the distance to Sirius is 2.64 parsecs, or 8.60 light-years.

A



38,000 times as luminous as the Sun. Overall, studies of the
Juminosities of many stars have taught us two particularly
jmportant lessons:

stars have a wide range of luminosities, with our Sun
somewhere in the middle. The dimmest stars have lumi-
nosities m times that of the Sun (10 *Lgy,), while the
brightest stars are about 1 million times as luminous as
the Sun (10%Lgyy).

Dim stars are far more common than bright stars. For
example, even though our Sun is roughly in the middle of
the overall range of stellar luminosities, it is brighter than
the vast majority of stars in our galaxy.

+he Magnitude Systern The methods we’ve discussed
for describing apparent brightness and luminosity work per-
fectly well, but many amateur and professional astronomers
still describe these quantities in another way: They use the
ancient magnitude system devised by the Greek astronomer
Hipparchus (c. 190-120 B.C.).

The magnitude system originally classified stars according
to how bright they look to human eyes, which were the only
instruments available to measure brightness in ancient times.
The brightest stars received the designation “first magnitude,”

MATHEMATICAL INSIGHT 15.3

The Modern Magnitude Scale

The modern magnitude system is defined so that each difference of
five magnitudes corresponds to a factor of exactly 100 in brightness. A
single magnitude therefore corresponds to a factor of (100)"° = 2.512
in brightness. Given this fact, the following formula allows us to calcu-
late the ratio of the apparent brightnesses of two stars from their appar-
ent magnitudes:

apparent brightness of Star 1 _ (1001/5)”12—"11
apparent brightness of Star 2

where m; and m, are the apparent magnitudes of Stars 1 and 2,
respectively.

If we replace the apparent magnitudes with absolute magnitudes
(designated M instead of m), the same formula allows us to calculate
the ratio of stellar luminosities:

luminosity of Star 1 _ (1001/5)M27Ml
luminosity of Star 2
v AMPLE 1: Ona clear night, stars dimmer than magnitude 5 are
quite difficult to see. However, sensitive instruments on large telescopes
can detect objects as faint as magnitude 30. How much more sensitive
are such telescopes than the human eye?

HZOLUTION:

Understand: We imagine that our eye sees “Star 1” with magni-
tude 5 and the telescope detects “Star 2” with magnitude 30.
Because every five steps up in magnitude corresponds to a drop
of a factor of 100 in apparent brightness, the apparent bright-
ness of Star 2 must be far smaller than that of Star 1. In order to
determine that difference in apparent brightness, we can use the
first formula above.

|

the next brightest “second magnitude,” and so on. The faintest
visible stars were magnitude 6. We call these descriptions
apparent magnitudes because they compare how bright
different stars appear in the sky. Notice that apparent magni-
tudes are directly related to apparent brightness, except the
scale runs backward: A larger apparent magnitude means a
dimmer apparent brightness. For example, a star of magni-
tude 4 is dimmer in the sky than a star of magnitude 1. Star
charts (such as those in Appendix I) often use dots of different
sizes to represent the apparent magnitudes of stars. Larger
dots represent brighter stars, which means those with smaller
magnitude numbers.

In modern times, the magnitude system has been extended
and more precisely defined. Each difference of five magnitudes
is defined to represent a factor of exactly 100 in brightness. For
example, a magnitude 1 star is 100 times as bright as a magni-
tude 6 star, and a magnitude 3 star is 100 times as bright as a
magnitude 8 star. Asa result of this precise definition, stars can
have fractional apparent magnitudes and a few bright stars
have apparent magnitudes less than 1—which means brighter
than magnitude 1. For example, the brightest star in the night
sky, Sirius, has an apparent magnitude of —1.46. Appendix F
gives apparent magnitudes and actual luminosities for both
the nearest stars and the brightest stars visible in the sky.

Solve: Substituting m, = 5 and m, = 30 into the formula, we find

apparent brightness of Star 1 _
- (1001/5)mz m
apparent brightness of Star 2

= (10015)%073
= (100455 = 100° = 1010
Explain: The magnitude 5 star is 100, or 10 billion, times brighter

than the magnitude 30 star, so the telescope is 10 billion times more
sensitive than the human eye.

e AMPLE 2: The Sun has an absolute magnitude of about 4.8.
Polaris, the North Star, has an absolute magnitude of —3.6. How much
more luminous is Polaris than the Sun?

SOLUTION:

Understand: Luminosity and absolute magnitude are two different
ways of describing a star’s total power output, and the second
formula above gives the relationship between them. We can there-
fore use that formula with Polaris as Star 1 and the Sun as Star 2 to
compare the luminosities of the two stars.

