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16.1 TTHE DISCOVERY OF SIRIUS B

In 1838 Friedrich Wilhelm Bessel (1784-1846) used the technique of stellar parallax to
find the distance to the star 61 Cygni. Following this first successful measurement of a

stellar distance, Bessel applied his talents to another likely candidate: Sirius, the brightest
appearing star in the sky. Its parallax angle of p" - 0.379" corresponds to a distance of
only 2.64 pc, or 8.61 ly (see Appendix E). Sirius's brilliance in the night sky is due in part
to its proximity to Earth. As he followed the star's path through the heavens, Bessel found
that it deviated slightly from a straight line. After ten years of precise observations, Bessel

concluded in 1844 that Sirius is actually a binary star system. Although unable to detect the
companion of the brighter star, he deduced that its orbital period was about 50 years (the

modern value is 49.9 years) and predicted its position. The search was on for the unseen

"Pup," the faint companion of the luminous "Dog Star."
The telescopes of Bessel's time were incapable of finding the Pup so close to the glare

of its bright counterpart, and following Bessel's death in 1846 the enthusiasm for the quest

waned. Finally, in l862,Alvan Graham Clark (1832-1897), son of the prominentAmerican
lensmaker Alvan Clark (1804-1887), tested his father's new 18-inch refractor (3 inches
larger than any previous instrument) on Sirius, and he promptly discovered the Pup at

its predicted position. The dominant Sirius A was found to be nearly one thousand times

brighter than the Pup, now called Sirius B; see Fig. 16.1. The details of their orbits about

their center of mass (see Fig. 16.2 and Problem 7 .4) revealed that Sirius A and Sirius B
have masses of about 2.3 Mo and 1.0 Ms, respectively. A more recent determination for
the mass of Sirius B is 1.053 + 0.028 M6, aûd it is this value that we will use.

Clark's discovery of Sirius B was made near the opportune time of apastron, when the
two stars were most widely separated (by just 10"). The great difference in their luminosities
(L ¿. : 23.5 Lo and L s : 0.03 L6) makes observations at other times much more difficult.
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558 Chapter 16 The Degenerate Remnants of Stars

FIGURE 16.1 The white dwarf, Sirius B, beside the overexposed image of Sirius A. (Courtesy

Lick Observatory.)
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FIGURE 16.2 The orbits of Sirius A and Sirius B. The center of mass of the system is marked

an"x,"

V/hen the next apastron arrived 50 years later, spectroscopists had developed the

to measure the Stars' surface temperatures. From the Pup's faint appearance,

expected itto be cool andred. They were startled whenWalterAdams (1876-1956),

at Mt. Wilson Observatory in 1915, discovered that, to the contrary, Sirius B is a hot,

white star that emits much of its energy in the ultraviolet. A modern value of the

of Sirius B is 27,000 K, much hotter than Sirius A s 9910 K.
The implications for the star's physical characteristics were astounding. Using

Stefan-Boltzmann law, Eq. (3.I7), to calculate the size of Sirius B results in a radius

only 5.5 x 106 m È 0.008 R6. Sirius B has the mass of the Sun confined within a

smaller than Earth! The average density of Sirius B is 3.0 x 10e kg tn-', and the
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16.2 White Dwarfs 559

ation due to gravity at its surface is about 4.6 x 106 m s-2. On Earth, the pull of gravity

on a teaspoon of white-dwarf material would be 1.45 x 10s N (over 16 tons), and on the

surface of the white dwarf it would weigh 470,000 times more. This fierce gravity reveals

itself in the spectrum of Sirius B; it produces an immense pressure near the surface that

results in very broad hydrogen absorption lines; see Fig. 8.15.1 Apart from these lines, its

spectrum is a featureless continuum.
Astronomers first reacted to the discovery of Sirius B by dismissing the results, calling

them "absurd." However, the calculations are so simple and straightforward that this attitude

soon changed to the one expressed by Eddington in 1922: "Strange objects, which persist

in showing a type of spectrum entirely out of keeping with their luminosity, may ultimately

teach us more than a host which radiate according to rule." Like all sciences, astronomy

advances most rapidly when confronted with exceptions to its theories.

16.2AWHlTE DWARTS

Obviously Sirius B is not a normal star. It is a white dwarf, a class of stars that have

approximately the mass of the Sun and the size of Earth. Although as many as one-quarter

of the stars in the vicinity of the Sun may be white dwarfs, the average characteristics

of these faint stars have been difficult to determine because a complete sample has been

obtained only within 10 pc of the Sun.

Classes of White Dwarf Stars

Figures 8,14 and 8.16 show that the white dwarfs occupy a narrow sliver of the H-R
diagram that is roughly parallel to and below the main sequence. Although white dwarfs

are typically whiter than normal stars, the name itself is something of a misnomer since

they come in all colors, with surface temperatures ranging from less than 5000 K to more

than 80,000 K. Their spectral type, D (for "dwarf"), has several subdivisions. The largest

group (about two-thirds of the total number, including Sirius B), called DA white dwarfs,
display only pressure-broadened hydrogen absorption lines in their spectra. Hydrogen lines

are absent from the DB white dwarfs (87o), which show only helium absorption lines, and

the DC white dwarfs (147o) show no lines at all-only a continuum devoid of features. The

remaining types include DQ white dwarfs, which exhibit carbon features in their spectra,

andDZ white dwarfs with evidence of metal lines.

Central Conditions in White Dwarfs

It is instructive to estimate the conditions at the center of a white dwarf of mass My¡6 and

radius rR*6, using the values for Sirius B given in the preceding section. Equation (14.5)

with r : 0 shows that the central pressure is roughly2

2,, *;nGp2nloÈ 3.8 x 1022 N m-2, (16.1)

lRecall the discussion ofpressure broadening in Section 9.5.
2Remember that Eq. (14.5) was obtained for the unrealistic assumption of constant density.
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about 1.5 million times larger than the pressure at the center of the Sun. A crude

*

of the central temperature may be obtained from

gradient,3

Eq. (10.68) for the radiative

dT 3 rcP L,

-:dr - 4ac T3 4nr2

T*¿ -T, 3 rcP Lw¿

4ac T] 4r R?*o

Assuming that the surface temperature, 7*¿, is much smaller than the central

and using rc :0.02m2 kg-L for electron scattering (Eq'9'27 with X 0) give

r14

or

ft*¿-0

T, N7.6 x 10i K.
4ac 4tt R*a

though hydrogen makes uP roughlY 70Vo of the visible mass of the universe, it cannot

present in appreciable amounts below the surface layers of a white dwarf. Otherwise,

dependence of the nuclear energy generation rates on density and temperature (see Eq. I

for the pp chain and Eq. 10.58 for the CNO cYcle ) would produce white dwarf luminosities,

several orders of magnitude larger than those actually observed. Similar reasoning

to other reaction sequences implies that thermonuclear reactions are not involved in Pro.

ducing the energY radiated bY white dwarfs and that their centers must therefore consist

particles that are incaPable of fusion at these densities and temperatures'

As was discussed in Section white dwarfs are manufactured in the cores of low- and

Lwa3rcp

Thus the central temperature of a white dwarf is several times 107 K'

These estimated values for a white dwarf lead directly to a surprising conclusion. [l-

13.2,

intermediate-mass stars (those with an initial mass below I or 9 Me on the main sequence)

near the end of their lives on the asymptotic giant branch of the H-R diagram' Because

any star with a helium core mass exceeding about 0'5 Mo will undergo fusion, most white

dwarfs consist primarily of completely ionized carbon and oxygen nuclei.a As the aging

giant expels its surface layers as a planetary nebula, the core is exposed as a white dwarf

progenitor. The distribution of DA white dwarf masses is sharply

some 807o lYing between 0.42Mo and 0'70 Mei see Fig' 16'3

sequence masses quoted earlier imply that

on the asymptotic giant branch, involving

Spectra and Surface ComPosition

significant amounts of
thermal pulses and a suPerwind.

The exceptionally strong pull of the white dwarf 's gravity is responsible for the characteristlc

hydrogen spectrum orõewhite dwarfs. Heavier nuclei are pulled below the surface while

3As we will discuss later in Section 16.5, the assumption of a radiative temperature gradient is inconect because

the energy is actually carried outward by electron cånduction. However, Eq. (10'68) is suffrcient for the purpose

of this estimation.
4low-mass helium white dwarfs may also exist, and rare oxygen-neon-magnesium white dwarfs have been

detected in a few novae.

peaked at 0.56 M6, with

. The much larger main-

mass loss occurred while
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FIGURE 16.3 DA white dwarfs on an H-R diagram. A line marks the location of the 0.50 M.
white dwarfs, and a portion of the main sdquence is at the upper right. (Data from Bergeron, Saffer,
and Liebert, Ap. J., 394,228,1992.)

the lighter hydrogen rises to the top, resulting in a thin outer layer of hydrogen covering
alayer of helium on top of the carbon-oxygen core.5 This vertical stratification of nuclei
according to their mass takes only 100 years or so in the hot atmosphere of the star. The
origin of the non-DA (e.g., DB and DC) white dwarfs is not yet clear. Eff,cient mass-loss may
occur on the asymptotic giant branch associated with the thermal pulse or superwind phases,
stripping the white dwarf of nearly all of its hydrogen. Alternatively, a single white dwarf
may be transformed between the DA and non-DA spectral types by convective mixing
in its surface layers.6 For example, the helium convection zone's penetration into a thin
hydrogen layer above could change a DA into a DB white dwarf by diluting the hydrogen
with additional helium.

Pulsating White Dwarfs

lVhite dwarfs with surface temperatures of Tu N 12,000 K lie within the instability strip
of the H-R diagram and pulsate with periods between 100 and 1000 s; see Fig. 8.16 and
Table 14.1. These ZZ Ceti variables, named after the prototype discovered in 1968 by
Arlo Landolt, are variable DA white dwarfs; hence they are also known as DAV stars. The
pulsation periods correspond to nonradial g-modes that resonate within the white dwarf's
surface layers of hydrogen and helium.T Because these g-modes involve almost perfectly

SEstimates of the relative masses of the hydrogen and helium layers range lrom m(H) lm(He) * 1g-2 1o 1g-il
for DA white dwarfs.
6As we will see in Section 16.5, steep temperature gradients produce convection zones in the white dwarf's surface
layers.
TThe nonradial pulsation of stars was discussed in Section 14.4. Unlike the g-modes of normal stars, shown in
Fig. 14.18, the g-modes of white dwarfs are confined to their surface layers.
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562 Chapter 16 The Degenerate Remnants of Stars

horizontal displacements, the radii of these compact pulsators hardly change. fþsi,
ness variations (typically a few tenths of a magnitude) are due to temperature v
the stars' surfaces. Since most stars will end their lives as white dwarfs
most common type of variable star in the universe, although only about
detected at the time this text was written.

Successful numerical calculations of pulsating white dwarf models were
by American astronomer Don Winget and others. They were able to demonstrate

is the hydrogen partial ionization zone that is responsible for driving the

the ZZ Ceti stars, as mentioned in Section I4.2. These computations also

elemental stratif,cation of white dwarf envelopes..\Minget and his colleagues went
predict that hotter DB white dwarfs should also exhibit g-mode oscillations driven
helium partial ionization zone. Within a year's time, this prediction was confirmed
the first DBV star (Te N 27,000 K) was discovered by V/inget and his collaborators.

location of the DAV and DBV stars on the H-R diagram is shown in Fig. 16.4,

the very hot DOV and PNNV (7, N 10s K) variables that are associated with
white dwarfs. ("PNN" stands forplanetary nebula nuclei and the DO spectral type

60 M,,

B-Cepheids

l0 M.

