
Modeling O-Star X-Ray Emission-Line Profiles:

Fitting a Parameterized, Spherically-Symmetric Wind
Model to Chandra Spectra

Swarthmore College Senior Thesis in Astrophysics

Swarthmore College Department of Physics and Astronomy,

500 College Ave., Swarthmore PA 19081

Roban Hultman Kramer

roban@sccs.swarthmore.edu

http://www.sccs.swarthmore.edu/˜roban/

advisor: David H. Cohen

mailto:roban@sccs.swarthmore.edu
http://www.sccs.swarthmore.edu/~roban/


– 2 –

Abstract

X-ray emission from hot (O- and B-type) stars is a long-standing astrophysical

puzzle. High-resolution x-ray spectroscopy of hot stars resolves emission line pro-

file shapes, offering direct insight into the dynamics and spatial distribution of the

x-ray-emitting plasma. The O supergiant ζ Puppis shows broad, blueshifted, and

asymmetric line profiles, generally consistent with the wind-shock picture of OB star

X-ray production. Here, for the first time, this is demonstrated quantitatively by fit-

ting a spherically-symmetric phenomenological wind model to a Chandra spectrum of

ζ Puppis. The results of the fits to eight lines are presented here. Statistically good

fits to seven of the lines are achieved, with extracted parameters providing constraints

on the amount of absorption in the wind and the minimum radius of x-ray emission.

The results indicate that a modest amount of wind attenuation is required, which is

inconsistent with previous theoretical calculations of continuum optical depths. The

implications of these results are discussed in light of other recent observational and

theoretical work.
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1. Introduction to hot star winds

All stars exchange material with their environments through accretion disks, supernovae,

mass transfer in close binaries, stellar winds and other processes. In most stars, at least until

the end stages of stellar evolution, a wind is the predominant mass-loss process, and can remove

enough material to significantly decrease the mass of the star. O stars, though relatively rare, play

an important role in star-forming regions, being the first to form, and the fastest-evolving and

most luminous objects in such regions. O-star winds can have high kinetic energy and momentum

fluxes and may play important roles in shock formation, turbulence in, and enrichment and

dispersal of, star-forming clouds, and triggered star formation.

This thesis will detail the first effort to perform quantitative, statistical fits on x-ray emission

line profiles from hot star winds. This work involves fitting a simple, spherically-symmetric wind

model and extracting the values of three model parameters with important physical implications.

1.1. Radiation-driven winds

All O stars (and early B stars) have radiatively-driven winds, meaning the wind is propelled

primarily by radiation pressure rather than by a gas pressure gradient as in the winds of cooler

stars like the sun. To accelerate a massive wind out of the gravitational potential well, energy

and momentum must be efficiently transfered from the star’s radiation field to the wind material.

This type of outflow is often referred to as a “line-driven wind” because line opacity dominates

the absorption and scattering processes that effect the transfer.

The basic process of momentum transfer is bound absorption followed by spontaneous

emission. Consider an atom of mass m with a transition at rest frequency ν0, and a mo-

mentum component along a particular direction mvr. The atom can absorb a photon moving

in that direction if it is of frequency ν1 = ν0(1 + vr/c), changing the atom’s momentum to

mv′

r = mvr + hν1/c = mvr + (hν0/c)(1 + vr/c). If the subsequent emission is isotropic, we would

expect that, on average, it will not change the atom’s momentum. This can easily be shown by

considering a photon emitted at an arbitrary angle φ to the original direction with frequency

ν2 = ν0(1 + v′

r/c) and momentum along the original direction cos φ (hν2/c). For vr � c and

hν0 � mc, the total change in the component of momentum along the direction of the incident

photon is then

∆mvr = (hν0/c)(1 − cos φ) . (1-1)

Assuming isotropic emission, the average change in momentum is then

〈∆mv〉 = (1/4π)