Solve: Substituting M| = —3.6 for Polaris and M, = 4.8 for the Sun
into the formula, we find

luminosity of Polaris  (100"5YM M = (10015 45—(~3.6)
luminosity of Sun ( ) ( )

= (100")34 = 100" = 2500

Explain: From their absolute magnitudes, we have found that
Polaris is about 2500 times as luminous as the Sun.
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The modern magnitude system also defines absolute
magnitudes as a way of describing stellar luminosities. A star’s
absolute magnitude is the apparent magnitude it would have if
it were at a distance of 10 parsecs (32.6 light-years) from Earth.
For example, the Sun’s absolute magnitude is about 4.8, mean-
ing that the Sun would have an apparent magnitude of 4.8 if it
were 10 parsecs away from us—bright enough to be visible but
not conspicuous on a dark night. Although many articles and
books still quote apparent and absolute magnitudes, compar-
isons between stars are much easier when we think about how
apparent brightness depends on luminosity according to the
inverse square law. We'll therefore stick to the inverse square
law in this book.

How do we measure stellar
temperatures?

A second fundamental property of a star is its surface temper-
ature. You might wonder why we emphasize surface tempera-
ture rather than interior temperature. The answer is that only
surface temperature is directly measurable; interjor tempera-
tures are inferred from mathematical models of stellar interi-
ors [Section 14.2]. Whenever you hear astronomers speak of
the “temperature” of a star, you can be pretty sure they mean
surface temperature unless they state otherwise.

Measuring a star’s surface temperature is somewhat easier
than measuring its luminosity, because the star’s distance
doesn’t affect the measurement. Instead, we determine surface
temperature from either the star’s color or its spectrum. Let’s
briefly investigate how each technique works.

Color and Temperature Take a careful look at Figure
15.4. Notice that stars come in almost every color of the
rainbow. Simply looking at the colors tells us something
about the surface temperatures of the stars. For example, a
red star is cooler than a yellow star, which in turn is cooler
than a blue star.

Stars come in different colors because they emit thermal
radiation [Section 5.4]. Recall that a thermal radiation spec-
trum depends only on the (surface) temperature of the object
that emits it (see Figure 5.19). For example, the Sun’s 5800 K
surface temperature causes it to emit most strongly in the
middle of the visible portion of the spectrum, which is why
the Sun looks yellow or white in color. A cooler star, such as
Betelgeuse (surface temperature 3400 K), looks red because
it emits much more red light than blue light. A hotter star,
such as Sirius (surface temperature 9400 K), emits a little
more blue light than red light and therefore has a slightly
blue color to it.

Astronomers can measure surface temperature fairly
precisely by comparing a star’s apparent brightness in two
different colors of light. For example, by comparing the
amount of blue light and red light coming from Sirius,
astronomers can measure how much more blue light it emits
than red light. Because thermal radiation spectra have a very
distinctive shape (again, see Figure 5.19), this difference in
blue and red light output allows astronomers to calculate
surface temperature.
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FIGURE 15.4 This Hubble Space Telescope photo
shows a wide variety of stars that differ in color and brightness. Most of
the stars in this photo are at roughly the same distance, about 2000 light-
years from the center of our galaxy. Clouds of gas and dust obscure our
view of visible light from most of our galaxy's central regions, but a gap in
the couds allows us to see the stars in this photo.

Spectral Type and Temperature A star’s spectral lines
provide a second way to measure its surface temperature.
Moreover, because interstellar dust can affect the apparent col-
ors of stars, temperatures determined from spectral lines are
generally more accurate than temperatures determined from
colors alone. Stars displaying spectral lines of highly ionized el-
ements must be fairly hot, because it takes a high temperature
to ionize atoms. Stars displaying spectral lines of molecules
must be relatively cool, because molecules break apart into in-
dividual atoms unless they are at relatively cool temperatures.
The types of spectral lines present in a star’s spectrum there-
fore provide a direct measure of the star’s surface temperature.

Astronomers classify stars according to surface temper-
ature by assigning a spectral type determined from the
spectral lines present in a star’s spectrum. The hottest stars,
with the bluest colors, are called spectral type O, followed
in order of declining surface temperature by spectral types
B, A, E G, K, and M.* The traditional mnemonic for
remembering this sequence, OBAFGKM, is “Oh, Be A Fine
Girl/Guy, Kiss Me!” Table 15.1 (pp. 500-501) summarizes
the characteristics of each spectral type.

*The sequence of spectral types has recently been extended beyond type M to
include spectral types L and T, representing starlike objects even cooler than
stars of spectral type M. However, as we will see in Chapter 16, most of these
objects are not true, hydrogen-burning stars.




COMMON MISCONCE D—‘
Photos of Stars

Photographs of stars, star clusters, and galaxies convey a
great deal of information, but they also contain a few arti-
facts that are not real. For example, different stars seem to have
different sizes in photographs such as Figure 15.4, but stars are
so far away that they should all appear as mere points of light.
The sizes are an artifact of how our instruments record light.
Bright stars tend to be overexposed in photographs, making
them appear larger in size than dimmer stars. Overexposure
also explains why the centers of globular clusters and galaxies
usually look like big blobs in photographs: The central regions of
these objects contain many more stars than the outskirts, and
the combined light of so many stars tends to get overexposed
to make a big blob.

