Soft/granular matter

This field studies large systems of interacting entities

- sand
- grain
- bubbles
- cells
- living beings

Pachinko balls Otaku Lounge, 2016

Oil droplets in water+glycerol E.R. Weeks, 2007

Pilgrims on Hajj NY Times, 2015

Soft/granular matter: Jamming

"Jammed" means that entities have undergone a phase transition to a disordered, yet rigid, state which can withstand pressure and shear forces without yielding.

Siemens and van Hecke, 2010

Relevant physics: Mechanics and (non-equilibrium) Statistical Mechanics

The jammed state is one of stable mechanical equilibrium

-Tang and Behringer, 2011

Jamming is theoretically interesting and has real-world importance

a) Jamming phase diagram b) soft robotic gripper, Gouad, 2012

Jamming is theoretically interesting and has real-world importance

The physics of cancer cells, work of M.L. Manning reported in Quanta Mag. 2016

CELLULAR TRAFFIC JAM

If cells are packed tightly enough, they can get "jammed" into place, like cars and coffee beans. The transition between a jammed and an unjammed state can be tracked by looking at a number called the "shape index," which quantifies a cell's shape. Spherical, symmetrical cells have a low index and stick in place, while oblong, irregular cells have a high shape index and can move about.

Our research goal: tailoring jammed structure and dynamics via array of obstacles or "pins"

The physics of cancer cells, work of M.L. Manning reported in Quanta Mag. 2016

Wang et al, Nature Materials, 2014

Simulations of jamming in the presence of "pins"

We have many theory-rich and real-world applicable results from our **simulations**: cooling down soft discs and asking how pin density and geometry affect

Simulations of jamming in the presence of "pins"

We have many theory-rich and real-world applicable results from our **simulations**: cooling down soft discs and asking how pin density and geometry affect

Point J •Network of contact forces

Simulations of jamming in the presence of "pins"

We have many theory-rich and real-world applicable results from our **simulations**: cooling down soft discs and asking how pin density and geometry affect

Point J •Network of contact forces • Orientational order

Simulations of jamming in the presence of "pins"

We have many theory-rich and real-world applicable results from our **simulations**: cooling down soft discs and asking how pin density and geometry affect

Point J •Network of contact forces • Orientational order
•Elastic constants

Simulations of jamming in the presence of "pins"

We have many theory-rich and real-world applicable results from our **simulations**: cooling down soft discs and asking how pin density and geometry affect

Point J •Network of contact forces • Orientational order
Elastic constants • positional order

New platform and simulation environment:
Supercomputers: NSF XSEDE

LAMMPS (Sandia Labs)

XSEDE

Swat's XSEDE "campus champion" Andy Ruether

New simulations:

- Molecular Dynamics (MD) Grains evolve in time under Newton's laws.
- Study structure of stress fields and dynamics of "soft spots" where rearrangements are likely to occur.
- future: Machine learning
- future: Active matter

Karimi and Maloney, 2015

Manning and Liu, 2010

New collaboration:

• Funded by NSF DMR-1905474 (2019-2022)

Couette cell will show displacements and network of stresses for grains in presence of pins

 Work with Bucknell Profs. Brian Utter (experiment) and Katharina Vollmayr-Lee (computation)

Do you want to put research with me on your preference form? 🙄

For Summer 2020 I ask that students have:

- Taken at least one CS course
- Taken Phys. 7 and Phys. 13

I might give preference to students who are able to do a few hours per week (paid!) of preparation in Spring, 2020.

Ditto for students who are able to continue their research (again, a few hours a week is enough) in Fall, 2020.

I am on leave this year ...

If you want to work with me, you **don't have to** come see me individually. Just put me on your preference form. **C**

If you however are interested in talking to me individually, you are welcome to email me for an appointment!