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transition to the white dwarf stage.) All of these stars have multiple periods, simultaneously
displaying at least 3, and as many as l25 different frequencies. Astronomers are deciphering
the data to obtain a detailed look at the structure of white dwarfs.

16.3ITHE PHYSICS OF DECENERATE MATTER

We now delve below the surface to ask, What can support a white dwarf against the relentless
pull of its gravity? It is easy to show (Problem 1 6.4) that normal gas and radiation pressure are
completely inadequate. The answer was discovered in I926by theBritish physicist Sir Ralph
Howard Fowler (1889-1944), who applied the new idea of the Pauli exclusion principle
(recall Section 5.4) to the electrons within the white dwarf. The qualitative argument that
follows elucidates the fundamental physics of the electron degeneracy pressure described
by Fowler.

The Pauli Exclusion Principle and Electron Degeneracy

Any system-whether an atom of hydrogen, an oven filled with blackbody photons, or
a box f,lled with gas particles-consists of quantum states that are identified by a set
of quantum numbers. Just as the oven is filled with standing waves of electromagnetic
radiation that are described by three quantum numbers (specifying the number of photons
of wavelength ), traveling in the .r-, y-, and e-directions), a box of gas particles is filled with
standing de Broglie waves that are also described by three quantum numbers (specifying
the particle's component of momentum in each of three directions). If the gas particles
are fermions (such as electrons or neutrons), then the Pauli exclusion principle allows at
most one fermion in each quantum state because no two fermions can have the same set of
quantum numbers.

In an everyday gas at standard temperature and pressure, only one of every 107 quantum
states is occupied by a gas particle, and the limitations imposed by the Pauli exclusion
principle become insignificant. Ordinary gas has a thermal pressure that is related to its
temperature by the ideal gas law. However, as energy is removed from the gas and its
temperature falls, an increasingly large fraction of the particles are forced into the lower
energy states. If the gas particles are fermions, only one particle is allowed in each state; thus
all the particles cannot crowd into the ground state. Instead, as the temperature of the gas is
lowered, the fermions will fill up the lowest available unoccupied states, starting with the
ground state, and then successively occupy the excited states with the lowest energy. Even in
the limit Z -+ 0 K, the vigorous motion of the fermions in excited states produces a pressure
in the fermion gas. At zero temperature, all of thelower energy states andnone of the higher
energy states are occupied. Such a fermion gas is said to be completely degenerate.

The Fermi Energy

The maximum energy (e¡) of any electron in a completely degenerate gas at Z : 0 K is
known as the Fermi energy; see Fig. 16.5. To determine this limiting energy, imagine a
three-dimensional box of length ,L on each side. Thinking of the electrons as being standing
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FIGURE 16.5 Fraction of states of energy e occupied by fermions. For Z : 0, all fermions

t 1 t F,but for T > 0, some fermions have energies in excess of the Fermi energy'

waves in the box, we note that their wavelengths in each dimension are given by
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N), and N. are integer quantum numbers associated with each dimension.

calling that the de Broglie wavelength is related to momentum (Eq. 5'17),

hN, hN, hN,
P*: 2;, Py:ZL, Pt:jt'

Now, the total kinetic energy of a particle can be written as
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where N2 : N? + N?, + N.2, analogous to the "distance" from the origin in "N

the point (Nr, Ny, Nz).
The total number of electrons in the gas corresponds to the total number of unique

tum numbers, N, , Nr, and N. times two. The factor of two arises from the fact that

are spin I particles, so ms - +I12 implies that two electrons can have the same

tion ãf Ñ*, N, and N. and still posses a unique set of four quantum numbers (
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spin).Now,eachintegercoordinateinN-space(e.g.,N':1,Ny:3,Nr:1)corresponds
to the quantum state of two electrons. With a large enough sample of electrons, they can be

thought of as occupying each integer coordinate out to a radius of N + z.t

but only for the positive octant of N-space where N' > 0, Ny = 0, and N. > means

that the total number of electrons will be

N" :2(å) (i""')
Solving for N yields

r13

N-

Substituting into Eq. (16.2) and simplifying, we find that the Fermi energy is given by

(*)

,o:#q3n'r¡',, (16.3)

where m is the mass of the electron and n : N 
" 
/ L3 is the number of electrons per unit vol-

ume. The average energy per electron atzerotemperature is Jep. (Of course the derivation

above applies for any fermion, not just electrons.)

The Condition for Degeneracy

At any temperature above absolute zero, some of the states with an energy less than e r will
become vacant as fermions use their thermal energy to occupy other, more energetic states.

Although the degeneracy will not be precisely complete when T > 0 K, the assumption of

complete degeneracy is a good approximation at the densities encountered in the interior of
a white dwarf. Al1but the most energetic particles will have an energy less than the Fermi

energy. To understand how the degree of degeneracy depends on both the temperature and

the density of the white dwarf, we first express the Fermi energy in terms of the density of
the electron gas. For full ionization, the number of electrons per unit volume is

.,:(ffi) (ffi):(j)h, Q64)

where Z and A arc the number of protons and nucleons, respectively, in the white dwarf's

nuclei, and m¡¡ is the mass of a hydrogen atom.e Thus the Fermi energy is proportional to

the 2/3 power of the density,
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9The hydrogen mass is adopted as a representative mass of the proton and neutron.