Spikes around bright stars in photographs, often making the
pattern of a cross with a star at the center, are another such arti-
fact. You can see these spikes around many of the brightest
stars in Figure 15.4. These spikes are not real but rather are
created by the interaction of starlight with the supports holding
the secondary mirror in the telescope [Section 6.2]. The spikes
generally occur only with point sources of light like stars, and not
with larger objects like galaxies. When you look at a phatograph
showing many galaxies (for example, Figure 20.1), you can tell
which objects are stars by looking for the spikes.

Each spectral type is subdivided into numbered subcate-
gories (such as BO, B1, ..., B9). The larger the number, the
cooler the star. For example, the Sun is designated spectral
type G2, which means it is slightly hotter than a G3 star but
cooler than a G1 star.

The range of surface temperatures for stars is much
narrower than the range of luminosities. The coolest stars, of
spectral type M, have surface temperatures as low as 3000 K.
The hottest stars, of spectral type O, have surface tempera-
tures that can exceed 40,000 K. Cool, red stars are much more
common than hot, blue stars.

THINK ABOUT IT

i

‘nvent your own mnemonic for the OBAFGKM sequence. To
help get you thinking, here are two examples: (1) Only Bungling
Astronomers Forget Generally Known Mnemonics and (2) Only
Businessll{\efs For Good, Karl Marx.

History of the Spectral Seguence You may wonder
why the spectral types follow the peculiar order of OBAFGKM.
The answer lies in the history of stellar spectroscopy.
Astronomical research never paid well, and many
astronomers of the 1800s were able to do research only
because of family wealth. One such astronomer was Henry
Draper (1837-1882), an early pioneer of stellar spec-
troscopy. After Draper died in 1882, his widow made a series
of large donations to Harvard College Observatory: for the
purpose of building on his work. The observatory director,
Edward Pickering (1846-1919), used the gifts to improve the
facilities and to hire numerous assistants, whom he called

“computers.” Pickering added money of his own, as did
other wealthy donors.

Most of Pickering’s hired computers were women who
had studied physics or astronomy at women’s colleges such
as Wellesley and Radcliffe. Women had few opportunities to
advance in science at the time. Harvard, for example, did not
allow women to enroll as students and would not hire them
as faculty. Pickering’s project of studying and classifying stel-
lar spectra provided plenty of work and opportunity for his
computers, and many of the Harvard Observatory women
ended up among the most prominent astronomers of the late
1800s and early 1900s.

One of the first computers was Williamina Fleming
(1857-1911). Following Pickering’s suggestion, Fleming clas-
sified stellar spectra according to the strength of their hydro-
gen lines: type A for the strongest hydrogen lines, type B
for slightly weaker hydrogen lines, and so on, to type O, for
stars with the weakest hydrogen lines. Pickering published
Fleming’s classifications of more than 10,000 stars in 1890.

As more stellar spectra were obtained and the spectra
were studied in greater detail, it became clear that the classi-
fication scheme based solely on hydrogen lines was inade-
quate. Ultimately, the task of finding a better classification
scheme fell to Annie Jump Cannon (1863-1941), who joined
Pickering’s team in 1896 (Figure 15.5). Building on the work
of Fleming and another of Pickering’s computers, Antonia
Maury (1866-1952), Cannon soon realized that the spectral
classes fell into a natural order—but not the alphabetical
order determined by hydrogen lines alone. Moreover, she
found that some of the original classes overlapped others
and could be eliminated. Cannon discovered that the natu-
ral sequence consisted of just a few of Pickering’s original
classes in the order OBAFGKM and also added the subdivi-

sions by number.

Cannon became so adept that she could properly classify a
stellar spectrum with little more than a momentary glance.
In the course of her career, she personally classified more
than 400,000 stars. She became the first woman ever awarded

FIGURE 15.5 Women astronomers pose with Edward Pickering at
Harvard College Observatory in 1913, Annie Jump Cannon is fifth from
the left in the back row.
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an honorary degree by Oxford University, and in 1929 the
League of Women Voters named her one of the 12 greatest
living American women.

The astronomical community adopted Cannon’s system
of stellar classification in 1910. However, no one at that time
knew why spectra followed the OBAFGKM sequence. Many
astronomers guessed, incorrectly, that the different sets of
spectral lines indicated differ-
ent compositions for the stars.
The correct answer—that all
stars are made primarily of
hydrogen and helium and that
a star’s surface temperature
determines the strength of its
spectral lines—was  discov-
ered at Harvard Observatory
by Cecilia Payne-Gaposchkin
(1900-1979).