∫ π/2

−π/2

(hν0/mc)(1 − cos φ)2π sin φdφ = hν0/c, (1-2)

which is the same as for the initial absorption event (with vr � c), as predicted (this derivation

closely follows Lamers & Cassinelli 1999).
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The ions in the wind that will interact most strongly with the radiation field will obviously

be those with the strongest and most numerous transitions near the peak wavelength of the stellar

spectrum. If the bulk of the wind material is to be accelerated, these ions will have to share

momentum with the rest of the wind through Coulomb interactions. In some stars with very

low-density winds the momentum sharing may be inefficient, in which case the wind would alter

photospheric abundances by selectively removing certain elements (Babel 1995). This paper,

however, will focus on high-density, O-star winds, in which momentum sharing is quite efficient.

An accelerating wind, by definition, consists of material at a range of velocities. The velocity

dispersion in the wind increases the efficiency of the momentum transfer for optically thick lines

by Doppler broadening the lines, which makes more of the stellar continuum available for line

driving. Velocity dispersion can also increase the likelihood of “multiple scattering”, whereby a

photon which has scattered off a particular line in one region of the wind may scatter off a different

line in a different region of the wind if the relative velocity of the wind regions corresponds to

the difference in wavelength of the two lines. This can be an important process in the winds of

Wolf-Rayet stars (Owocki 2001).

Calculating the total acceleration of a wind is complicated by the sheer number of ions

and transitions involved in the process and the interaction between the kinematics of the wind

and the wavelength-space distribution of its opacity. Sobolev (1960) showed how to simplify the

problem dramatically for a single line. Consider the reference frame of a particular comoving

point in an expanding, accelerating wind. In this comoving frame all of the wind is moving away

from the reference point, with increasing velocity farther from the point. Thus a photon emitted

at the central frequency of a spectral line can only be absorbed in a limited region of the wind.

As the photon travels farther from the emission point, the relative Doppler shift of the wind

increases, shifting the line away from the photon’s frequency. If the width of the line can be

characterized by a velocity vline (which might be the thermal velocity, or include contributions

from micro-turbulent broadening), the characteristic length beyond which a photon is unlikely

to be absorbed is

lSob ≡ vline/(dv/dr) , (1-3)

where dv/dr is the velocity gradient of the wind. This is much smaller than the length scale of

the velocity or density gradients v/(dv/dr) ≈ |ρ/(dρ/dr)|, since we expect v � vline. This allows

us to localize the problem of determining the optical depth τν for a path from the photosphere

to a point in the wind:

τ ≈ κρ lSob = κρ vline/(dv/dr) , (1-4)

where κ is the line opacity or mass absorption coefficient (which has dimensions of area per unit

mass) and ρ the local mass density. It can then be shown using similar arguments (Owocki 2001)

that the radiative acceleration due to scattering in a single line is simply

gline ≈
κvlineν0Lν

4πr2c2

(

1 − e−τ

τ

)

. (1-5)
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Assuming each photon will scatter only once, the total acceleration of the wind is the sum

of the contribution from each independent line in the wind,

vdv/dr =
∑

lines

gline −
GM(1 − Γe)

r2
where Γe =

κeL

4πGMc
. (1-6)

The last term accounts for gravity and acceleration due to free-electron scattering (κe is the

free-electron opacity) (Owocki 2001). Solving this equation is complicated, since terms in the

sum depend on the acceleration itself through the optical depth (Eqns. 1-4 and 1-5).

Castor, Abbott, & Klein (1975b) developed method for finding self-consistent solutions to

this equation by treating the number of lines per unit opacity as a power law in the opacity

dN/dκ ∝ κα−2. This gives the solution

v(r) = vesc

√

α

1 − α

(

1 −
R∗

r

)1/2

, (1-7)

where vesc is the surface escape velocity and R∗ is the stellar radius. Taking the angular extent

of the stellar disk into account yields the more general form

v(r) = v∞

(

1 −
R∗

r

)β

, (1-8)

with β (which is typically found, theoretically and observationally, to have a value β ≈ 0.8) de-

scribing how quickly the wind accelerates to its terminal velocity v∞ (Owocki 2001; Lamers & Cassinelli

1999).