ZAMS

ly'/ztt'
2M"

1 DBV

5.0 4.5 4.0 3.5

Log19 7"¡¡

FIGURE 16.4 Compact pulsators on the H-R diagram. (Figure adapted from Winget,
Helio- and Asteroseismology, Christensen-Dalsgaard and Frandseà (eds.), Reidel, Dordrecht,

sReaders interested in this unique prediction and in the subsequent discovery of a new type of star are

Winget et al. (1982a,b).
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16.3 The Physics of Degenerate Matter 563

transition to the white dwarf stage.) All of these stars have multiple periods, simultaneously

displaying at least 3, and as many as l25,different frequencies. Astronomers are deciphering

the data to obtain a detailed look at the structure of white dwarfs.

16.3ITHE PHYSICS OF DEGENERATE MATTER

'We 
now delve below the surface to ask, What can support a white dwarf against the relentless

pull of its gravity? It is easy to show (Problem 16.4) that normal gas and radiation pressure are

completely inadequate. The answer was discovered in l926by theBritish physicist Sir Ralph

Howard Fowler (1889-1944), who applied the new idea of the Pauli exclusion principle
(recall Section 5.4) to the electrons within the white dwarf. The qualitative argument that

follows elucidates the fundamental physics of the electron degeneracy pressure described

by Fowler.

The Pauli Exclusion Principle and Electron Degeneracy

Any system-whether an atom of hydrogen, an oven filled with blackbody photons, or

a box filled with gas particles-consists of quantum states that are identified by a set

of quantum numbers. Just as the oven is filled with standing waves of electromagnetic

radiation that are described by three quantum numbers (specifying the number of photons

of wavelength À traveling in the x-, y-, and z-directions), a box of gas particles is filled with
standing de Broglie waves that are also described by three quantum numbers (specifying

the particle's component of momentum in each of three directions). If the gas particles

are fermions (such as electrons or neutrons), then the Pauli exclusion principle allows at

most one fermion in each quantum state because no two fermions can have the same set of
quantum numbers.

In an everyday gas at standard temperature and pressure, only one of every 107 quantum

states is occupied by a gas particle, and the limitations imposed by the Pauli exclusion

principle become insignificant. Ordinary gas has a thermal pressure that is related to its
temperature by the ideal gas law. However, as energy is removed from the gas and its

temperature falls, an increasingly large fraction of the particles are forced into the lower

energy states. If the gas particles are fermions, only one particle is allowed in each state; thus

all the particles cannot crowd into the ground state. Instead, as the temperature of the gas is

lowered, the fermions will fill up the lowest available unoccupied states, starting with the

ground state, and then successively occupy the excited states with the lowest energy. Even in
the limit T --> 0 K, the vigorous motion of the fermions in excited states produces a pressure

in the fermion gas. At zero temperature, all of the lower energy states and none of the higher

energy states are occupied. Such a fermion gas is said to be completely degenerate.

The Fermi Energy

The maximum energy (sr) of any electron in a completely degenerate gas at Z : 0 K is
known as the Fermi energy; see Fig. 16.5. To determine this limiting energy, imagine a

three-dimensional box of length L on each side. Thinking of the electrons as being standing
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FIGURE 16.5 Fraction of states of energy e occupied by fermions. For ? : 0, all fermions have

t 1 t F, but for T > 0, some fermions have energies in excess of the Fermi energy.

waves in the box, we note that their wavelengths in each dimension are given by

._2L^2Lr_2L)r, : 
Nr, 

Ly : 

", 

, Lz: 
Nr,

where 
^L, 

N/, and N. are integer quantum numbers associated with each dimension. Re.

calling that the de Broglie wavelength is related to momentum (Eq. 5.11),

hN, hNn hN,
Px: U, Py: ZL, PY: 2L'

Now, the total kinetic energy of a particle can be written as

o_ P'"- 2*'

where p2 : p? + nj + p!.Thas,

¡z ^ . n h2Nzt: #ü(N,t r N] + N): *F, 06.2)

where Nz = ¡Ê + Uî + N2r, analogous to the "distance" from the origin in "N-spaca" to

the point (Nr, ¡fr, ¡f.).
The total number of electrons in the gas corresponds to the total number of unique quan-

tum numbers, .AI" , N, , and N. times two. The factor of two arises from the fact that electrons

are spin j particles, 
"so 

ms - +l 12 implies that two electrons can have the same combina'

tion ãf Ñr-, Nr, and ÀI. and still posses a unique set of four quantum numbers (including
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16.3 The Physics of Degenerate Matter 565

spin).Now,eachintegercoordinateinN-space(e.g.,N' - 1,N,,:3,Nr:1)corresponds
to the quantum state of two electrons. V/ith alarge enough sample of electrons, they can be

thought of as occupying each integer coordinate out to a radius of N : +N +v ",

*
butonlyforthepositiveoctantof N-spacewhereN' > 0,N, = 0,andNz > 0.Thismeans
that the total number of electrons will be

N" :2(å) (i",,)
Solving for N yields

N-

Substituting into Eq. (16.2) and simplifying, we find that the Fermi energy is given by

3N" r13

îf

,r: # q3o,r)'/t , (16.3)

where misthemassof theelectron andn= Nr/L3 isthenumberof electronsperunitvol-
ume. The average energy per electronatzeÍo temperature is Jep. (Of course the derivation
above applies for any fermion, not just electrons.)

The Condition for Degeneracy

At any temperature above absolute zero, some of the states with an energy less than er will
become vacant as fermions use their thermal energy to occupy other, more energetic states.

Although the degeneracy will not be precisely complete when T > 0 K, the assumption of
complete degeneracy is a good approximation at the densities encountered in the interior of
a white dwarf. All but the most energetic particles will have an energy less than the Fermi

energy. To understand how the degree of degeneracy depends on both the temperature and

the density of the white dwarf, we first express the Fermi energy in terms of the density of
the electron gas. For full ionization, the number of electrons per unit volume is

n- _ (#etectrons\ (#nucleons) : lZ\ _f_ (16.4)'"-\ nu"l"* /\ *tut"" )-\l) *o'

where Z and.A. are the number of protons and nucleons, respectively, in the white dwarf's

nuclei, and m¡7 is the mass of a hydrogen atom.e Thus the Fermi energy is proportional to

the 213 power of the density,

rf 
lu", ( Z\ !_1''u. (16.5)uo:2*, 1"' \Ã) *r)

9The hydrogen mass is adopted as a representative mass of the proton and neutron.
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Now compare the Fermi energy with the average thermal energy of an electron,]kT

/< is Boltzmann's constant; see Eq. 10.17). In rough tefms, if 22kT 1 sF, then an a

electron will be unable to make a transition to an unoccupied state, and the eleitron gas

be degenerate. That is, for a degenerate gas'

'un,.hl*'(1) #,]''' ,

of

h - hl# (1)l''' :t26tKm2ks-2/3

for Z I A: 0.5. Defining

D = 126l K m2 kg-2/z ,

the condition for degeneracy may be written as

h"
The smaller the value of. T / p2/3 , the more degenerate the gas.

Example 16.3.L. How imPortant is electron degeneracy at the centers of the Sun

Sirius B? At the center of the standard solar model (see Table lI.I), T,

and p,: I.527 x 105 kg m-3. Then

1.570 x 107

T"
2t3

þc'
5500 K m2 kg-zlz , r.

In the Sun, electron degeneracy is quite weak and plays a very minor role, supplying

only a few tenths of a percent of the central pressure. However, as the Sun continues to

evolve, electron degeneiacy will become increasingly important (Fig. 16.6).As describedin

Section 13.2, the Sun will develop a degenerate helium core while on the red giant branch

of the H-R diagram, leading eventually to a core helium flash. Later, on the asymptotic

giant branch, ttte progenitor of a carbon-oxygen white dwarf will form in the core to be

revealed when the Sun's surface layers are ejected as a planetary nebula.

For Sirius B, the values of the density and central temperature estimated above lead to

Z -31 Km2 kg-z/t <D,
p?tu

so complete degeneracy is a valid assumption for Sirius B'
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FIGURE 16.6 Degeneracy in the Sun's center as it evolves. (Data from Mazzitelli and D'Antona,
Ap.J.,311,762,1986.)

Electron Degeneracy Pressure

We now estimate the electron degeneracy pressure by combining two key ideas of quantum

mechanics:

1. The Pauli exclusion principle, which allows at most one electron in each quantum

state; and

2. Heisenberg's uncertainty principle in the form of Eq. (5.19),

Lx L'P* x f¿,

which requires that an electron confined to a small volume of space have a corre-
spondingly high uncertainty in its momentum. Because the minimum value of the

electron's momentum, pmin, is approximately L,p, more closely confined electrons

will have greater momenta.

When wemake the unrealistic assumptionthatall of the electrons have the same momentum,

p,Eq..(10.8) for the pressure integral becomes

where n" is tïte total electron number density.

In a completely degenerate electron gas, the electrons are packed as tightly as possible,

and for a uniform number density of n", the separation between neighboring electrons is

Nondegenerate
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RGB
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about n;t/3 . However, to satisfy the Pauli exclusion principle, the electrons must

their identities as different particles. That is, the uncertainty in their positions cannot be

than their physical separation. Identifying Ax * n;t't for the limiting case of
degeneracy, we can use Heisenberg's uncertainty relation to estimate the momentum of
electron. In one coordinate direction,

h,

P, N LP,
L,x

(see Example 5.4.2). However, in a three-dimensional gas each of the directions is equally
likely, implying that

which is just a statement of the equipartition of energy among all the coordinate directions.

Therefore,

p' : p1+ rj + p? :3p2",

or

P : JjP,'

Using Eq. (16.a) for the electron number density with full ionization gives

- /-\ -l/3p"-rihl(i) hl
For nonrelativistic electrons, the speed is

p
u--

me

NfuN-- h'nltz

n1: n!,: p?,

Jinx, _n
me

t13
e

'ßry|(z\ ¿-j''' . (16.10)o * L\¡) *,1
InsertingEqs.(16.4),(16.8),and(16.10)intoEq. (16.7) fortheelectrondegeneracypressure
results in

,*#l(1) hf''' (16 11)

This is roughly a factor of two smaller than the exact expression for the pressure due to a

completely degenerate, nonrelativistic electron gas P,

ßnr)rt, il _r,,P:l 
5 m"'o" 7

(16.8)

(16.e)
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, _ (zo')ztt f¿2 l-'- 5 *LG)
p s13

ftIp¡
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(16.r2)

t
Using Z / A :0.5 for a carbon-oxygen white dwarf, Eq. (16.12) shows that the elec-

tron degeneracy pressure available to support a white dwarf such as Sirius B is about

1.9 x 1022 N m-2, within a factor of two of the estimate of the central pressure made previ-

ously (Eq. 16.1). Electron degeneracy pressure is responsible for maintaining hydrostatic

equilibrium in a white dwarf.
You may have noticed that Eq. (16.12) is the polytropic equation of state, P : Kp5l3,

corresponding to n :1.5. This implies that the extensive tools associated with the Lane-
Emden equation (Eq. 1 0. 1 1 0), developed beginning on page 334, canbe used to study these

objects. Of course, to understand them in detail requires careful numerical calculations

involving the details of the complex equation of state of partially degenerate gases, nonzero

temperatures, and changing compositions.