Relying on insights from what was then the newly de-
veloping science of quantum mechanics, Payne-Gaposchkin
showed that the differences in spectral lines from star to star
merely reflected changes in the ionijzation level of the emit-
ting atoms. For example, O stars have weak hydrogen lines
because, at their high surface temperatures, nearly all their
hydrogen is ionized. Without an electron to “jump” between
energy levels, ionized hydrogen can neither emit nor absorb
its usual specific wavelengths of light. At the other end of the
spectral sequence, M stars are cool enough for some particu-
larly stable molecules to form, explaining their strong molec-
ular absorption lines. Payne-Gaposchkin described her work
and her conclusions in a dissertation published in 1925 and
that was later called “undoubtedly the most brilliant Ph.D.
thesis ever written in astronomy.”

Cecilia Payne-Gaposchkin

How do we measure stellar masses?

Mass is generally more difficult to measure than surface
temperature or luminosity. The most dependable method
for “weighing” a star relies on Newton’s version of Kepler’s
third law [Section 4.4]. Recall that this law can be applied
only when we can observe one object orbiting another, and
it requires that we measure both the orbital period and the
average orbital distance of the orbiting object. For stars,
these requirements generally mean that we can apply the
law to measure masses only in binary star systems—systems
in which two stars continually orbit one another. Before we
consider how we determine the orbital periods and distances

1900 1910 1920 1930

TABLE 15.1 The Spectral Sequence

Spectral Temperature
Type Example(s) Range
(e} Stars of >30,000 K
Orion’s Belt
B Rigel 30,000 K~10,000 K

A Sirius 10,000 K=7500 K
F Polaris 7500 K-6000 K
G Sun, Alpha 6000 K-5000 K
Centauri A
K Arcturus 5000 K-3500 K
M Betelgeuse, <3500 K
Proxima
Centauri

needed to use Newton’s version of Kepler’s third law, let’s
look briefly at the different types of binary star systems that
we can observe,

Types of Binary Star Systems Surveys show that about
half of all stars orbit a companion star of some kind and are
therefore members of binary star systems. These star systems
fall into three classes:

A visual binary is a pair of stars that we can see distinctly
(with a telescope) as the stars orbit each other. Sometimes
we observe a star slowly shifting position in the sky as if it
were a member of a visual binary, but its companion is too
dim to be seen. For example, slow shifts in the position of
Sirius, the brightest star in the sky, revealed it to be a binary
star long before its companion was discovered (Figure 15.6).

1940 1950 1960 1970

FIGURE 15.6 Each frame represents the relative positions of Sirius A and Sirius B at 10-year intervals
from 1900 to 1970. The back-and-forth “wobble” of Sirius A allowed astronomers to infer the existence of
Sirius B even before the two stars could be resolved in telescopic photos. The average orbital separation of

the binary system is about 20 AU.

500 PART V STARS




Key Absorption
Line Features

Brightest
Wavelength (Color)

Typical Spectrum

hydrogen

Lines of ionized helium, <97 nm )

weak hydrogen lines (ultraviolet)*

Lines of neutral helium, 97-290 nm B

moderate hydrogen lines (ultraviolet)*

Very strong hydrogen lines 290-390 nm A
(violet)*

Moderate hydrogen lines, moderate 390—480 nm F

lines of ionized calcium (blue)*

Weak hydrogen lines, strong 480-580 nm G

lines of ionized calcium (yellow)

Lines of neutral and singly 580-830 nm K

ionized metals, some molecules (red)

Strong molecular lines >830 nm M
(infrared)

titanium
oxide

titanium sodium

oxide

jonized
calcium

% ATl stars above 6000 K look more or less white to the human eye because they emit plenty of radiation at all visible wavelengths.

An eclipsing binary is a pair of stars that orbit in the plane
of our line of sight (Figure 15.7). When neither star is
eclipsed, we see the combined light of both stars. When
one star eclipses the other, the apparent brightness of the
system drops because some of the light is blocked from our
view. A light curve, or graph of apparent brightness against
time, reveals the pattern of the eclipses. The most famous
example of an eclipsing binary is Algol, the “demon star” in
the constellation Perseus (algol is Arabic for “the ghoul”).
Algol’s brightness drops to only a third of its usual level for
a few hours about every 3 days as the brighter of its two
stars is eclipsed by its dimmer companion.

We see light We see light We see light We see light
from both from all of B, from both only from A
stars A and B. some of A AandB, (B is hidden).
P B> <@ @
J
§ —I \f
% [ B = B
= L B il i
- il i
(== {
% A T A A
: s |
o
& = = AL
time

pm—

FIGURE 15.7 The apparent brightness of an eclips-
ing binary system drops When either star eclipses the other.

:_J

If a binary system is neither visual nor eclipsing, we may
be able to detect its binary nature by observing Doppler
shifts in its spectral lines [Section 5.5]. Such systems are
called spectroscopic binary systems. If one star is orbiting
another, it periodically moves toward us and away from us
in its orbit. Its spectral lines show blueshifts and redshifts
as a result of this motion (Figure 15.8). Sometimes we see
two sets of lines shifting back and forth—one set from
each of the two stars in the system (a double-lined spectro-
scopic binary). Other times we sec a set of shifting lines

On one side of its orbit, star B
is approaching us

O

¢ .