(16.s)
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Now compare the Fermi energy with the average thermal energy of an electron, tk?
k is Boltzmann's constant; see Eq. 10.17). In rough terms, if -1 kT < ep, then an2

electron will be unable to make a transition to

be degenerate. That is, for a degenerate gas,

an unoccupied state, and the electron

213
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or

forZlA-0.5.Deflning

D = 126l K m2 kg-'/t,

the condition for degeneracy may be written as

h' h l# (1)l''' : r26'1K m2 ks-z t t

#'"
The smaller the value of. T ¡ pzlt,the more degenerate the gas.

Example 16.3.1. How important is electron degeneracy at the centers of the

Sirius B? At the center of the standard solar model (see Table 11'1), T, : I'570

and p,: r.527 x los kg m-3. Then

T"-å; :5500 K m2 kg-213 ' D.
¿t5

Pc'

For Sirius B, the values of the density and central temperature

ttu'z :37Km2kg-z¡z <D'
p;'"

In the Sun, electron degeneracy is quite weak and plaYs a very minor role,

only a few tenths of a percent of the central pressure. However, as the Sun

evolve, electron degeneracY will become increasinglY important (Fig. 16.6). As

Section L3.2,theSun will develop a degenerate helium core while on the red giant

of the H-R diagram, leading eventuallY to a core helium flash. Later, on the

giant branch, the Progenitor of a carbon-oxygen white dwarf will form in the

revealed when the Sun's surface layers are ejected as a PlanetarY nebula.
estimated above

socompletedegeneracyisavalidassumptionforSiriusB
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FIGURE 16.6 Degeneracy in the Sun's center as it evolves. (Data from Mazzitelli and D'Antona,

Ap. J.,311,762,1986.)

Electron Degeneracy Pressure

'We now estimate the electron degeneracy pressure by combining two key ideas of quantum

mechanics:

1. The Pauli exclusion principle, which allows at most one electron in each quantum

state; and

2. Heisenberg's uncertainty principle in the form of Eq. (5.19),

Lx L'P' x f¿'

which requires that an electron conf,ned to a small volume of space have a colre-

spondingþ high uncertainty in its momentum. Because the minimum value of the

electron's momentum, Pmin, is approximately L,p, more closely confined electrons

will have greater momenta.

'When 
we make the unrealistic assumption that all of the electrons have the same momentum,

p,Eq,. (10.S) for the pressure integral becomes

1, * 
Zft"pu,

where n, is the total electron number density.

In a completely degenerate electron gas, the electrons are packed as tightly as possible,

and for a uniform number density of n", the separation between neighboring electrons is
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about n;'/t.However, to satisfy the Pauli exclusion principle, the electrons must

their identities as different particles. That is, the uncertainty in

than their physical separation. Identifying L'x æ nr'/' for

degeneracy, we can use Heisenberg's uncertainty relation to

electron. In one coordinate direction,

PTNLP,*LNhntlt

(see Example 5.4.2).However, in a three-dimensional gas each of the directions is

likely, implying that

which is just a statement of the equipartition of energy among all the coordinate

Therefore,

p, : p2, + rj + p? :3p2,

or

P: JjP''

Using Eq. (16.a) for the electron number density with full ionization gives

p N r.h[(i) #,)',,
For nonrelativistic electrons, the speed is

p
me

their positions cânîot be
the limiting case of
estimate the momentu¡¡
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Inserting Eqs. ( 1 6.4), ( 1 6. 8), and ( 1 6. 1 0) into Eq. (16.7) for the electron degeneracy

results in

,*rt(í) h)'''
This is roughly a factor of two smaller than the exact expression for the pressure

completely degenerate, nonrelativistic electron gas P,

3nt)r/t fL'z
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Using Z lA :0.5 for a carbon-oxygen white dwarf, Eq. (16.12) shows that the elec-

tron degeneracy pressure available to support a white dwarf such as Sirius B is about

1.9 x 1022 N m-2, within a factor of two of the estimate of the central pressure made previ-

ously (Eq. 16.1). Electron degeneracy pressure is responsible for maintaining hydrostatic

equilibrium in a white dwarf.
You may have noticed that Eq. (16.12) is the polytropic equation of state, P : Kp5/3,

corresponding to n :1.5. This implies that the extensive tools associated with the Lane-

Emden equation (Eq. 10.110), developed beginning on page 334, canbe used to study these

objects. Of course, to understand them in detail requires careful numerical calculations

involving the details of the complex equation of state of partially degenerate gases, nonzero

temperatures, and changing compositions.

1 6.4 I THE CHANDRASEKHAR LIMIT

The requirement that degenerate electron pressure must support a white dwarf star has

profound implications. In 1931, at the age of Zl,the Indian physicist Subrahmanyan Chan-

drasekhar announced his discovery that there is a maximum mass for white dwarfs.In this

section we will consider the physics that leads to this amazing conclusion.

The Mass-Volume Relation

The relation between the radius, .Ry¿, of a white dwarf and its maSS, My¡6, mà! be found

by setting the estimate of the central pressure, Eq. (16.1), equal to the electron degeneracy

pressure, Eq. (16.12):

or

(16.12)

2 ^ ., ^., (tr')'tt rr, 
I (Z\ !_1t,, .1nGo"R"*o:'J- * L\Ã) *r l

Using p : M*¿/tu Rl¿ (assuming constant density), this leads to an estimate of the radius

of the white dwarf,

R*¿È s##æt(i) *l''' (1613)

For a 1 Ms carbon-oxygen white dwarf, R x 2.9 x 106 m, too small by roughly a factor of
two but anacceptable esiimate. More important is the surprising implication that M'¿Rlo :
constant, or

Mw¿Vwt: constant. (16.r4)