16.4 ITHE CHANDRASEKHAR LIMIT

The requirement that degenerate electron pressure must support a white dwarf star has

profound implications, In 1931, at the age of 2l, the Indian physicist Subrahmanyan Chan-

drasekhar announced his discovery that there is a maximum mass for white dwarfs.In this
section we will consider the physics that leads to this amazing conclusion.

The Mass-Volume Relation

The relation between the radius, lRy¡6, of a white dwarf and its mass, Ms¡¿, Írra! be found

by setting the estimate of the central pressure, Eq. (16.1), equal to the electron degeneracy

pressure, Eq. (16.12):

îtJ( ,) )/1

rK?hf'''Gpz Rlo :
5

Using p:M*dltrRt*a(assumingconstantdensity),thisleadstoanestimateoftheradius
of the white dwarf,

R*dry tH:#WlA*7''' (,6,3)

For a 1 M6 carbon-oxygen white dwarf, R æ 2.9 x 106 m, too small by roughly a factor of
two but an acceptable estimate. More important is the surprising implication that M*6Alo :
constant, or

MwAVw¡: Constant. (16.14)
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The volume of a white dwarf is inversely proportional to its mass, so more massive white

dwarfs are actually smaller.This mass-"olo*. relation is a result of the star deriving itg

support from electron degeneracy pressure. The electrons must be more closely confined

toþnerate the larger degeneracy pressure required to support a more massive star' In fact,

the mass-volume relation implies that p o Mt*o'

According to the rrrurr-uoiume relation, piling more and more mass onto a white dwarf

would eventually result in shrinking the star down to zefo volume as its mass becomes

infinite. However, if the density exceeds about 10e kg m-3, there is a departure from this

relation. To see why this is so, use Eq. (16.10) to estimate the speed of the electrons in

Sirius B:

u N L[(i) hf''' : 1 1 x 108 ÍrIs-r,

over one-third the speed of light! If the mass-volume relation were co''ect, white dwarfs

a bit more massive irran srrius B wourd be so smail and dense that their electrons would

exceed the rimiting value of the speed of right. This impossibility points out the dangers

of ignoring the efflcts of relativity in our expressions for the electron speed (Eq' 16'10)

und-pr"rr*" (Eq. 16.11).10 Becaose the electrons are moving more slowly than the nonrel-

ativistic gq. (to.ro) would indicate, there is less electron pressure available to support the

star. Thus a massive white dwarf is smaller than predicted by the mass-volume relation'

Indeed, zero volume occurs for a f,nite value of the mass; in other words' there is a limit to

the amount of matter that can be supported by electron degeneracy pressure'

Dynamical lnstabilitY

To appreciate the effect of relativity on the stability of a white dwarf, recall that Eq' (16'12)

(which is valid only for approximately p < 10e kg*-'lis of the polytropic form P =
'K. 

pstz ,where l( is á constant. Comparing this with Eq. (10.86) shows that the value of the

ratio of specific heats is y - 5/3 in the nonrerativistic limit. As we discussed in section 14.3,

this means that the white dwarf is dynamically stable. If it suffers a small perturbation' it will

return to its equilibrium structure instead of collapsing. However, in the extreme relativistic

limit, the electron speed n: c must be used instead of Eq. (16.10) to find the electron

degeneracy pressure' The result is

*

(16.1s)

(see, for example, Problem 16.6). In this limit 7 - 413, which corresponds to dynarnical

instability.The smallest departure fro-r-n equilibrium will cause the white dwarf to collapse

as electron O"g"n"ru"-y pr"i** f"iis.11 As^was explained in Section 15'3, approaching this

l0lt is left as an exercise to show that relativistic effects must be included for densities greater than 109 kg t-''
llln fact, the strong gravity of the white dwarf, as described by Einstein's general theory of relativity (see Sec-

tion 17.1), acts to r;ise the critical value of y for dynamical instability slightly above 413'

113 413
( -lG)3n p

mH
P

4
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limiting case leads to the collapse of the degenerate core in an aging supergiant, resulting in a

core-collapsesupernova. (NotethatEq. 16.15isapolytropicequationof state, P : Kpal3,

with a polytropic index of n : 3.)

Estimating the Chandrasekhar Limit

An approximate value for the maximum white-dwarf mass may be obtained by setting the

estimate of the central pressure, Eq. (16.1) with p : M*¿/tnRflo, equal to Eq. (16.15)

with Z I A: 0.5. The radius of the white dwarf cancels, leaving

Mch-'+ (T)''' t(í) *l':o44Mo (16 16)

for the greatest possible mass. Note that Eq. (16.16) contains three fundamental constants-
It, c, and G-representing the combined effects of quantum mechanics, relativity, and

Newtonian gravitation on the structure of a white dwarf. A precise derivation with Z I A :
0.5 results in a value of Mç¡: 1.44 M6, called the Chandrasekhar limit. Figure 16.7

shows the mass-radius relation for white dwarfs.l2 No white dwarf has been discovered

with a mass exceoding the Chandrasekhar limit.13
It is important to emphasize that neither the nonrelativistic nor the relativistic formula

for the electron degeneracy pressure developed here (Eqs. 16.12 and 16.15, respectively)

contains the temperature. Unlike the gas pressure of the ideal gas law and the expression for

0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 r.4

Mass (MlMo)

FIGURE 16.7 Radii of white dwarfs of M*6 < Mcn at I : 0 K.

l2Figure 16.7 does not include complications such as the electrostatic attraction between the nuclei and electrons

in a white dwarf, thus tending to reduce the radius slightly.
13It is natural to wonder about the outcome of sneaking up on the Chandrasekhar limit by adding just a bit more

mass to white dwarf with very nearly 1.44 M6. This will be considered in Section 18.5, where Type Ia supernovae

are discussed.
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radiation pressure, the pressure of a completely degenerate electron gas is independent 6¡
its temperature. This has the effect of decoupling the mechanical structure of the star fror¡
its thermal properties. However, the decoupling is never perfect since Z > 0. As a result,

the correct expression for the pressure involves treating the gas as partially degenerate and

relativistic, but with u < c. This is a challenging equation of state to deal with properly.ta

We have already seen one implication of this decoupling in Section 13.2, where ¡þs

helium core flash was described as the result of the independence of the mechanical and

thermal behavior of the degenerate helium core of a low-mass star.'When helium burning

begins in the core, it proceeds without an accompanying increase in pressure that would

normally expand the core and therefore restrain the rising temperature. The resulting rapid

rise in temperature leads to a runaway production of nuclear energy-the helium flash-
which lasts until the temperature becomes sufficiently high to remove the degeneracy of
the core, allowing it to expand. On the other hand, a star may have so little mass that its

core temperature never becomes high enough to initiate helium burning. The result in this

case is the formation of a helium white dwarf.

16.5 TTHE COOLING OF WHITE DWARTS

Most stars end their lives as white dwarfs. These glowing embers scattered throughout space

are a galaxy's memory of its past glory. Because no fusion occurs in their interiors, white

dwarfs simply cool off at an essentially constant radius as they slowly deplete their supply

of thermal energy (recall Fig. 16.3). Much effort has been directed at understanding the

rate at which a white dwarf cools so its lifetime and the time of its birth may be calculated.

Just as paleontologists can read the history of Earth's life in the fossil record, astronomers

may be able to recover the history of star formation in our Galaxy by studying the statistics

of white-dwarf temperatures. This section will be devoted to a discussion of the principles

involved in this stellar archaeology.

Energy Transport

First we must ask how energy is transported outward from the interior of a white dwarf.

In an ordinary star, photons travel much farther than atoms do before suffering a collision

that robs them of energy (recall Examples 9.2.1 and9.2.2). As a result, photons are nor-

mally more efficient carriers of energy to the stellar surface. In a white dwarf, however,

the degenerate electrons can travel long distances before losing energy in a collision with

a nucleus, since the vast majority of the lower-energy electron states are already occupied.

Thus, in a white dwarf, energy is carried by electron conduction rather than by radiation.

This is so efficient that the interior of a white dwarf is nearly isothermal, with the temper-

ature dropping significantly only in the nondegenerate surface layers. Figure 16.8 shows

that a white dwarf consists of a nearly constant-temperature interior surrounded by a thin

nondegenerate envelope that transfers heat less efficiently, causing the energy to leak out

l4You are referred to Clayton (1983) or Hansen, Kawaler, and Trimble (2004) for a discussion of partial elecffon

degeneracy.

#
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FIGURE 16.8 Temperature and degree of degeneracy in the interior of a white dwarf model. The

horizontal dotted line marks the boundary between degeneracy and nondegeneracy as described by

Eq. (16.6).

slowly. The steep temperature gradient near the surface creates convection zones that may

alter the appearance of the white dwarf 's spectrum as it cools (as described in Section 16.2).

The structure of the nondegenerate surface layers of a star is described at the beginning

of Appendix L. For a white dwarf of surface luminosity ,Lyy¿ and mass M*¿, Eq. (L.1) for
the pressure P as a function of the temperature Z in the envelope is15

- /+ T6nacGM*d k \t/t
": (; î l# 

^-,*) 
rt7t4, (16'17)

where rcs (called "A" inEq. L.1) is the coefficient of the bound-free Kramers opacity law

in Eq. (9.22),

rco : 4.34 x 1021 z(l + x) m2 kg-t.

Using the ideal gas law (Eq. 10.11) to replace the pressure results in a relation between the

density and the temperature,

/ 4 l6nac GM*¿ yy+\t't 7ruo. (16.13)u:(,.tt 3 L-^ 
^k 

)
The transition between the nondegenerate surface layers of the star and its isothermal,

degenerate interior of temperature I. is described by setting the two sides of Eq. (16.6) equal

lsEquation (16.17) assumes that the envelope is in radiative equilibrium, with the energy carried outward by

photons. Even when convection occurs in the surface layers of a white dwarf, it is not expected to have a large

effect on the cooling.

Logls T (K)

LogrrçTp-2t3D-t)

N:.19:.ry1::lJ:
Degenerate
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to each other. Using this to replace the density results in an expression for the

at the white dwarf's surface in terms of its interior temperature,

" where

Lwd:+ry#pM*¡rltz

- CTI/z 
'

4D3 l6rac Gmsc= n 3 
^r 

ILM*a

:6.65x10-3(w) p
z(t + x)

Note that the luminosity is proportion alto T712 (the interior temperature) and that it
as the fourth power of the effective temperature according to the Stefan-Boltzmann
Eq. (3.17). Thus the surface of a white dwarf cools more slowly than its isothermal

as the star's thermal energy leaks into space.

Example 1.6.5.1. Equation (16.19) can be used to estimate the interior temperature of
I Mo white dwarf with l*¿ : 0.03 L6. Arbitrarily assuming values of X : 0, f - 0.