On the other side of its orbit,
star B is receding from us

. S0 its spectrum is blueshifted.

to Earth —— g

_s0 its spectrum is redshifted.

FIGURE 15.8 [T The spectral lines of a star in a binary
system are altemately blueshifted as it comes toward us in its orbit and
redshifted as it moves away from us.
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from only one star because its companion is too dim to be
detected (a single-lined spectroscopic binary).

Some star systems combine two or more of these binary
types. For example, telescopic observations reveal Mizar
(the second star in the handle of the Big Dipper) to be a
visual binary. Spectroscopy then shows that each of the two
stars in the visual binary is itself a spectroscopic binary

(Figure 15.9).

Measuring Masses in Binary Systems Even for a bi-
nary system, we can apply Newton’s version of Kepler’s third
law only if we can measure both the orbital period and the
separation of the two stars. Measuring orbital period is fairly
easy. In a visual binary, we simply observe how long each orbit
takes. In an eclipsing binary, we measure the time between
eclipses. In a spectroscopic binary, we measure the time it
takes the spectral lines to shift back and forth.

Determining the average separation of the stars in a
binary system is usually much more difficult. In rare cases
we can measure the separation directly; otherwise, we can
calculate the separation only if we know the actual orbital
speeds of the stars from their Doppler shifts. Unfortunately,
a Doppler shift tells us only the portion of a star’s velocity
that is directed toward us or away from us (see Figure 5.24).
Because orbiting stars generally do not move directly along
our line of sight, their actual velocities can be significantly
greater than those we measure through the Doppler effect.

The exceptions are eclipsing binary stars. Because these
stars orbit in the plane of our line of sight, their Doppler
shifts can tell us their true orbital velocities.* Eclipsing bina-
ries are therefore particularly important to the study of stel-
lar masses. As an added bonus, eclipsing binaries allow us to
measure stellar radii directly. Because we know how fast the
stars are moving across our line of sight as one eclipses the
other, we can determine their radii by timing how long each
eclipse lasts.

Through careful observations of eclipsing binaries and
other binary star systems, astronomers have established the
masses of many different kinds of stars. The overall range
extends from as little as 0.08 times the mass of the Sun
(0.08Mgyy,) to about 150 times the mass of the Sun (150Mg,,.).
We'll discuss the reasons for that mass range in Chapter 16.

i MA ) The Hertzsprung-Russell Diagram Tutorial, Lessons 1-3

15.2 PATTERNS AMONG
STARS

We have seen that stars come in a wide range of luminosities,
surface temperatures, and masses. But are these characteristics
randomly distributed among stars, or can we find patterns
that might tell us something about stellar lives? The key that

*In other binaries, we can calculate an actual orbital velocity from the velocity
obtained by the Doppler effect if we also know the system’s orbital inclination.
Astronomers have developed techniques for determining orbital inclination in
a relatively small number of cases.
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Mizar is a visual binary

Mizar

Miza'r A

.. and spectroscopy shows that each
of the visual “stars” is itself binary.

FIGURE 15.9 Mizar looks like one star to the naked eye but is
actually a system of four stars. Through a telescope, Mizar appears to
be a visual binary made up of two stars, Mizar A and Mizar B, that
gradually change positions, indicating that they orbit each other every
few thousand years. Moreover, each of these two “stars” is itself a
spectroscopic binary, making a total of four stars. (The star Alcor
appears to be very close to Mizar to the naked eye but does not orbit
it. The ring around Mizar A is an artifact of the photographic process,
not a real feature,)

finally unlocked the secrets of stars was the development of an
appropriate classification system.

Before reading any further, take another look at Figure 15.4
and think about how you would classify these stars. Almost alt
of them are at nearly the same distance from Earth, so we can
compare their true luminosities by looking at their apparent
brightnesses in the photograph. If you look closely, you might
notice a couple of important patterns:

Most of the very brightest stars are reddish in color.

If you ignore those relatively few bright red stars, there’s a
general trend to the luminosities and colors among all the
rest of the stars: The brighter ones are white with a little
bit of blue tint, the more modest ones are similar to our
Sun in color with a yellowish white tint, and the dimmest
ones are barely visible specks of red.

Keeping in mind that colors tell us about surface tempera-
ture—blue is hotter and red is cooler—you can see that these
patterns must be telling us about relationships between surface
temperature and luminosity.

Danish astronomer Ejnar Hertzsprung and American
astronomer Henry Norris Russell discovered these relation-
ships in the first decade of the 20th century. Building upon
the work of Annie Jump Cannon and others, Hertzsprung
and Russell independently decided to make graphs of stellar
properties by plotting stellar luminosities on one axis and
spectral types on the other. These graphs revealed previously
unsuspected patterns among the properties of stars and ulti-
mately unlocked the secrets of stellar life cycles.

What is a Hertzsprung-Russell
diagram?