If we assume a constant mass-loss rate, Ṁ , and a radially expanding wind, conservation of

mass gives the following condition at all points in the wind:

Ṁ ≡
dm

dt
=

dm

dr

dr

dt
= 4πr2ρ(r)v(r). (1-9)

Assuming a velocity law with the form of Equation 1-8, we get density as a function of radius:

ρ(r) =
Ṁ

4πr2v∞
(

1 − R∗

r

)β
. (1-10)

Modern radiation-driven wind theory is generally considered quite successful (Howarth & Prinja

1996; Kudritzki & Puls 2000), though some comparisons with observationally determined mass-

loss rates and terminal velocities have reveled discrepancies, particularly for dense winds

(Leitherer & Lamers 1993; Lamers & Leitherer 1993). The next two subsections discuss some of

the observational techniques used to study hot star winds and test the limits of current theoretical

understanding.
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1.2. Spectral wind diagnostics

The complicated interaction of the wind and stellar radiation leaves its signature in the stellar

spectrum from the radio to the x-ray. The spectra can be used to determine many properties of

the wind, the two most fundamental global properties being the mass-loss rate and the terminal

velocity. Other important properties with spectroscopic signatures include wind variability, and

density, velocity, and shock structure.

In the radio and IR, free-free emission in the wind forms a continuum excess superimposed

on the photospheric spectrum. Mass-loss rate determinations from the free-free continuum rely

on simpler models than other methods, so this is often considered the most reliable diagnostic

of mass loss (Bieging, Abbott, & Churchwell 1989; Leitherer, Chapman, & Koribalski 1995). At

shorter wavelengths, Hα line emission can also used to derive mass-loss rates (Puls et al. 1996).

Since free-free emission is a two-body process and the Hα emission arises primarily from recom-

bination – also a two-body process, these are both “density-squared” diagnostics, depending on

the product of electron and ion number densities. Thus, in the presence of clumping or other

density inhomogeneities, systematic errors may be introduced into mass-loss rates determined

using these methods (Lamers & Leitherer 1993).

Perhaps the most studied wind diagnostic is the “P-Cygni profile”. This distinctive line

shape, usually seen in the UV, consists of a blue-shifted absorption trough blended steeply into

a red-shifted emission line. The absorption trough, in particular, is used as a diagnostic of wind

velocity structure (Prinja, Barlow, & Howarth 1990), ionization structure (Lamers et al. 1999),

and mass-loss rate (Howarth & Prinja 1989). The depth of the absorption trough depends on

column density, so this diagnostic is not as affected by density inhomogeneities as determinations

that make use of density-squared processes. For massive winds, though, the trough can be

saturated, which decreases the sensitivity to column density, but can actually be helpful in the

determination of terminal velocities (Prinja et al. 1990).

This paper will focus on the O4f supergiant ζ Puppis, located 0.45 kpc away in the Gum

Nebula OB association. Basic stellar parameters are summarized in Table 1. Bieging et al.

(1989) and Lamers & Leitherer (1993) used radio free-free emission to determine mass-loss rates,

while Prinja, Barlow, & Howarth (1991) fit a model to the Hα line profile. The x-ray luminosity

determined by Sciortino et al. (1990) was based on Einstein Observatory data. The terminal

velocity determination of Prinja et al. (1990) was based on observations of saturated P-Cygni

profiles.

