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The Eve of a New World View

This section draws to a close at the end of the nineteenth century. The physicists and
astronomers of the time believed that all of the principles that govern the physical world
had finally been discovered. Their scientific world view, the Newtonian paradigm, was the
culmination of the heroic, golden age of classical physics that had flourished for over three
hundred years. The construction of this paradigm began with the brilliant observations of
Galileo and the subtle insights of Newton. Its architecture was framed by Newton’s laws,
supported by the twin pillars of the conservation of energy and momentum and illuminated
by Maxwell’s electromagnetic waves. Its legacy was a deterministic description of a universe
that ran like clockwork, with wheels turning inside of wheels, all of its gears perfectly
meshed. Physics was in danger of becoming a victim of its own success. There were no
challenges remaining. All of the great discoveries apparently had been made, and the only
task remaining for men and women of science at the end of the nineteenth century was
filling in the details.

However, as the twentieth century opened, it became increasingly apparent that a crisis
was brewing. Physicists were frustrated by their inability to answer some of the simplest
questions concerning light. What is the medium through which light waves travel the vast
distances between the stars, and what is Earth’s speed through this medium? What deter-
mines the continuous spectrum of blackbody radiation and the characteristic, discrete colors
of tubes filled with hot glowing gases? Astronomers were tantalized by hints of a treasure
of knowledge just beyond their grasp.

It took a physicist of the stature of Albert Einstein to topple the Newtonian paradigm
and bring about two revolutions in physics. One transformed our ideas about space and
time, and the other changed our basic concepts of matter and energy. The rigid clockwork
universe of the golden era was found to be an illusion and was replaced by a random
universe governed by the laws of probability and statistics. The following four lines aptly
summarize the situation. The first two lines were written by the English poet Alexander Pope
(1688-1744), a contemporary of Newton; the last two, by Sir J. C. Squire (1884-1958),
were penned in 1926.

Nature and Nature’s laws lay hid in night:
God said, Let Newton be! and all was light.

It did not last: the Devil howling “Ho!
Let Einstein be!” restored the status quo.

3.5 MTHE QUANTIZATION OF ENERGY

One of the problems haunting physicists at the end of the nineteenth century was their
inability to derive from fundamental physical principles the blackbody radiation curve de-
picted in Fig. 3.8. Lord Rayleigh'* (1842-1919) had attempted to arrive at the expression by
applying Maxwell’s equations of classical electromagnetic theory together with the results

4Lord Rayleigh, as he is commonly known, was born John William Strutt but succeeded to the title of third Baron
Rayleigh of Terling Place, Witham, in the county of Essex, when he was thirty years old.
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from thermal physics. His strategy was to consider a cavity of temperature 7" filled wits
blackbody radiation. This may be thought of as a hot oven filled with standing waves of
electromagnetic radiation. If L is the distance between the oven’s walls, then the permitied
wavelengths of the radiationare A = 2L, L,2L /3,2L/4,2L/5, .. .,extending forever to in-
creasingly shorter wavelengths.'> According to classical physics, each of these wavelengths
should receive an amount of energy equal to kT, where k = 1.3806503 x 1072 J K" is
Boltzmann’s constant, familiar from the ideal gas law PV = NkT. The result of Rayleigh's
derivation gave
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By = (valid only if A is long) (3.20)
which agrees well with the long-wavelength tail of the blackbody radiation curve. However.
a severe problem with Rayleigh’s result was recognized immediately; his solution for B; (T}
grows without limit as A — 0. The source of the problem is that according to classical
physics, an infinite number of infinitesimally short wavelengths implied that an unlimited
amount of blackbody radiation energy was contained in the oven, a theoretical result so
absurd it was dubbed the “ultraviolet catastrophe.” Equation (3.20) is known today as the
Rayleigh-Jeans law.'®

Wien was also working on developing the correct mathematical expression for the black-
body radiation curve. Guided by the Stefan-Boltzmann law (Eq. 3.16) and classical thermal
physics, Wien was able to develop an empirical law that described the curve at short wave-
lengths but failed at longer wavelengths:

B.(F)=a)ie b, (valid only if A is short) (3.21)
where a and b were constants chosen to provide the best fit to the experimental data.