Graphs of the type made by Hertzsprung and Russell are
now called Hertzsprung-Russell (H-R) diagrams. These
diagrams quickly became one of the most important tools in
astronomical research, and they remain central to the study
of stars today.




pasics of the H-R Diagram Figure 15.10 displays an ex-
ample of an H-R diagram. All you need to know to plot a star
on an H-R diagram is its luminosity and its spectral type.

The horizontal axis represents stellar surface tempera-
ture, which, as we’ve discussed, corresponds to spectral
type. Temperature decreases from left to right because
Hertzsprung and Russell based their diagrams on the
spectral sequence OBAFGKM.

The vertical axis represents stellar luminosity, in units of
the Sun’s luminosity (Lgy,). Stellar luminosities span a
wide range, so we keep the graph compact by making each
tick mark represent a luminosity 10 times as large as the
prior tick mark.

Each location on the diagram represents a unique combi-
nation of spectral type and luminosity. For example, the dot
representing the Sun in Figure 15.10 corresponds to the

MATHEMATICAL INSIGHT 15,4

Measvuring Stellar Masses

We can apply Newton’s version of Kepler’s third law (see Mathematical
Insight 4.3) to measure the masses of stars in binary systems if we
know the orbital period p and semimajor axis a of the binary system.
The orbital period is generally easy to measure, and we can often calcu-
late a from Doppler-shift measurements of the stars’ orbital velocities.
For a binary system in which one star traces a circle of radius a around
its companion, meaning that it travels a distance 27a in one orbital
period p, the star’s orbital velocity relative to its companion is

distance traveled in one orbit ~ 2ra
Y = —_— =

period of one orbit P
Solving for a, we find
pv
a=_—
2m

Once we know both p and g, Newton’s version of Kepler’s third law
allows us to calculate the sum of the masses of the two stars (M) + My).
We can calculate individual masses by comparing the orbital velocities
of the two stars around the system’s center of mass.

EXAMPLE: The spectral lines of two stars in an eclipsing binary
system with a circular orbit shift back and forth with a period of 2
years (p = 6.3 X 107 seconds). The lines of one star (Star 1) shift twice
as far as the lines of the other (Star 2). The Doppler shift indicates an
orbital speed of v = 100,000 m/s for Star 1 relative to Star 2. What are
the masses of the two stars?

SCLUTION:

Step 1 Understand: We can find the sum of the masses with
Newton’s version of Kepler’s third law, which reads
2
2 _ 4m 2
G(M, + My)
We rearrange this equation to find the masses:

e D
M+ M, = —xZ
G p2

p

Sun’s spectral type, G2, and its luminosity, 1Lg,,. Because
luminosity increases upward on the diagram and surface
temperature increases leftward, stars near the upper left are
hot and luminous. Similarly, stars near the upper right are
cool and luminous, stars near the lower right are cool and
dim, and stars near the lower left are hot and dim.

P THINK ABOUT IT

.Explain how the colors of the stars in Figure 15.10 help indi-
cate stellar surface temperature. Do these colors tell us anything
about interio/r temperatures? Why or why not?

The H-R diagram also provides direct information about
stellar radii, because a star’s luminosity depends on both
its surface temperature and its surface area or radius (see
Mathematical Insight 15.5). If two stars have the same surface
temperature, one can be more luminous than the other only if
it is larger in size. Stellar radii therefore must increase as we go

To use this law, we need to know the star system’s orbital period p
and semimajor axis 4. We are given the system’s orbital period p,
and because the orbit is circular, we can find the semimajor axis a
as described above from the velocity v of Star 1 relative to Star 2.
Once we use this information to calculate the sum of the masses
(M, + M), we can determine the relative masses of the stars in the
system by comparing their Doppler shifts: Because the lines of
Star 1 shift twice as far as those of Star 2, we know that Star 1
moves twice as fast as Star 2, and hence that Star 1 is half as
massive as Star 2.

Step 2 Solve: First, we find the semimajor axis a of the system

from the system’s orbital velocity v:

pv (63 X 107s) X (100,000 m/s)

27 2m

a

1.0 X 10”7 m

Second, we use this value, the value of the gravitational constant
G (see Appendix A), and the given orbital period (p = 6.3 X 107 s)
to find the sum of the masses with Newton’s version of Kepler’s
third law:

4q72 (1.0 % 102 m)?
M+M=o————r—X———
<6 67 % 101 ™ > (6.3 X 107s)
i kg X s?
= 1.5 X 10%% kg

We have found that the two stars have a combined mass of 1.5 X
10°? kg; we know from the Doppler shifts that Star 2 is twice as
massive as Star 1, which means that Star 2 has a mass of 1.0 X
10%2 kg and Star 1 has 2 mass of 0.5 X 10%2 kg.

Step 3 Explain: The masses will be more meaningful if we convert
them from kilograms to solar masses, which we do by dividing by
the Sun’s mass of 2 X 10** kg. Doing so, we find that this binary
system consists of one star of mass 50Ms,, and another star of
mass 25Mgy,.
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K%}cosmc CONTEXT FIGURE 15.10 Reading an H-R Diagram

Hertzsprung-Russell (H-R) diagrams are very important tools in astronomy because they reveal key
relationships among the properties of stars. An H-R diagram is made by plotting stars according to their
surface temperatures and luminosities. This figure shows a step-by-step approach to building an H-R

diagram.