1.3. X-ray emission and absorption

When it was first observed that x-ray emission is commonly associated with hot stars

(Seward et al. 1979; Harnden et al. 1979) there was no agreement on what mechanism produces
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the emission. Some models invoked a corona as the repository of the hot, x-ray-emitting gas

(Cassinelli & Olson 1979). Radiatively-driven, supersonic wind models had already been devel-

oped to explain the observed massive, high-speed winds of such stars (Lucy & Solomon 1970;

Castor et al. 1975b). It was immediately recognized that the presence of wind material would

affect the observed x-ray flux and spectral distribution, and the observed level of wind absorption

made it difficult to explain the observed x-ray flux with a corona. Instead it was suggested that

the large kinetic-energy flux carried by the wind might be able to generate the high-temperature

gas necessary to explain the observed emission. Castor, McCray, & Weaver (1975a) had already

proposed that winds from early-type stars could create “interstellar bubbles” bounded by an in-

teraction region where the wind encounters the interstellar medium (a similar model of planetary

nebulae formation was proposed by Kwok, Purton, & Fitzgerald 1978). Harnden et al. (1979),

however, concluded that their observations required too low a wind column density for a coronal

model and too high a source temperature for a wind interaction model.

Lucy & White (1980) were the first to suggest that shocks could be produced within the

wind itself by instabilities in the line-driving force. Such instabilities would create numerous

shock zones throughout the wind capable of explaining the observed x-ray flux. Variations on

the wind-shock theme, invoking a variety of shock-generation mechanism have subsequently been

developed (Lucy 1982; Mullan 1984; Owocki, Castor, & Rybicki 1988; MacFarlane & Cassinelli

1989; Chen & White 1991; Feldmeier, Puls, & Pauldrach 1997). The most recent variants of the

wind-shock model invoke magnetic fields to channel ionized wind material into collisional shock

zones (Gagné et al. 1997; Babel & Montmerle 1997; ud-Doula & Owocki 2002).

X-ray spectral resolution available before Chandra and XMM was not high enough to

distinguish individual lines, so modeling focused on explaining the total x-ray luminosity and

broad spectral distribution. Chlebowski, Harnden, & Sciortino (1989) and Sciortino et al. (1990)

studied x-ray spectra of O stars observed by the Einstein X-Ray Observatory. They found

that the x-ray luminosity Lx scales roughly with bolometric luminosity Lbol, with an aver-

age value of log10 (Lx/Lbol) = −6.46, close to the previously established value for O stars of

log10 (Lx/Lbol) ≈ −7. Sciortino et al. also found correlation between Lx and the wind momen-

tum flux Ṁv∞ and wind kinetic energy flux (1/2)Ṁv2
∞

. This is not surprising since both these

quantities correlate with Lbol, but the authors suggest these may be more fundamental, physical

relationships.

In an attempt to find an additional correlation to explain the residual scatter in the Lx-Lbol

correlation, Kudritzki et al. (1996) studied ROSAT PSPC observations of 42 O stars. With no

additional correlations, they found log10 (Lx/Lbol) = −6.7 ± 0.35. They were able to reduce

the scatter using Lx ∝ L1.34
bol (Ṁ/v∞)−0.38, and suggest this is due to a correlation between the

quantity Ṁ/v∞ and the volume filling factor of x-ray emitting gas in the wind, which in turn

directly correlates with x-ray luminosity.

Owocki & Cohen (1999) used a series of simple analytical arguments about radiation trans-

port in constant-velocity winds to derive the linear relationship between Lx and Lbol. They found
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that Lx ∼ (Ṁ/v∞)2 for optically thin lines and Lx ∼ (Ṁ/v∞)1+s for optically thick lines where

the x-ray-emitting-gas volume filling factor f ∼ rs. From this relationship they could obtain the

observed Lx ∼ Lbol dependence only if −0.4 . s . −0.25.

Hillier et al. (1993) reported on a ROSAT spectrum of ζ Puppis, testing the predictions

of wind-shock models against the observations. Their model was based primarily on that of

Owocki et al. (1988). Only a small fraction of the wind is assumed to be hot enough to emit

x-rays. Most of the x-ray opacity comes from the cooler bulk of the wind, wherein arise the lower

energy spectral signatures of the wind. Therefore, in order to model the observed spectrum,

Hillier et al. calculated x-ray opacity in the wind from atmospheric models. They assumed x-ray

emissivity scaled like density squared multiplied by a constant filling factor and used a slightly

modified β-velocity law with β = 1. They also assumed that x-ray emission only “turns on”

above a certain minimum radius Rmin, based on line-driving models that suggest instabilities

don’t develop immediately above the photosphere. By fitting one- and two-temperature models

to the spectrum, they derived shock temperatures for the emission, and concluded that the best

fits were achieved with Rmin values less than about 2R∗ and with wind absorption included. The

authors state that their fits are insensitive to changes in Rmin for Rmin . 2R∗ because the radius

of radial optical depth unity R(τ = 1) ≡ R1 � 2R∗ for most of the wavelength range of the

spectrum.

