Soft/granular matter

This field studies large systems of interacting entities

- sand
- grain
- bubbles
- cells
- living beings
- ...

Oil droplets in water + glycerol
E.R. Weeks, 2007

Pachinko balls
Otaku Lounge, 2016

Pilgrims on Hajj
NY Times, 2015
“Jammed” means that entities have undergone a phase transition to a disordered, yet rigid, state which can withstand pressure and shear forces without yielding.

Siemens and van Hecke, 2010
Relevant physics: Mechanics and (non-equilibrium) Statistical Mechanics

The jammed state is one of stable mechanical equilibrium

-Tang and Behringer, 2011
Jamming is theoretically interesting and has real-world importance

1/density

(a) Jamming phase diagram b) soft robotic gripper, Gouad, 2012
Jamming is theoretically interesting and has real-world importance

The physics of cancer cells, work of M.L. Manning reported in Quanta Mag. 2016
Our research goal: tailoring jammed structure and dynamics via array of obstacles or "pins"

The physics of cancer cells, work of M.L. Manning reported in Quanta Mag. 2016

Simulations of jamming in the presence of "pins"

We have many theory-rich and real-world applicable results from our simulations:
cooling down soft discs and asking how pin density and geometry affect

- Point J
Simulations of jamming in the presence of "pins"

We have many theory-rich and real-world applicable results from our simulations: cooling down soft discs and asking how pin density and geometry affect

- Point J
- Network of contact forces
Simulations of jamming
in the presence of "pins"

We have many theory-rich and real-world applicable results from our simulations: cooling down soft discs and asking how pin density and geometry affect

- Point J
- Network of contact forces
- Orientational order
Simulations of jamming in the presence of "pins"

We have many theory-rich and real-world applicable results from our simulations: cooling down soft discs and asking how pin density and geometry affect

- Point J
- Network of contact forces
- Orientational order
- Elastic constants
Simulations of jamming in the presence of "pins"

We have many theory-rich and real-world applicable results from our simulations: cooling down soft discs and asking how pin density and geometry affect

- Point J
- Network of contact forces
- Orientational order
- Elastic constants
- **positional order**
New platform and simulation environment:
• Supercomputers: NSF XSEDE
• LAMMPS (Sandia Labs)
New simulations:

- Molecular Dynamics (MD)
 Grains evolve in time under Newton's laws.

- Study structure of stress fields and dynamics of "soft spots" where rearrangements are likely to occur.

- **future**: Machine learning
- **future**: Active matter

Karimi and Maloney, 2015

Manning and Liu, 2010
New collaboration:

• Funded by NSF DMR-1905474 (2019-2022)

• Work with Swat Prof. Cacey Bester (experiment) and her students

• Work with Bucknell Profs. Brian Utter (experiment) and Katharina Vollmayr-Lee (computation)
Research with Amy Graves
Summer 2020

Do you want to put research with me on your preference form? 😊

For Summer 2020 I ask that students have:

• Taken at least one CS course
• Taken Phys. 7 and Phys. 13

I might give preference to students who are able to do a few hours per week (paid!) of preparation in Spring, 2020.

Ditto for students who are able to continue their research (again, a few hours a week is enough) in Fall, 2020.
I am on leave this year ...

If you want to work with me, you don't have to come see me individually. Just put me on your preference form. 🎉

If you however are interested in talking to me individually, you are welcome to email me for an appointment!