Planck’s Function for the Blackbody Radiation Curve

By late 1900 the German physicist Max Planck (1858-1947) had discovered that a modi-
fication of Wien’s expression could be made to fit the blackbody spectra shown in Fig. 3.8
while simultaneously replicating the long-wavelength success of the Rayleigh—Jeans law
and avoiding the ultraviolet catastrophe:

a/r’
B =gy

In order to determine the constants @ and b while circumventing the ultraviolet catas-
trophe, Planck employed a clever mathematical trick. He assumed that a standing electro-
magnetic wave of wavelength A and frequency v = ¢/A could not acquire just any arbitrary
amount of energy. Instead, the wave could have only specific allowed energy values that

I5This is analogous to standing waves on a string of length L that is held fixed at both ends. The permitted
wavelengths are the same as those of the standing electromagnetic waves.

16 James Jeans (1877-1946), a British astronomer, found a numerical error in Rayleigh’s original work; the corrected
result now bears the names of both men.
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were integral multiples of a minimum wave energy.!” This minimum energy, a quantum of
energy, is given by Av or hc/A, where h is a constant. Thus the energy of an electromagnetic
wave is nhv or nhc/A, where n (an integer) is the number of quanta in the wave. Given this
assumption of quantized wave energy with a minimum energy proportional to the frequency
of the wave, the entire oven could not contain enough energy to supply even one quantum
of energy for the short-wavelength, high-frequency waves. Thus the ultraviolet catastrophe
would be avoided. Planck hoped that at the end of his derivation, the constant / could be
set to zero; certainly, an artificial constant should not remain in his final result for B, (T).
Planck’s stratagem worked! His formula, now known as the Planck function, agreed
wonderfully with experiment, but only if the constant 4 remained in the equation: '8

2hc? /A5

Bu(T) = PV Y I T

(8:22)

Planck’s constant has the value & = 6.62606876 x 10734 J s.

The Planck Function and Astrophysics

Finally armed with the correct expression for the blackbody spectrum, we can apply Planck’s
function to astrophysical systems. In spherical coordinates, the amount of radiant energy per
unit time having wavelengths between A and A + d emitted by a blackbody of temperature
T and surface area d A into a solid angle d2 = sin 6 df d¢ is given by

B, (T)d)dA cos0d2 = B;(T)d)dA cosb sin6 db do; (3.23)

see Fig. 3.9.° The units of B, are therefore W m~> sr~!. Unfortunately, these units can
be misleading. You should note that “W m™>” indicates power (energy per unit time) per
unit area per unit wavelength interval, W m~ m~!, not energy per unit time per unit
volume. To help avoid confusion, the units of the wavelength interval dA are sometimes
expressed in nanometers rather than meters, so the units of the Planck function become
W m~2nm~' sr~!, as in Fig. 3.8.%°

At times it is more convenient to deal with frequency intervals dv than with wavelength
intervals dA. In this case the Planck function has the form

2hv3/c?

B,(T) = VRE.

(3.24)

17 Actually, Planck restricted the possible energies of hypothetical electromagnetic oscillators in the oven walls
that emit the electromagnetic radiation.

181t is left for you to show that the Planck function reduces to the Rayleigh-Jeans law at long wavelengths
(Problem 3.10) and to Wien’s expression at short wavelengths (Problem 3.11).

9Note that dA cos 6 is the area d A projected onto a plane perpendicular to the direction in which the radiation is
traveling. The concept of a solid angle will be fully described in Section 6.1.

20The value of the Planck function thus depends on the units of the wavelength interval. The conversion of di
from meters to nanometers means that the values of B, obtained by evaluating Eq. (3.22) must be divided by 102,