By combining ROSAT x-ray observations with EUVE EUV observations of the B bright

giant ε Canis Majoris, Cohen et al. (1996) were able to place constraints on wind attenuation

and temperature distribution. This was the first analysis of high-energy hot-star spectra with

high enough resolution to resolve individual lines. Exploring one- and two-temperature models

similar to those of Hillier et al. (1993) with and without absorption, they achieved their best fits

using a power law temperature distribution including absorption. They suggest that their upper

bounds on absorption are too low to be consistent with a coronal model, given the observed mass-

loss rate, but are consistent with wind-shock models. Cohen, Cassinelli, & MacFarlane (1997a)

also found evidence for wind attenuation in early-type, near-main-sequence B stars, but could

not explain the observed x-ray luminosity with purely line-force-instability-driven shocks. With

slightly higher resolution ASCA data, Cohen, Cassinelli, & Waldron (1997b) came to similar

conclusions about the B0 V star τ Scorpii. In general it seems that B star x-ray emission,

particularly from the later types, may not fit in to the wind-shock scenarios proposed for O

stars.

Berghoefer et al. (1996) used ROSAT observations of ζ Puppis looking for variability. They

identified a periodic fluctuation of ±6% in an otherwise quite constant x-ray flux with a period

of 0.7 days and correlated it with Hα line profile variability. The low level of observed variability

has important implications for wind-shock models. The x-ray flux from an individual shock

would be highly variable, as the shock arises, propagates through regions of varying density, and

decays. A large number of shocks must, therefore, be continually arising to explain the low level

of variability in ζ Puppis.
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The latest generation of x-ray observatories, XMM and Chandra, have vastly improved spec-

tral resolution compared to earlier telescopes. Chandra provides spectra with resolution exceed-

ing λ/∆λ ∼ 1000 at some wavelengths, corresponding to a Doppler velocity of v = c(∆λ/λ) ≈

300 km s−1, where ∆λ is the full width at half maximum (FWHM) of the instrumental response.

X-ray emission lines formed in material embedded in the wind should extend to Doppler shifts

of v ∼ ±v∞. Observed wind terminal velocities approach v∞ = 3000 km s−1, implying ∼ 20

resolution elements for a velocity range of 2v∞. Chandra and XMM spectra of O stars do, in

fact, reveal broad, resolved line profiles (Schulz et al. 2000; Kahn et al. 2001; Cassinelli et al.

2001; Waldron & Cassinelli 2001).

The x-ray line emission comes primarily from highly ionized helium- and hydrogen-like atoms

of heavy elements. Cassinelli et al. (2001) report strong He-α complexes from the helium-like

ions S XV, Si XIII, Mg XI, Ne IX, and O VII, and strong isolated lines of Mg XII, Ne X, Fe XVII,

O VIII, and N VII in Chandra observation of ζ Puppis. Essentially the same lines are seen in the

XMM spectrum (Kahn et al. 2001), and in a Chandra spectra of other stars (Schulz et al. 2000;

Waldron & Cassinelli 2001).

There are two types of diagnostics that have been applied to high-resolution x-ray spectra

of hot stars: line ratios, and line profile shapes and widths.