An H-R Diagram Is a Graph: A star’s position along the horizontal axis
indicates its surface temperature, which is closely related to its color
and spectral type. Its position along the vertical axis indicates its
luminosity.
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Giants and Supergiants: Stars in the upper right of an H-R diagram are
more luminous than main-sequence stars of the same surface temperature.
They must therefore be very large in radius, which is why they are known as
giants and supergiants.
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Masses on the Main Sequence: Stellar masses (purple

labels) decrease from the upper left to the lower right on the

main sequence.

Lifetimes on the Main Sequence: Stellar lifetimes (green

labels) increase from the upper left to lower right on the
main sequence: High-mass stars live shorter lives because

their high luminosities mean they burn through their nuclear

fuel more quickly.
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from the high-temperature, low-luminosity corner on the
lower left of the H-R diagram to the low-temperature, high-
luminosity corner on the upper right. Notice the diagonal
lines that represent different stellar radii in Figure 15.10.

Patterns in the H-R Diagram Stars do not fall randomly
throughout an H-R diagram like Figure 15.10 but instead clus-

ter into four major groups:

Most stars fall somewhere along the main sequence, the
prominent streak running from the upper left to the lower
right on the H-R diagram. Notice that our Sun is one of
these main-sequence stars.

The stars in the upper right are called supergiants because
they are very large in addition to being very bright.

Just below the supergiants are the giants, which are some-
what smaller in radius and lower in luminosity (but still
much larger and brighter than main-sequence stars of the
same spectral type).

The stars near the lower left are small in radius and appear
white in color because of their high temperatures. We call
these stars white dwarfs.

Luminosity Classes In addition to the four major groups
we've just listed, stars sometimes fall into “in-between” cate-
gories. For more precise work, astronomers therefore assign
each star to a luminosity class, designated with a Roman nu-
meral from I to V. The luminosity class describes the region
of the H-R diagram in which the star falls; thus, despite the
name, a star’s luminosity class is more closely related to its size

f M_A'?ﬂIMA-TICAI. INSIGHT 15.5

Calculating Stellar Radii

Although we can rarely measure stellar radii directly, we can calculate
radii using the laws of thermal radiation. As given in Mathematical
Insight 5.2, the amount (power) of thermal radiation emitted by a star
of surface temperature T (on the Kelvin scale) is
emitted power (per square meter of surface) = oT?

where the constant o = 5.7 X 108 watt/(m? X K*).

The luminosity L of a star is its power per unit area multiplied by its
total surface area, and a star of radius r has surface area 47r7%. That is,

L=4d4mr* X oT!

With a bit of algebra, we can solve this formula for the star’s radius r:

\/ I
r= o f—
d7oT?

EXAMPLE: The red supergiant star Betelgeuse has a luminosity of
38,000Lg,,, and a surface temperature of about 3400 K. What is its radius?

SOLUTION:

Step 1 Understand: We are given Betelgeuse’s luminosity L and
surface temperature 7T, so we can use the above formula to find its
radius as long as we make the units consistent; looking at the units
of the constant o, we see that we will need to convert the luminos-
ity to watts.
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TABLE 15.2 Stellar Luminosity Classes

Class Description
1 Supergiants
I Bright giants
111 Giants
v Subgiants
v Main-sequence stars

than to its luminosity. The basic luminosity classes are I for
supergiants, III for giants, and V for main-sequence stars,
Luminosity classes [T and IV are intermediate to the others, For
example, luminosity class IV represents stars with radii larger
than those of main-sequence stars but not quite large enough
to qualify them as giants. Table 15.2 summarizes the luminos-
ity classes. White dwarfs fall outside this classification system
and instead are often assigned the luminosity class “wd.”

Complete Stellar Classification We have now de-
scribed two different ways of categorizing stars:

A star’s spectral type, designated by one of the letters
OBAPGKM, tells us its surface temperature and color. O
stars are the hottest and bluest, while M stars are the
coolest and reddest.

A star’s luminosity class, designated by a Roman numeral,
is based on its luminosity but also tells us about the star’s
radius. Luminosity class I stars have the largest radii, with
radii decreasing to luminosity class V.

Step 2 Solve: First, we convert the given luminosity into watts.
Remembering that Lg,, = 3.8 X 10%¢ watts, we find

Lper = 38,000 X Lgy, = 38,000 X 3.8 X 10%° watts
= 1.4 X 10! watts
Now we can use our formula to calculate radius:

L
r= —
droT?