Z - 0.1 for the nondegenerate envelope (so p - 1.4) results in16

r_l -*o ,l',," l¿\rrlr./l :2.gx107K.,, -l 
t*o 

= 
( Y:, \ z(1 * X¡1ztt

Laa¡;¡¡= \r*/ t, ) =

Equating the two sides of the degeneracy condition, Eq. (16.6), shows that the density at

the base of the nondegenerate envelope is about

This result is several orders of magnitude less than the average density of a 1 Me white

dwarf such as Sirius B and confirms that the envelope is indeed thin, contributing very little

to the star's total mass. :

The CoolingTimescale

A white dwarf's thermal energy resides primarily in the kinetic energy of its nuclei; the

degenerate electrons cannot give up a significant amount of energy because nearly all of the

lower energy states are already occupied. If we assume for simplicity that the composition is

uniform, then the total number of nuclei in the white dwarf is equal to the star's mass, Mwd,

l6Because the amount of hydrogen is quite small even in a DA white dwarf, this composition is a reasonable

choice for both type DA and type DB.

r^x312
, : l#) :3'4 x 106 ks '-'
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divided by the mass ;f a nucleus, Amu.Furthermore, since the average thermal energy of
a nucleus is ]tf , the thermal energy available for radiation is

u : Y*o t=or, 
(16.20)

Amu 2

If we use the value of l. from Example 16.5.1 and A : 12 for carbon, Eq. (16.20) gives
approximately 6.0 x l0a0 J. A crude estimate of the characteristic timescale for cooling,
zçs61, cân be obtained simply by dividing the thermal energy by the luminosity. Thus

U 3 M*6k
ir-Lcoor- L-^-l o**¿n'

which is about 5.2x 1015 s xll0 million years. This is an underestimate, because the
cooling timescale increases as Z" decreases. The more detailed calculation that follows
shows that a white dwarf spends most of its life cooling slowly with a low temperature and
luminosity.

The Change in Luminosity with Time

The depletion of the internal energy provides the luminosity, so Eqs. (16.19) and (16.20)
give

dU _r
- 

Lwd
dt

or

(16.21)

(16.22)

-!(W1nr):crll2.ù \am¡. 2*" ) - 
u'c

If the initial temperature of the interior is Z6 when t :0, then this expression may be
integrated to obtain the core temperature as a function of time:

1,5Am¡1CTflz-t-3 M*ok t

-215

T,(t) :70 : 
^ 

(t .tu;) '

where z¡ is the timescale for cooling at the initial temperature of Io; that is, rs : r"oo1 ât
üme rs. Inserting this into Eq. (16.19) shows that the luminosity of the white dwarf first
declines sharply from its initial value of Lo: CTI/2 and then dims much more gradually
as time passes:

Lwd:r, (, .trtt##,)-''' - ., (, *:+) ''' (t623)

The solid line in Fig. 16.9 shows the decline in the luminosity of a pure carbon 0.6 Mo
white dwarf calculated from Eq. (16.23). The dashed line is a curve obtained for a sequence

:{'

Ì.
¡
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-1

0510
Time (10e yr)

FIGURE 16.9 Theoretical cooling curves for 0,6 M. white-dwarf models. [The solid line is from
Eq. (16.23), and the dashed line is from Winget et al., Ap. J. Lett., 3I5,L77 ,1987.1

of more realistic white-dwarf modelslT that include thin surface layers of hydrogen and
helium overlying the carbon core. The insulating effect of these layers slows the cooling
by about I5Vo. Also included are some of the intriguing phenomena that occur as the white
dwarf 's internal temperature drops.

Crystallization

As a white dwarf cools, it crystallizes in a gradual process that starts at the center and moves
outward. The upturned "knee" in the dashed curve in Fig. 76.9 at about L*al Lo È 10-4
occurs when the cooling nuclei begin settling into a crystalline lattice. The regular crystal
structure is maintained by the mutual electrostatic repulsion of the nuclei; it minimizes
their energy as they vibrate about their average position in the lattice. As the nuclei undergo
this phase change, they release their latent heat (about kT per nucleus), slowing the star's
cooling and producing the knee in the cooling curve. Later, as the white dwarf 's temperature
continues to drop, the crystalline lattice actually accelerates the cooling as the coherent
vibration of the regularly spaced nuclei promotes further energy loss. This is reflected in
the subsequent downturn in the cooling curve. Thus the ultimate monument to the lives of
most stars will be a "diamond in the sky," a cold, dark, Earth-size sphere of crystallized
carbon and oxygen floating through the depths of space.18

i7You are referred to Winget et al. (1987) for details of this and other cooling curves.
lsunlike a tenestrial diamond, the white dwarf's nuclei are arrayed in a body-centered cubic lattice like that of
metallic sodium.
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Comparing Theory with Observations

Despite the large uncertainties in the measurement of surface temperatures.resulting from
high surfac" gr*iti"r and broad spectral features,le it is possible to observe the cooling of
a pulsating white dwarf. As the star's temperature declines, its period P slowly changes

according to d P ldt a T-t (approximately). Extremely precise measurements of a rapidly

cooling DOV star yield a period derivative of P lldP /dtl :1.4 x 106 years, in excellent

agreement with the theoretical value. Measuring period changes for the more slowly cooling

DBV and DAV stars are even more difficult.
This interest in an accurate calculation of the decline in a white dwarf's temperature

reflects the hope of using these fossil stars as a tool for uncovering the history of star

formation in our Galaxy. Figure 16.10, from Winget et al. (1987), illustrates how this

might be accomplished. Each circle (both open and filled) in the f,gure is the observed

number of white dwarfs per cutiic parsec with the absolute visual magnitude given at the

top of the figure. The dramatically sudden drop in the population of white dwarfs with
L*alLo < -4.5 is inconsistent with the assumption that stars have been forming in our

Galaxy throughout the infinite past. Instead, this decline can best be explained if the first

whitedwarfswereformedandbegancoolingg.0+ l.Sbillionyearsago.Figure16.l0shows
the theoretically expected distribution of white dwarf luminosities based on this cooling

time, calculated using theoretical cooling curves similar to the one shown in Fig. 16.9
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FIGURE 16.10 Observed and theoretical distribution of white-dwarf luminosities. (Figure adapted

from Winget et al., Ap. J. Lett., 315,L77,1987.)
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lgFor Sirius B, effective temperatures ranging from 27,000 K to 32,000 K are often quoted.
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together with the observed distribution of white-dwarf masses. Furthermore, adding ¡¡*
time spent in the pre-white-dwarf stages of stellar evolution implies that star formation in
the disk of our Galaxy began about 9.3 + 2.0 billion years ago.20 This time is about 3 billion
years shorter than the age determined for the Milky'Way's globular clusters, which forr¡s¿

at an earlier epoch.

16.6I NEUTRON STARS

Two years after James Chadwick (1891-1914) discovered the neutron in 1932, a German

astronomer and a Swiss astrophysicist, Walter Baade (1893-1960) and Fntzzwickv (1898-

1974) of Mount Wilson Observator¡ proposed the existence of neutron stars. These two

astronomers, who also coined the term supernova, went on to suggest that "supernovae

represent the transitions from ordinary stars into neutron stars, which in their final stages

consist of extremely closely packed neutrons'"

Neutron Degeneracy

Because neutron stars are formed when the degenerate core of an aging supergiant star

nears the Chandrasekhar limit and collapses, we take Mç¡ (rounded to two f,gures) for a
typical neutron star mass. A 1.4-so1ar-mass neutron star would consist of I.4Ms / m, È 1057

neutrons-in effect, a huge nucleus with a mass number of A ry 1057 that is held together

by gravity and supported by neutron degeneracy pressure.2l It is left as an exercise to

show that

- (lÌflztt rL'z / t \t"Rn' È tä- 
GMF \*, ) 

(t6'24)

is the expression for the estimated neutron star radius, analogous to Eq. (16.13) for a white

dwarf. For Mn, : I.4 M6, this yields a value of 4400 m. As we found with Eq. (16.13) for

white dwarfs, this estimate is too small by a factor of about 3. That is, the actual radius of

a 1.4 M6 neutron star lies roughly between 10 and 15 km; we will adopt a value of 10 km

for the radius. As will be seen, there are many uncertainties involved in the construction of

a model neutron star.

The Density of a Neutron Star

This incredibly compact stellar remnant would have an average density of 6.65 x 1017

kg *-', greatu tharthe typical density of an atomic nucleus, pnu. = 2'3 x 1017 kg --''
In some sense, the neutrons in a neutron star must be "touching" one another. At the density

of a neutron star, all of Earth's human inhabitants could be crowded into a cube 1.5 cm oû

each side.22

20other, more recent studies have obtained similar results for the age of the thin disk of our Galaxy based on

white-dwarf cooling times; age estimates range from 9 Gyr to 11 Gyr'
2lLike electrons, neutrons are fermions and so are subject to the Pauli exclusion principle.
22Astronomer Frank Shu has commented that this shows "how much of humanity is empty space"l

*
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The pull of gravity at the surface of a neutron star is fierce. For a 1.4 M6 neutron star with
a radius of 10 km, I : 1.86 x 1012 ffi s-2, 190 billion times stronger than the acceleration
of gravity at Earth's surface. An object dropped from a height of one meter would arrive at
the star's surface with a speed of 1.93 x 106 m s-l (about 4.3 million mph).

Example 16.6.1. The inadequacy of using Newtonian mechanics to describe neutron stars
can be demonstrated by calculating the escape velocity at the surface. Using Eq. (2.I7),we
find

Uesc zcMn'f Rns : 1.93 x I 08 m s-l :0.643c

This can also be seen by considering the ratio of the Newtonian gravitational potential
energy to the rest energy of an object of mass m atthe star's surface:

G Mn"mf Rn : 
^ 

)oj
mc2

Clearly, the effects of relativity must be included for an accurate description of a neutron star.
This applies not only to Einstein's theory of special relativity, described in Chapter 4, but
also to his theory of gravity, called the general theory of relativity, which will be considered
in Section 17.1. Nevertheless, we will use both relativistic formulas and the more familiar
Newtonian physics to reach qualitatively correct conclusions about neutron stars.

The Equation of State

To appreciate the exotic nature of the material constituting a neutron star and the difficulties
involved in calculating the equation of state, imagine compressing the mixture of iron
nuclei and degenerate electrons that make up an iron white dwarf at the center of a massive
supergiant star.23 Specifically, we are interested in the equilibrium configuration of 10s7

nucleons (protons and neutrons), together with enough free electrons to provide zero net
charge. The equilibrium arrangement is the one that involves the least energy.

Initially, at low densities the nucleons are found in iron nuclei. This is the outcome
of the minimum-energy compromise between the repulsive Coulomb force between the
protons and the attractive nuclear force between all of the nucleons. However, as mentioned
in the discussion of the Chandrasekhar limit (Section 16.4), when p N I}e kg m-3 the
electrons become relativistic. Soon thereafter, the minimum-energy arrangement of protons
and neutrons changes because the energetic electrons can convert protons in the iron nuclei
into neutrons by the process of electron capture (Eq. 15.6),

Ip-+e--->nlve.

Because the neutron mass is slightly greater than the sum of the proton and electron masses,

and the neutrino's rest-mass energy is negligible, the electron must supply the kinetic energy
to make up the difference in energy; ntnc2 - mpcT - m"c2 :0.78 MeV.