Line ratios (often between lines in He-α complexes of helium-like ions) provide information

about the density, temperature and ultraviolet flux conditions where the lines are formed. In

general, it is not possible to separate the effects of density and UV flux using line ratios alone, but

modeling, plausibility arguments, and independent diagnostics can separately place constraints

on the density and UV flux. Line ratios have been used to estimate UV flux in the region where

the lines are formed, which in turn can be used to determine the radius at which the lines arise

when combined with an assumed value for the photospheric luminosity in the UV (Schulz et al.

2000; Waldron & Cassinelli 2001; Cassinelli et al. 2001; Cohen et al. 2003).

Line profile widths and shapes carry information about the velocity distribution of x-ray

emitting material. At the most basic level, the width of a line should be related to the terminal

velocity of the wind. Since the wind may only reach its terminal velocity far from the star

where wind density is low, however, there may be very little x-ray emitting material at velocities

approaching v∞. The exact relationship between a measurement like the FWHM and v∞ will

depend on the velocity distribution of hot gas, the wind attenuation, and the thermal and

turbulent contributions to the broadening. Observed line widths range from several hundred

to ∼ 1000 km s−1 (HWHM), suggesting that thermal broadening, at least, will be unimportant

(Schulz et al. 2000; Waldron & Cassinelli 2001; Cassinelli et al. 2001).

Only recently have high-resolution spectra opened up the possibility of exploring line profile

shapes for their diagnostic potential. Both XMM (Kahn et al. 2001) and Chandra (Cassinelli et al.

2001) spectra of ζ Puppis are available, and the widths and centroid shifts of several line profiles

from each have been published. Presented here is the first quantitative analysis of x-ray line pro-
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files from a hot star (preliminary results from this work are reported in Kramer, Cohen, & Owocki

2003a1 and Kramer et al. 2003b2).

2. A spherically-symmetric wind model

Detailed modeling of line profile shapes requires solving the problem of radiation transport

in the wind. The luminosity at a wavelength λ will be the spatial integral of the product of

volume emissivity ηλ(r, θ, φ) (which has dimensions of energy per units time, volume and solid

angle and is assumed to be isotropic) and absorption e−τλ(r,θ,φ) (unitless) over the whole wind,

where τλ(r, θ, φ) is the (unitless) optical depth along the observers line of sight to a given point

(r, θ, φ). Then

Lλ = 4π

∫ 2π

φ=0

∫ π

θ=0

∫

∞

r=R∗

ηλ (r, θ, φ) e−τ(r,θ,φ)r2 sin θdrdθdφ , (2-1)

where R∗ is the stellar radius. We chose to orient our coordinate system so that the observer is

located far away at θ = 0. The optical depth τ must be found by evaluating a separate integral

along the line of sight.

In this study, we have adopted the model developed by Owocki & Cohen (2001). This model

is a spherically-symmetric parameterization of the wind geometry and kinematics. It is based on

the predictions of wind-shock theory, but may be tuned to describe a variety of physical models

by varying its four parameters. Assuming spherical symmetry and expressing our polar integral

in terms of the direction cosine µ, Equation 2-1 becomes

Lλ = 8π2

∫ 1

µ=−1

∫

∞

r=R∗

ηλ (µ, r) e−τ(µ,r)r2drdµ . (2-2)

As in many of the models discussing in section 1.3, the emission is assumed to be primarily

due to recombination and collisional processes, which scale like density squared ρ2. An extra

factor of r−q, with q being a tunable parameter, allows for spatial variation of the fraction of

the wind hot enough to emit x-rays. Wind-shock theories predict that shock formation will not

begin immediately at the photosphere, but at some radius Ro > R∗ (Hillier et al. 1993), so we

also allow for that. The wind velocity is assumed to be purely radial and purely a function of

radius. The line, assumed to be of infinitesimal width, is emitted at rest wavelength λ0, which

becomes λ0 [v(r) cos(θ)/c] in the observer’s reference frame. Combining these assumptions, we

1Paper available from http://arxiv.org/abs/astro-ph/0211550.