1.4 X 103! watts

watt

4ar X (5.7 X 1078 ﬁ) X (3400 K)*
m- X K

1.4 X 1031 watts

5 watts

9.6 X 10 —
m

3.8 X 101 m

Step 3 Explain: Betelgeuse has a radius of about 380 billion meters,
which is 380 million kilometers. We can make this number more
meaningful by comparing it to the Earth-Sun distance of about 150
million kilometers (1 AU); notice that Betelgeuse has a radius more
than twice the Earth-Sun distance, which means the orbits of all the
inner planets of our solar system could fit easily inside Betelgeuse.




We use both spectral type and luminosity class to fully
cJassify a star. For example, the complete classification of our
gun is G2 V. The G2 spectral type means it is yellow-white in
;:(,h»r. and the luminosity class V means it is a hydrogen-
purning, main-sequence star. Betelgeuse is M2 I, making
ita red supergiant. Proxima Centauri is M5 V—similar in
color and surface temperature to Betelgeuse, but far dimmer
pecause of its much smaller size.

P THINK ABOUT IT

S
By studying Figure 15.10, determine the approximate spectral
type, luminosity class, and radius of the following stars: Bellatrix,
Vega, Antares, Pollux, and Proxima Centauri.

what is the significance
of the main sequence?

Most of the stars we observe, including our Sun, have prop-
erties that place them on the main sequence of the H-R
diagram. You can see in Figure 15.10 that high-luminosity
main-sequence stars have hot surfaces and low-luminosity
main-sequence stars have cooler surfaces. The significance
of this relationship between [uminosity and surface temper-
ature became clear when astronomers started measuring the
masses of main-sequence stars in binary star systems. These
measurements showed that a star’s position along the main
sequence is closely related to its mass. We now know that all
stars along the main sequence are fusing hydrogen into
helium in their cores, just like the Sun, and that a main-
sequence star’s mass determines its other properties because
it sets the balancing point at which energy produced by
fusion in the core equals the output of radiative energy from
the star’s surface, allowing gravitational equilibrium to
remain steady.

If you look along
the main sequence in Figure 15.10, you'll notice purple labels
indicating stellar masses and green labels indicating stellar
lifetimes. To make them easier to see, Figure 15.11 repeats the
same data but shows only the main sequence rather than the
entire H-R diagram.

Let’s focus first on mass: Notice that stellar masses decrease
downward along the main sequence. At the upper end of the
Main sequence, the hot, luminous O stars can have masses as
high as 150 times that of the Sun (150Msy,). On the lower
end, cool, dim M stars may have as little as 0.08 times the
Mmass of the Sun (0.08Mgy,). Many more stars fall on the
ower end of the main sequence than on the upper end,
Which tells us that low-mass stars are much more common
tha‘n high-mass stars.

The orderly arrangement of stellar masses along the main
*equence tells us that mass is the most important attribute of a
,Wd"‘-’gt‘rbbul'ning star, As we've discussed, mass is crucially
I““l’“"lamt because it sets the fusion rate at which pressure
:E’j ]gl:uvity can re_nmir.1 ir{ balance. ’l“h.c nuclear fu:‘;ion rate,
ple .:LI'[‘CE' the luminosity, Is very sensitive to mass. For exam-
& ]’u‘m_JM},-u,, star on the main sequence is about 10,000 times

nous as the Sun.

luminosity (solar units)

10,000 6000 3000
surface temperature (K)

FIGURE 15.11 The main sequence from Figure 15.10 is isolated
here so that you can more easily see how masses and lifetimes vary
along it, Notice that more massive hydrogen-burning stars are brighter
and hotter but have shorter lifetimes. (Stellar masses are given in units
of solar masses: 1Ms,,, =2 % 10 kg)

The relationship between mass and surface tempera-
ture is a little more subtle. In general, a very luminous star
must be extremely large or have an unusually high surface
temperature, or some combination of both. The most
massive main-sequence stars are many thousands of times
more luminous than the Sun but only about 10 times the
size of the Sun in radius. Their surfaces must be signifi-
cantly hotter than the Sun’s surface to account for their
high luminosities. Main-sequence stars more massive than
the Sun therefore have higher surface temperatures than
the Sun, and those less massive than the Sun have lower
surface temperatures. That is why the main sequence slices
diagonally from the upper left to the lower right on the
H-R diagram.

The fact that mass, surface temperature, and luminosity
are all related means that we can estimate a main-sequence
star’s mass just by knowing its spectral type. For example, any
hydrogen-burning, main-sequence star that has the same
spectral type as the Sun (G2) must have about the same mass
and luminosity as the Sun. Similarly, any main-sequence star
of spectral type B1 must have about the same mass and lumi-
nosity as Spica (see Figure 15.10). Note that only main-
sequence stars follow this simple relationship between mass,
temperature, and luminosity; it does not hold for giants,
supergiants, or white dwarfs.

Lifetimes Along the Main Sequence A star is born
with a limited supply of core hydrogen and therefore can re-
main as a hydrogen-fusing, main-sequence star for only a lim-
ited time—the star’s main-sequence lifetime. Because stars
spend the vast majority of their lives as main-sequence stars,
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