23Because the mechanical and thermal properties of degenerate matter are independent of one another, we will
assume for convenience that T : 0 K. The iron nuclei are then arranged in a crystalline lattice.
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Example L6.6.2. Wb will obtain an estimate of the density at which the process of electro¡¡

capture begins for a simple mixture of hydrogen nuclei (protons) and relativistic degenerate

electrons,

aP-+e--->nlvt'

In the limiting case when the neutrino carries away no energy, we can equate the relativistic

expression for the electron kinetic energy, Eq. (4.45), to the difference between the neutron

rest energy and combined proton and electron rest energies and write

{þ

ffi"c2
1

-1 : (m, - mp - mr)c2,
1 - rz¡cz

or

( *, \'-,-"
\*, - *, ) c2'

Although Eq. (16.10) for the electron speed is strictly valid only for nonrelativistic electrons,

it is accurate enough to be used in this estimate. Inserting this expression for u leads to

(#*)'*, hl(1)hf'''
Solving for p shows that the density at which electron capture begins is approximately

p * ry (ry| 
l, 

- (*^)'f''' x23x 1o1o ks,n-',

using AIZ:1 for hydrogen. This is in reasonable agreement with the actual value of
p:L2x1010kg*-'.

We considered free protons in Example 16.6.2to avoid the complications that arise when

they are bound in heavy nuclei. Acareful calculation that takes into account the surrounding

nuclei and relativistic degenerate electrons, as well as the complexities of nuclear physics,

reveals that the density must exceed 1012 kg .-' for the protons in l[Fe nuclei to capture

electrons. At still higher densities, the most stable affangement of nucleons is one where

the neutrons and protons are found in a lattice of increasingly neutron-rich nuclei so as

to decrease the energy due to the Coulomb repulsion between protons. This process is

known as neutronization and produces a sequence of nuclei such as l[re, !r2Ni, !fiNi, ![Nl,
åffr, . . . ,tååft. Ordinarily, these supernumerary neutrons would revert to protons via the

standard þ -decay process,

rn-> p'le lv"
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However, under the conditions of complete electron degeneracy, there are no vacant states

available for an emitted electron to occupy, so the neutrons cannot decay back into protons.24

When the density reaches about 4 x 101a kg *-', the minimum-energy arrangement is

one in which some of the neutrons are found outside the nuclei. The appearance of these

free neutrons is called neutron drip and marks the start of a three-component mixture

of a lattice ofneutron-rich nuclei, nonrelativistic degenerate free neutrons, and relativistic

degenerate electrons.

The fluid of free neutrons has the striking property that it has no viscosity. This occurs

because a spontaneous pairing of the degenerate neutrons has taken place. The resulting

combination of two fermions (the neutrons) is a boson (recall Section 5.4) and so is not

subject to the restrictions of the Pauli exclusion principle. Because degenerate bosons can

all crowd into the lowest energy state, the fluid of paired neutrons can lose no energy. It
is a superfluid that flows without resistance. Any whirlpools or vortices in the fluid will
continue to spin forever without stopping.

As the density increases further, the number of free neutrons increases as the number

of electrons declines. The neutron degeneracy pressure exceeds the electron degeneracy

pressure when the density reaches roughly 4 x 1015 kg tn-'. As the density approaches

pnu", the nuclei effectively dissolve as the distinction between neutrons inside and outside

of nuclei becomes meaningless. This results in a fluid mixture of free neutrons, protons,

and electrons dominated by neutron degeneracy pressure, with both the neutrons and pro-

tons paired to form superfluids. The fluid of pairs of positively charged protons is also

superconducting, with zero electrical resistance. As the density increases further, the ratio

of neutrons:protons:electrons approaches a limiting value of 8:1:1, as determined by the

balance between the competi4g processes of electron capture and B-decay inhibited by the

presence of degenerate electrons.
The properties of the neutron star material when p > pnuc are still poorly understood.

A complete theoretical description of the behavior of a sea of free neutrons interacting via

the strong nuclear force in the presence of protons and electrons is not yet available, and

there is little experimental data on the behavior of matter in this density range. A further

complication is the appearance of sub-nuclear particles such as pions (z) produced by the

decay of a neutron into a proton and a negatively charged pion, n --> p+ I n-, which

occurs spontaneously in neutron stars when p , 2pnu".25 Nevertheless, these are the values

of the density encountered in the interiors of neutron stars, and the diff,culties mentioned

are the primary reasons for the uncertainty in the structure calculated for model neutron

stars.

Neutron Star Models

Table 16.1 summarizes the composition of the neutron star material at various densities.

After an equation of state that relates the density and pressure has been obtained, a model

of the star can be calculated by numerically integrating general-relativistic versions of the

2aAn isolated neutron decays into a proton in about 10.2 minutes, the half-life for that process.

zsThe n- is a negatively charged particle that is 273 times more massive than the electron. It mediates the

strong nuclear force that holds an atomic nucleus together. (The strong force between nttcleons was described in

Section 10.3.) Pions have been produced and studied in high-energy accelerator laboratories'
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TABLE 16.1 Composition of Neutron Star Material.

Transition density
(t g *-') Composition

Degeneracy
pressure

*
iron nuclei,
nonrelativistic free electrons electron

æ1x10e

æ1x1012

x4xl}ra

r4xl0l5

x2xl0r7

x, 4 x 1011

electrons become relativistic
iron nuclei,
relativistic free electrons electron

neutronization
neutron-rich nuclei,
relativistic free electrons electron

neutron drip
neutron-rich nuclei,
free neutrons,
relativistic free electrons electron

neutron degeneracy pressure dominates
neutron-rich nuclei,
superfluid free neutrons,

relativistic free electrons neutron
nuclei dissolve

superfluid free neutrons,

superconducting free protons,
relativistic free electrons neutron

pion production
superfluid free neutrons,
superconducting free protons,
relativistic free electrons,
other elementary particles (pions, ...?) neutron

stellar structure equations collected at the beginning of Section 10.5. The first quantitative
model of a neutron star was calculated by J. Robert Oppenheimer (1904-1967) and G.

M. Volkoff (1914-2000) at Berkeley in 1939. Figure 16.11 shows the result of a recent
calculation of aL4 M6 neutron star model. Although the details are sensitive to the equation
of state used, this model displays some typical features.

1. The outer crust consists of heavy nuclei, in the form of either a fluid "ocean" ol
a solid lattice, and relativistic degenerate electrons. Nearest the surface, the nuclei
are probably ![fe. At greater depth and density, inòreasingly neutron-rich nuclei
are encountered until neutron drip begins at the bottom of the outer crust (where

pN4 x 101akg--').
2. The inner crust consists of a three-part mixture of a lattice of nuclei such as tååft, u

superfluid of free neutrons, and relativistic degenerate electrons. The bottom of the

inner crust occurs where p N pnu", and the nuclei dissolve.
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Outer crust

%
FIGURE 16.11 A 1.4 Mo neutron star model.

3. The interior of the neutron star consists primarily of superfluid neutrons, with a smaller
number of superfluid, superconducting protons and relativistic degenerate electrons.

4. There may or may not be a solid core consisting of pions or other sub-nuclear particles.
The density at the center of a 1.4 Mo neutron star is about 1018 kg m-3.

The Chandrasekhar Limit for Neutron Stars

Like white dwarfs, neutron stars obey a mass-volume relation,

Mn"Vn : Constant, (16.2s)

so neutron stars become smaller and more dense with increasing mass. However, this mass-
volume relation fails for more massive neutron stars because there is a point beyond which
neutron degeneracy pressure can no longer support the star. Hence, there is a maximum
mass for neutron stars, analogous to the Chandrasekhar mass for white dwarfs. As might be

expected, the value of this maximum mass is different for different choices of the equation
of state. However, detailed computer modeling of neutron stars, along with a very general

argument involving the general theory of relativity, shows that the maximum mass possible

for a neutron star cannot exceed about 2.2 Mo if it is static, and 2.9 Mo if it is rotating
rapidly.26 If a neutron star is to remain dynamically stable and resist collapsing, it must

be able to respond to a small disturbance in its structure by rapidly adjusting its pressure

to compensate. However, there is a limit to how quickly such an adjustment can be made

because these changes are conveyed by sound waves that must move more slowly than

light. If a neutron star's mass exceeds 2.2 Mo in the static case or 2.9 M6 in the rapidly
rotating case, it cannot generate pressure quickly enough to avoid collapsing. The result is
a black hole (as will be discussed in Section 17.3).

Iûtêrior

Core
,|

lnner cfust

26Recall from Section 15.4 that centrifugal effects provide additional support to a rapidly rotating neutron star.
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Rapid Rotation and Conservation of Angular Momentum

Several properties of neutron stars were anticipated before they were observed. For example,

neutron stars must rotate very rapidly. If the iron core of the pre-supernova supergiant s¡¿r

were rotating even slowly, the decrease in radius would be so great that the conservatior¡ s¡
angular momentum would guarantee the formation of a rapidly rotating neutron star.

The scale of the collapse can be found from Eqs. ( 16. 13) and ( 16 .24) lor the estimated radii
of a white dwarf and neutron star if we assume that the progenitor core is characteristic of a
white dwarf composed entirely of iron. Although the leading constants in both expressior¡g

are spurious (a by-product of the approximations made), the ratio of the radii is more
accurate:

R.o." _ yr (Z\t,t _rrr.
Rn. me \A/

where Z I A :26/56 for iron has been used. Now apply the conservation of angular mo-
mentum to the collapsing core (which is assumed here for simplicity to lose no mass, so

M"or" - M*¿ - Mnr). Treating each star as a sphere with a moment of inertia of the form
I : CMRZ,wehavez7

Iiø¡ - Ir¡¿,

CM¡R!ø¡: CMrRzf@r

af:ai
2R;

Rr

In terms of the rotation period P, this is

2

Pr:P¡ R¡
R¡

(16.26)

For the specific case of an iron core collapsing to form a neutron star, Eq. (16.6) shows that

Pn. ry 3.8 x 10-6 P"o.". (16.27)

The question of how fast the progenitor core may be rotating is difficult to answer. As a star
evolves, its contracting core is not completely isolated from the surrounding envelope, so one
cannot use the simple approach to conservation of angular momentum described above.28

For purposes of estimation, we will take P.o." : 1350 s, the rotation period observed for
the white dwarf 40 Eridani B (shown in the H-R diagrams of Figs. 8. 1 2 and 8. 1 6). Inserting
this into Eq. (16.27) results in a rotation period of about 5 x 10-3 s. Thus neutron stars will
be rotating very rapidly when they are formed, with rotation periods on the order of a few
milliseconds.

27The constant C is determined by the distribution of mass inside the star. For example, C : 215 for a uniform
sphere. We assume that the progenitor core and neutron star have about the same value of C.
28The core and envelope may exchange angular momentum by magnetic fields or rotational mixing via the very
slow meridional curuents that generally circulate upward at the poles and downward at the equator of a rotating
star.
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"Freezing ln" Magnetic tield Lines

Another property predicted for neutron stars is that they should have extremely strong
magnetic fields. The "freezing in" of magnetic field lines in a conducting fluid or gas

(mentioned in Section 11.3 in connection with sunspots) implies that the magnetic flux
through the surface of a white dwarf will be conserved as it collapses to form a neutron star.

The flux of a magnetic field through a surface S is defined as the surface integral

T
where B is the magnetic field vector (see Fig. 16.12).In approximate terms, if we ignore the
geometry of the magnetic field, this means that the product of the magnetic field strength
and the area of the star's surface remains constant. Thus

B¡ nRl: BfLtrRzf' (16.25)

In order to use Eq. (16.28) to estimate the magnetic field of a neutron star, we must first
know what the strength of the magnetic field is for the iron core of a pre-supernova star.

Although this is not at all clear, we can use the largest observed white-dwarf magnetic field
of B ry 5 x 104 T as an extreme case, which is large compared to a typical white-dwarf
magnetic field of perhaps 10 T, and huge compared with the Sun's global field of about
2 x I}-a T. Then, using Eq. (16.6), the magnetic field of the neutron star would be

/Iug\' : 1.3 x loro T.Bn, È u*o (.o", ,/

This shows that neutron stars could be formed with extremely strong magnetic fields, al-
though smaller values such as 108 T or less are more typical.

tII
I

t
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FIGURE 16.12 Magnetic flux, dO : B . d.A, through an element of surface area dA*
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Neutron Star Temperatures

The final property of neutron stars is the most obvious. They were extremely hot when they
were forged in the "fires" of a supernova, with Z - 1011 K. During the first day, the neutron

star cools by emitting neutrinos via the so-called URCA process,2e

P+ +e --> n*vr'

As the nucleons shuttle between being neutrons and being protons, large numbers of neu-

trinos and antineutrinos are produced that fly unhindered into spaco, carrying away energy

and thus cooling the neutron star. This process can continue only as long as the nucleons

are not degenerate, and it is suppressed after the protons and neutrons settle into the lowest

unoccupied energy states. This degeneracy occurs about one day after the formation of the

neutron star, when its internal temperature has dropped to about 10e K. Other neutrino-

emitting processes continue to dominate the cooling for approximately the first thousand

years, after which photons emitted from the star's surface take over. The neutron star is a
few hundred years old when its internal temperature has declined to 108 K, with a surface

temperature of several million K. By now the cooling has slowed considerably, and the

surface temperature will hover around 106 K for the next ten thousand years or so as the

neutron star cools at an essentially constant radius.
It is interesting to calculate the blackbody luminosity of a 1.4 M6 neutron star with a

surface temperature of Z : 106 K. From the Stefan-Boltzmann law, Eq. (3.I7),

L : 4tt R2oT! : I .13 x 1025 \M.

ç,

Although this is comparable to the luminosity of the Sun, the radiation is primarily in the

form of X-rays since, according to Vy'ien's displacement law, Eq. (3.19),

^ (500 nm)(5800 K) : ¿.Y nm./!max - T

Prior to the advent of X-ray observatories such as ROSAI, ASCA, and Chandra, astronomers

held little hope of ever observing such an exotic object, barely the size of San Diego,

California.

16.7I PULSARS

Jocelyn Bell spent two years setting up a forest of 2048 radio dipole antennae over four
and a half acres of English countryside. She and her Ph.D. thesis advisor, Anthony Hewish,

were using this radio telescope, tuned to a frequency of 81.5 MHz, to study the scintillation
("flickering") that is observed when the radio waves from distant sources known as quasars

29The URCAprocess, which efïciently removes energy from a hot neutron star, is named for the Casino de URCA

in Rio de Janeiro, in remembrance of the efficieniy with which it removed money from an unlucky physicist. The

casino was closed by Brazil in 1955.
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FIGURE 16.13 Discovery of the first pulsar, PSR 1919+21 ("CP" stands for Cambridge Pulsar).

(Figure from Lyne and Graham-Smith, Pulsar Astronorny, @Cambridge University Press, New York,

1990. Reprinted with the permission of Cambridge University Press.)

pass through the solar wind. In July 1967,BeIl was puzzled to find a bit of "scruff" that

reappeared every 400 feet or so on the rolls of her strip chart recorder; see Fig. 16.13.

Careful measurements showed that this quarter inch of ink reappeared every 23 hours and

56 minutes, indicating that its source passed over her fixed array of antennae once every

sidereal day. Bell concluded that the source was out among the stars rather than within the

Solar System. To better resolve the signal, she used a faster recorder and discovered that

the scruff consisted of a series of regularly spaced radio pulses 1.337 s apart (the pulse

period, P). Such a precise celestial clock was unheard of, and Bell and Hewish considered

the possibility that these might be signals from an extraterestrial civilization. If this were

true, she felt annoyed that the aliens had chosen such an inconvenient time to make contact.

She recalled,."I was now two and a half years through a three year studentship and here

was some silly lot of Little Green Men using løy telescope and my frequency to signal to

planet Earth." When Bell found another bit of scruff, coming from another part of the sky,

her relief was palpable. She wrote, "It was highly unlikely that two lots of Little Green

Men could choose the same unusual frequency and unlikely technique to signal to the same

inconspicuous planet Earth ! "
Hewish, 8e11, and their colleagues announced the discovery of these mysterious pul-

sars,3O and several more were quickly found by other radio observatories. At the time this

text was written, more than 1500 pulsars were known, and each is designated by a 
.'PSR"

30The termpulsar was coined by the science correspondent for the London Daíly Telegrapå. See Hewish et al.

(1968) for details of the discovery of pulsars. In1974 Hewish was awarded a share of the Nobel Prize, along with

Martin Ryle (1918-1984), for their work in radio astronorny. Fred Hoyle (1915-2001) and others have argued

that Jocelyn Belt should have shared the prize as well; Hewish had designed the radio array and observational

technique, but Bell was the f,rst to notice the pulsar signal. This controversial omission has inspired references to

the award as the "no-Bell" prize.

,i.J:,
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FIGURE 16.14 The distribution of periods for 1533 pulsars. The millisecond pulsars are clearly
evident on the left. The average period is about 0.795 s. (Data from Manchester, R. N., Hobbs, G. 8.,
Teoh, 4., and Hobbs, M., A. J., I 29, 1993, 2005. Data available at

http : / / uwv. atnf . cs iro . au/research/pul sar/psrcat.)

prefix (for Pulsating Source of Radio) followed by its right ascension (ø) and declination
(ô). For example, the source of Bell's scruff is PSR l9l9+21, identifying its position as

u: I9h19- and 6: *2I".

General Characteristics

All known pulsars share the following characteristics, which are crucial clues to their phys-
ical nature:

. Most pulsars have periods between 0.25 s and 2 s, with an average time between
pulses of about 0.795 s (see Fig. 16.14). The pulsar with the longest known period is
PSR 1841-0456 (P : 11.8 s); Terzan 5ad (PSR J1748-2446ad) is the fastest known
pulsar (P : 0.00139 s).

. Pulsars have extremely well-def,ned pulse periods and would make exceptionally
accurate clocks. For example, the period of PSR 1931+214 has been determined
to be P : 0.00155780644881275 s, a measurement that challenges the accuracy
of the best atomic clocks. (Such precise determinations are possible because of the
enormous number of pulsar measurements that can be made, given their very short
periods.)

. The periods of all pulsars increase very gradually as the pulses slow down, the rate of
increase being given by the period derivative P : dP ld.t.3t Typically, P ry 10-15,

3 I Note that É is measured in terms of seconds of period change per second and so is unitless.
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and the characteristic tifttime (the time it would take the pulses to cease if Þ were

constant) is P/P ry afew 107 years. The value of P for PSR 1937+214is unusu-

ally small, P : 1.051054 x 10-1e. This corresponds to a characteristic lifetime of
P lP - 1.48 x 1016 s, or about 470 million years.

Possible Pulsar Models

These characteristics enabled astronomers to deduce the basic components of pulsars. In
the paper announcing their discovery, Hewish, Bell, and their co-authors suggested that an

oscillating neutron star might be involved, butAmerican astronomer Thomas Gold (1920-
2004) quickly and convincingly argued instead that pulsars are rapidly rotating neutron

stars.
There are three obvious ways of obtaining rapid regular pulses in astronomy:

1. Binary stars. If the orbital periods of a binary star system are to fall in the range of
the observed pulsar periods, then extremely compact stars must be involved-either
white dwarfs or neutron stars. The general form of Kepler's third law, Eq. (2.37),

shows that if two 1 M6 stars were to orbit each other every 0.79 s (the average pulsar

period), then their separation would be only 1.6 x 106 m. This is much less than the

5.5 x 106 m radius of Sirius B, and the separation would be even smaller for more

rapid pulsars. This eliminates even the smallest, most massive white dwarfs from
consideration.

Neutron stars are so small that two of them could orbit each other with a period in
agreement with those observed for pulsars. However, this possibility is ruled out by
Einstein's general theory of relativity. As the two neutron stars rapidly moye through

space and time, gravitational waves are generated that carry energy away from the

binary system. As the neutron stars slowly spiral closer together, their orbital period

decreases, according to Kepler's third law. This contradicts the observed increase in
the periods of the pulsars and so eliminates binary neutron stars as a source of the

radio pulses.32

2. Pulsating stars. As we noted in Section 16.2, white dwarfs oscillate with periods

between 100 and 1000 s. The periods of these nonradial g-modes are much longer

than the observed pulsar periods. Of course, it might be imagined that a radial oscil-

lation is involved with the pulsars. However, the period for the radial fundamental

mode is a few seconds, too long to explain the faster pulses.

A similar argument eliminates neutron star oscillations. Neutron stars are about

108 times more dense than white dwarfs. According to the period-mean density rela-

tion for stellar pulsation (recall Section 14.2), the period of oscillation is proportional

to | / Jþ.This implies that neutron stars should vibrate approximately 104 times more

rapidiy than white dwarfs, with a radial fundamental mode period around 10-a s and

nonradial g-modes between 10-2 s and 10-1 s. These periods are much too short for
the slower pulsars.

32Gravitational waves will be described in more detail in Section 18.6, as will the binary system of two neutron

stars in which these waves have been indirectly detected.
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3. Rotating stars. The enormous angular momentum of a rapidly rotating compact

star would guarantee its precise ctoðk-ht<e behavior. But how fast can a star spin? Its

angular velãcity, a.r, is limited by the ability of gravity to supply the centripetal force

that keeps the siar from flying apart. This constraint is most severe at the star's equator,

where the stellar material moves most rapidly. Ignore the inevitable equatorial bulging

caused by rotation and assume that the star remains circular with radius R and mass

M. Thenthe maximum angular velocity may be found by equating the centripetal

and gravitational accelerations at the equator,

^Molu*R: G 
Rr,

so that the minimum rotation period is Pn'in : 2Í lÚ;^u*, of

Pmin :Ztt
¡3

GM.
(t6.2e)

ForSiriusB,P*inxTs,whichismuchtoolong.However,fora1''4Mgneutronstar,
pmin È 5 x 1014 s. Because this is aminimumrotation time, it can accommodate the

complete range of periods observed for pulsars

Pulsars as Rapidly Rotating Neutron Stars

only one alternative has emerged unscathed from this process of elimination, namely, that

pulsars are rapidly rotating neutron stars. This conclusion was strengthened by the discovery

in 1968 of pulsars associated with the vela and crab supernovae remnants' (Today dozens

of pulsars are known to be associated with supernova remnants') In addition' the Crab

p,rlsar PSR 0531-21 has a very short pulse period of only 0.0333 s' No white dwarf could

rotate 30 times per second wiihout disintegiating, and the last doubts about the identity of

pulsars were laiã to rest. Until the discovery of the millisecond pulsars (P t 10 ms or less)

in l982,the Crab pulsar held the title of the fastest known pulsar (see Fig' 16'.14)'33 ttre

Vela and Crab pulsars not only produce radio bursts but also pulse in other regions of the i

electromagnetic spectrum ranging from radio to gamma rays, including visible flashes as

showninFig. 16.l5.Theseyoungpulsars(andafewothers)alsodisplay^glitcheswhentheir
periods abruptly decrease by a tiny amount (l/.PllP È 10-6 to iO-s); see Fig' 16'16'34

th"." sudden spinups are separated by uneven intervals of several years'

Geminga

The nearest pulsar yet detected is only some 90 pc away' PSR 0633+1746, nicknamed

Geminga, was well known as a strong source of gamma rays for 17 years before its identity 
,

as a pursar was es;;iiJ"J in ßg27s with a period or 0.237 s, Geminga pulses in both

33It is likely that the millisecond pulsars have rapid rotation periods that are a consequence of their membership

in close binary systems; more than half of the known millisecond pulsars belong to binaries' For this reason'

millisecond pulsars will be discussed in more detail in Section 18'6'

3aSee page 602 for a discussion of possible glitch mechanisms'

tt Cr*¡rigomeans 
..does not exist"ln Milanese dialect, accurately reflecting its long-mysterious nature'
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FIGURE 16.15 A sequence of images showing the flashes at visible wavelengths from the Crab

pulsar, located at the center of the Crab Nebula (left). A foreground star can be seen as the constant

point of light above and to the left of the Crab pulsar. (Courtesy of National Optical Astronomy

Observatories.)
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FIGURE 16.1.6 A glitch in the Vela pulsar. (Figure adapted from McCulloch et al., Aust. J. Phys.,

40,725,1987.)
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gamma and X-rays (but not at radio waveler.rgths) and may display glitches. In visible ligh¡,

its absolute magnitude is fainter than 123.

Evidence for a Core-Collapse Supernova Origin

Although at least one-half of all stars in the sky are known to be members of multiple-star

systems, only a few percent of pulsars are known to belong to binary systems. Pulsars also

move much faster through space than do normal stars, sometimes with speeds in excess of
1000 km s-1. Both of these observations are consistent with a supernova origin for pulsars.

This is because it is highly likely that a core-collapse supernova explosion is not perfectly

spherically symmetric, so the forming pulsar could receive a kick, possibly ejecting it frorn

any binary system that it may have been a part of initially. One hypothesis is that the pulsar

is formed with an associated asymmetric jet and that, like a jet engine, the pulsar jet could

launch the pulsar at high speed away from its formation point.

Synchrotron and Curvature Radiation

Observations of the Crab Nebula, the remnant of the ¿..o. 1054 supernova, clearly reveal

its intimate connection with the pulsar at its center. As shown in Fig. 16.15, the expanding

nebula produces a ghostly glow surrounding gaseous filaments that wind throughout it.

Interestingly, if the present rate of expansion is extrapolated backward in time, the nebula

converges to a point about 90 years afier the supernova explosion was observed. Obviously

the nebula must have been expanding more slowly in the past than it is now, which implies

that the expansion is actually accelerating.

In 1953, rhe Russian astronomer I. Shklovsky (1916-1985) proposed that the white light

is synchrotron radiation produced when relativistic electrons spiral along magnetic field

lines. From the equation for the magnetic force on a moving charge q,

F^: q(v x B),

the component of an electron's velocity v perpendicular to the freld lines produces a circular

motion áround the lines, while the component of the velocity along the lines is not affected;

see Fig. 16.11. As they follow the curved field lines, the relativistic electrons accelerate

and emit electromagnetic radiation. It is called synchrotron radiation if the circular motion

around the field lines dominates or curvature radiation if the motion is primarily along

the field lines. In both cases, the shape of the continuous spectrum produced depends on

the energy distribution of the emitting electrons and so is easily distinguished from the

spectrum of blackbody radiation.36 The radiation is strongly linearly polarized in the plane

of the circular motion for synchrotron radiation and is strongly linearly polarized in the plane

of the curving magnetic field line for curvature radiation. As a test of his theory, Shklovsky

predicted thai the white light from the Crab Nebuia would be found to be strongly linearly

36Both synchrotron and curvature radiation are sometimes called nonthermalto distinguish them from the thermal

origin of blackbody radiation.
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FIGURE 16.17 Synchrotron radiation emitted by a relativistic electron as it spirals around a mag-

netic fleld line.

polarized. His prediction was subsequently confirmed as the light from some emitting

regions of the nebula was measured to be 607o linearly polarized.

The Energy Source for the Crab's Synchrotron Radiation

The identification of the white glow as synchrotron radiation raised new questions. It im-
plied that magnetic fields of 10-7 T must permeate the Crab Nebula. This was puzzling

because, according to theoretical estimates, long ago the expansion of the nebula should

have weakened the magnetic field far below this value. Furthermore, the electrons should

have radiated away all of their energy after only 100 years. It is clear that the production

of synchrotron radiation today requires both a replenishment of the magnetic field and a

continuous injection of new energetic electrons. The total power needed for the accelerating

expansion of the nebula, the relativistic electrons, and the magnetic field is calculated to be

about 5 x 1031 
'W, or more than 105 Lo.

The energy source is the rotating neutron star at the heart of the Crab Nebula. It acts as a

huge flywheel and stores an immense amount of rotational kinetic energy. As the star slows

down, its energy supply decreases.

To calculate the rate of energy loss, write the rotational kinetic energy in terms of the

period and moment of inertia of the neutron star:

2n2 I
p2

1"
K - ,Iø"

Then the rate atwhich the rotating neutron star is losing energy is

dK 4tr2l P

dt p3
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Example 16.7.1. Assuming that the neutron star is a uniform sphere with ,R : 10 km and

M : L 4 M", its moment of inertia is approximately

I :?nln': 1.1 x 103s kg -'.
5

Inserting P : 0.0333 s and Þ : 4.21x 10-13 for the Crab pulsar gives dK ldt æ 5.0 x
1031 W. Remarkably, this is exactly the energy required to power the Crab Nebula. The

slowing down of the neutron star flywheel has enabled the nebula to continue shining and

expanding for nearly 1000 Years.
It is important to realize that this energy is not transported to the nebula by the pulse

itself. The radio luminosity of the Crab's pulse is about 1024 W, 200 million times smaller

than the rate atwhich energy is delivered to the nebula. (For older pulsars, the radio pulse

luminosity is typically 10-5 of the spin-down rate of energy loss.) Thus the pulse process,

whatever it may be, is a minor component of the total energy-loss mechanism.

Figure 16.18 shows an HST view of the immediate environment of the Crab pulsar. The

ring-like halo seen on the west side of the pulsar is a glowing torus of gas; it may be the

result of a polar jet from the pulsar forcing its way through the surrounding nebula. Just

to the east of the pulsar, about 1500 AU away, is a bright knot of emission from shocked

material in the jet, perhaps due to an instability in the jet itself. Another knot is seen at

FIGURE 16.18 An HST image of the immediate surroundings of the Crab pulsar' (Figure from

Hester et aL., Ap. J., 448, 240, 1995.)
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a distance of 9060 AU. Low time-resolution "movies" of the central region of the Crab

supernova femnant obtained by long-term observations by HST and Chandra are actually

ubi" to show the expansion anà evolution of that portio-n of the nebula' Some of the wisps

appear to moving outward at between 0.35c and 0'5c'37

The Structure of the Pulses

Before describing the details of a model pulsar, it is worth taking a closer look at the pulses

themselves. As can be seen in Fig. 16.19,the pulses are brief and are received over a small

fraction of the pulse period (typiðally from IVo to 5Vo). Generally, they are received at radio

wave frequencies between roughly 20M.}lz and 10 GHz'

As the pulses travel through interstellar space, the time-varying electric field of the radio

waves 
"uur", 

the electrons that are encountered along the way to vibrate. This process

slows the radio waves below the speed of light in a vacuum, c, with a gleater retardation

at lower frequencies. Thus a shary pulse emitted at the neutron star, with all frequencies

peaking at the same time, is graduá[y drawn out or dispersed as it travels to Earth (see

i,ig. 1O-.ZO). Because more distant pulsars exhibit a. greater pulse dispersion, these time

¿.fuyr can be used to measrile the distances to pulsars. The results show that the known

pulsars are concentrated within the plane of our Milky 'Way Galaxy (Fig' 16'21) at typical

distances of hundreds to thousands of parsecs'

Figure 16.22 shows that there is a substantial variation in the shape of the individual

pulsel received from a given pulsar. Although a typical pulse consists of a number of brief

subpulses, the integratla puis, profile, an average built up by adding together a train of

100 or more pulses, is remarkably stable. Some pulsars have more than one average pulse

profile and aúruptly switch back and forth between them (Fíg. 16'23)' The subpulses may

àpp"u. at random times in the "window" of the main pulse, or they may march across in

u pt"no*"non known as drifting subpulses, as shown in Fig' 16'24' For about 307o of all

l*o*n pulsars, the individual pulses may simply disappear ot null, only to reappear up to

i00 periods later. Drifting subpulses may even emerge from a nulling event in step with

those that entered the nuù. Finally, the radio waves of many pulsars are strongly linearly

polarized (up to l1¡Vo),a feature ihat indicates the presence of a strong magnetic field'

4

Time (s)

FIGURE 16.19 pulses from psR 032g+54with a period of 0:114 s. (Figure adapted from Manch-

ester and Taylor, Pulsars,W. H. Freeman and Co', New York' 1977 ')

37See Hester, etal.,Ap. J.,577,L49,2002'The movies are at

http : / / chandra . harvard . edu/phot o / 2002 / OO52 / movi e s' html'
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PSR 1641-45, Centre freq 1540 MH¿. Chan BW SMHz
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FIGURE 16.20 Dispersion of the pulse from PSR 164l-45. (Figure from Lyne and Graham-Smith,

Pulsar Astronomy,@Cambridge University Press, New York, 1990. Reprinted with the permission of

Cambridge University Press.)

The Basic Pulsar Model

The basic pulsar model, shown in Fig. 16.25,consists of a rapidly rotating neutron star with

a strong dipole magnetic field (two poles, north and south) that is inclined to the rotation

axis at an angle 9. As explained in the previous section, the rapid rotation and the strong

dipole field both arise naturally following the collapse of the core of a supergiant star'

First, we need to obtain a measure of the strength of the pulsar's magnetic field. As the

pulsar rotates, the magnetic field at any point in space will change rapidly. According to

Èaraday's law, this will induce an electric field at that point. Far from the star (near the

light cylinder defined in Fig. 16.26) the time-varying electric and magnetic fields form an

electromagnetic wave that carries energy away from the star. For this particular situation,
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FIGURE 16.21 Distribution of 558 pulsars in galactic coordinates, with the center of the Milky
V/ay in the middle. The clump of pulsars at I :60" is a selection effect due to the ûxed orientation

of the Arecibo radio telescope. (Figure from Taylor, Manchester, and Lyne, Ap, J' Suppl', 88, 529,

1993.)
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FIGURE 16.22 The average of 500 pulses (top) and a series of 100 consecutive pulses (below) for

PSR 1133+16. (Figure adapted from Cordes, Space Sci. Review,24,567,1979.)

the radiation is called magnetic dipole radiation. Although it is beyond the scope of this

book to consider the model in detail, we note that the energy per second emitted by the

rotating magnetic dipole is
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F'IGURE 16.23 Changes in the integrated pulse profile of PSR 1231+25 due to mode switching.
This pulsar displays five distinct subpulses. (Figure adapted from Bartel et al., Ap. J.,258,77 6,1982.)
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FIGURE 16.24 Drifting subpulses for two pulsars; note that PSR 0031-07 also nulls. (Figure from
Taylor et al., Ap. J., 195,513, t975.)

where B is the field strength at the magnetic pole of the star of radius R. The minus sign
indicates that the neutron star is drained of energy, causing its rotation period, P, to increase.

Note that the factor of I I Pa means that the neutron star will lose energy much more quickly
at smaller periods. Since the average pulsar period is 0.79 s, most pulsars are born spinning
considerably faster than their current rates, with typical initial periods of a few milliseconds.

Assuming that all of the rotational kinetic energy lost by the star is carried away by

magnetic dipole radiation, dE ldt : dK ldt. Using Eqs. (16.30) and (16.31), this is
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FIGURE 16.25 Abasic pulsar model.

This can be easily solved for the magnetic field at the pole of the neutron star,

1
F¿--" - 2n R3 sin1

3p,oc3I P P

2n

Example 16.7.2, V/e will estimate the magnetic field strength at the poles of the Crab

pulsar (PSR 0531-21),with P : 0.0333 s and P - 4.21, x 10-13. Assuming that0 : 90o,

Eq. (16.33) then gives a value of 8.0 x 108 T. As we have seen, the Crab pulsar is interacting

with the dust and gas in the surrounding nebula, so there are other torques that contribute to

slowing down the pulsar's spin. This value of B is therefore an overestimate; the accepted

value of ttr" Crab pulsar's magnetic field is 4 x 10s T.38 Values of B around 108 T are

typical for most pulsars.

However,repeatingthecalculationforPSR 1937+2l4with P :0.00156s, P : 1.05 x

10-le, and assuming the same value for the moment of inertia, we find the magnetic field

strength to be only B : 8.6 x 10a T. This much smaller value distinguishes the millisecond

pulsars and provides another hint that fhese fastest pulsars may have a different origin or

environment.

Correlation Between Period Derivatives and Pulsar Classes

Figure 16.27 shows the distribution of period derivatives for pulsars as a function of pulsar

period. Although the vast majority of pulsars fall into a large grouping in the middle of

38The suggestion that the Crab Nebula is powered by the magnetic dipole radiation from a rotating neutron star

was made by the Italian astronomer Franco Pacini in 1967 , a year beþre the discovery of pulsars !
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FIGURE 16.26 The light cylinder around a rotating neutron star. The cylinder's radius .R" is where

a point co-rotating with the neutron star would move at the speed of light: R, : c /a : cP lLtr .

the plot, the millisecond pulsars show a clear correlation with pulsars known to exist in
binary systems. Other classes of pulsars are also evident: Pulsars known to emit energy at

X-ray wavelengths have the longest periods and have the largest period derivatives, whereas

high-energy pulsars that emit energies from radio frequencies through the infrared or higher

frequencies tend to have larger values of Þ but otherwise typical periods. Note that although

nearly all of the pulsars represented in Fig. 16.21 have.positive values of P, some of them,

primarily the binary pulsars, actually have values of P < 0, meaning that their periods are

decreasing (they are speeding up!). Figure 16.27 may be compared with the histogram of
pulsar periods shown in Fig. 16.14.

Toward a Model of Pulsar Emission

Developing a detailed model of the pulsar's emission mechanism has been an exercise in
frustration because almost every observation is open to more than one interpretation. The

emission of radiation is the most poorly understood aspect of pulsars, and at present there

is agreement only on the most general features of how a neutron star manages to produce

radio waves. The following discussion summarizes a popular model of the pulse process.
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FIGURE 16.27 The absolute value of the time derivative of period (lÉl) versus period (P)

for all pulsars for which P has been determined. Special classes of pulsars are depicted sepa-

rately: Anomalous X-ray pulsars (AXP) or Soft Gamma Repeaters (SGR) with pulsations, high-

energy pulsars with emitted frequencies between radio and infrared or higher, and binary pulsars

(with one or more known binary companions) are depicted separately. All remaining pulsars are

indicated as "other." Note the abundance of known binary pulsars among the millisecond pul-

sars. (Data from Manchester, Hobbs, Teoh, and Hobbs, A. J., 129, 1993,2005. Data available at

http: / /wwu. atnf . csiro . aulresearch/pulsar/psrcat.)

You should keep in mind, however, that there is as yet no general consensus on whether the

object being discussed actually occurs in nature or only in the minds of astrophysicists !

It is at least certain that the rapidly changing magnetic field near the rotating pulsar

induces a huge electric field at the surface. The electric field of about 6.3 x 1010 V m-l
easily overcomes the pull of gravity on charged particles in the neutron star's crust. For

example, the electric force on a proton is about 300 million times stronger than the force of
gravit¡ and the ratio of the electric force on an electron to the gravitational force is even more

overwhelming. Depending on the direction of the electric field, either negatively charged

electrons or positively charged ions will be continuously ripped from the neutron star's

polar regions. This creates a magnetosphere of charged particles surrounding the pulsar

that is dragged around with the pulsar's rotation. However, the speed of the co-rotating

particles cannot exceed the speed of light, so at the light cylinder the charged particles are

spun away, carryingthe magnetic field with them in a pulsar "wind." Such a wind may be

responsible for the replenishment of the Crab Nebula's magnetic field and the continual

delivery of relativistic particles needed to keep the nebula shining.

The charged particles ejected from the vicinity of the pulsar's magnetic poles are quickly

accelerated to relativistic speeds by the induced electric field. As the electrons follow the
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curved magnetic field lines, they emit curvature radiation in the form of energetic garnrna_

ray photons. This radiation is emitted in a narrow beam in the instantaneous direction
of motion of the electron, a consequence of the relativistic headlight effect discussed i¡
Section 4.3.Each gamma-ray photon has so much energy that it can spontaneously convert
this energy into an electron-positron pair via Einstein's relation E : mcz. (This process,

described by y --> e- I ei , is just the inverse of the annihilation process mentioned in
Section 10.3 for the Sun's interior.) The electrons and positrons are accelerated and in turn
emit their own gamma rays, which create more electron-positron pairs, and so on. A cascade

of pair production is thus initiated near the magnetic poles of the neutron star. Coherent
beams of curvature radiation emitted by bunches of these particles may be responsible for
the individual subpulses that contribute to the integrated pulse profile.

As these particles continue to curve along the magnetic field lines, they emit a continuous
spectrum of curvature radiation in the forward direction, producing a narrow cone of radio
waves radiating from the magnetic polar regions.3e As the neutron star rotates, these radio
waves sweep through space in a way reminiscent of the light from a rotating lighthouse
beacon. If the beam happens to fall on a radio telescope on a blue-green planet in a distant
Solar System, the astronomers there will detect a regular series of brief radio pulses.

As the pulsar ages and slows down, the structure of the underlying neutron star must
adapt to the reduced rotational stresses. As a consequence, perhaps the crust settles a fraction
of a millimeter and the star spins faster as a result of its decreased moment of inertia, or
perhaps the superfluid vortices in the neutron star's core become momentarily "unpinned"
from the underside of the solid crust where they are normally attached, giving the crust
a sudden jolt. Either possibility could produce a small but abrupt increase in the rotation
speed, and the astronomers on Earth would record a glitch for the pulsar (recall Fig. 16.16).

The question of a pulsar's final fate, as its period increases beyond several seconds,

has several possible answers. It may be that the neutron star's magnetic field, originally
produced by the collapse of the pre-supernova star's degenerate stellar core, decays with
a characteristic time of 9 million years or so. Then, at some future time when the pulsar's
period has been reduced to several seconds, its magnetic field may no longer be strong
enough to sustain the pulse mechanism, and the pulsar turns off. On the other hand, it may
be that the magnetic field does not decay appreciably but is maintained by a dynamo-like
mechanism involving the differentiai rotation of the crust and core of the neutron star.

However, rotation itself is an essential ingredient of any pulsar emission mechanism. As
a pulsar ages and slows down, its beam will become weaker even if the magnetic field
does not decay. In this case, the radio pulses may become too faint to be detected as the

pulsar simply fades below the sensitivity of radio telescopes. The timescale for the decay

of a neutron star's magnetic field is a matter of considerable debate, and both scenarios are

consistent with the observations.

Magnetars and Soft Gamma Repeaters

The preceding sketch reflects the current state of uncertainty about the true nature of pulsars.
There are few objects in astronomy that offer such a wealth of intriguing observational detail

39The visible , X-ruy, and gamma-ray pulses received from the Crab, Vela, Circinus, and Geminga pulsars may

originate farther out in the pulsar's magnetosphere.

IF
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and yet are so lacking in a consistent theoretical description. Regardless of whether the basic

picture outlined is vindicated or is supplanted by another view (perhaps involving a disk of
material surrounding the neutron star), pulsar theorists will continue to take advantage of
this unique natural laboratory for studying matter under the most extreme conditions.

To complicate the picture further, it is now believed that a class of extremely magnetic

neutron stars known as magnetars exists. Magnetars have magnetic field strengths that

are on the order of 1011 T, several orders of magnitude greater than typical pulsars. They

also have relatively slow rotation periods of 5 to 8 seconds. Magnetars were first proposed

to explain the soft gamma repeaters (SGRs), objects that emit bursts of hard X-rays and

soft gamma-rays with energies of up to 100 keV (recall Fig. 16.27). Only a few SGRs are

known to exist in the Milky Way Galaxy, and one has been detected in the Large Magellanic

Cloud. Each of the SGRs is also known to correlate with supernovarefltnants of fairly young

age (- 100 y). This would suggest that magnetars, if they are the source of the SGRs, are

short-lived phenomena. Perhaps the Galaxy has many "extinct," or low-energy, magnetars

scattered through it.
The emission mechanism of intense X-rays from SGRs is thought to be associated with

stresses in the magnetic fields of magnetars that cause the surface of the neutron star to

crack. The resulting readjustment of the surface produces a super-Eddington release of
energy (roughly 103 to 104 times the Eddington luminosity limit in X-rays). In order to

obtain such high luminosities, it is believed that the radiation must be confined; hence the

need for very high magnetic freld strengths.

Magnetars are distinguished from ordinary pulsars by the fact that the energy of the

magnetar's field plays the major role in the energetics of the system, rather than rotation, as

is the case for pulsars. Clearly much remains to be learned about the exotic environment of
rapidly rotating, degenerate spheres with radii on the order of 10 km and densities exceeding

the density of the nucleus of an atom.
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