2Paper available from http://arxiv.org/abs/astro-ph/0212313.

http://arxiv.org/abs/astro-ph/0211550
http://arxiv.org/abs/astro-ph/0212313
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obtain the volume emissivity

ηλ (µ, r) =







Cρ2(r)r−q δ
(

λ − λ0

(

1 − µv(r)
c

))

if r ≥ R0

0 if r < R0 ,
(2-3)

where C is an undetermined constant of proportionality. Owocki & Cohen adopt the velocity

given by Equation 1-8, with β becoming another model parameter. The density is then given by

Equation 1-10, and the emissivity becomes

ηλ (µ, r) =

(

CṀ2

16π2v2
∞

)

r−q−4

(

1 − R∗

r

)2β
δ

(

λ − λ0

(

1 −
µv(r)

c

))

for r ≥ R0 . (2-4)

The optical depth is found by integrating the mass absorption coefficient κ times the density

along the line of sight: τ =
∫

κρdl. It is assumed that κ is constant across the line and throughout

the wind, though the value may vary with wavelength from line to line. The primary source of

x-ray opacity is photoionization of atoms in the cool component of the wind. Since the star is

opaque to x-rays, lines of sight intersecting the star are assigned infinite optical depths. The

optical depth becomes

τ(µ, r) =

{

∞ if p ≤ 1 & z ≤
√

1 − p2,

τ∗
∫

∞

z
dz′

r′2(1−1/r′)β otherwise,
(2-5)

where the impact parameter is p ≡ (r/R∗)
√

1 − µ2, the line-of-sight distance is z ≡ µr/R∗,

r′ ≡
√

p2 + z′2, and several constants have been combined into

τ∗ ≡
κṀ

4πv∞R∗

. (2-6)

This relates to the commonly-quoted radius of optical depth unity R1 (for β = 1) by the equation

R1

R∗

=
1

1 − exp (−1/τ∗)
≈ τ∗ + 0.5 for τ∗ > 0.5. (2-7)

The error in the above approximation is less than 10% for τ∗ > 0.67 (or R1/R∗ > 1.3).

The δ function in Equation 2-4 lets us evaluate the angular integral in Equation 2-2. Defining

x ≡
c

v∞

(

λ

λ0

− 1

)

, (2-8)

the δ function picks out the value of the integrand at µ = x/(1 − R∗/r)
β:

Lx ∝

∫

∞

r=rx

r−(q+2)

(

1 − R∗

r

)3β
exp [−τ (µx, r)] dr , (2-9)
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where rx ≡ max
[

Ro, R∗/(1 − |x|(1/β))
]

and µx ≡ x/(1−R∗/r)
β. For a discussion of the singularity

at r = R∗ see Appendix B.

The optical depth integral (eq. 2-5) may be solved analytically for integer values of β, but

Equation 2-9 must be integrated numerically to obtain the line profile, except in the case of

β = 0 (constant velocity wind). In comparing the calculated profile to observations, determining

the values of C and Ṁ may be avoided by normalizing the line profile to predict the observed

number of counts across the same wavelength range. The dependence on the value of R∗ can be

normalized out by expressing R0 in units of R∗. The model then depends on four parameters:

β, q, R0, and τ∗.
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Inner shells are slower

and more dense,

producing narrower,

taller line profiles.

A series of shells,

added together,

produce a stepped

profile.

A continuous wind is

built by integrating

shells from some

minimum radius to

infinity.

Occultation by the star

removes light from the

red edge of the profile.

Fig. 1.— Building a wind. Maps (top row): Line-of-sight component of wind velocity for

the observer to left of star (vz, indicated by hue), and x-ray volume emissivity (η, brightness)

is mapped in p-z coordinates (impact-parameter versus line-of-sight distance). Line profiles

(bottom row): Plots of flux (arbitrary scaling) versus wavelength (in velocity units scaled by

v∞) correspond to above maps. Bluest wavelengths are on the left, reddest on the right.

Without absorption, the profiles are flat-topped and symmetric (with sloping sides of a

shape determined by the velocity law). Figure 1 graphically illustrates the process of building

up a line profile from emission in the wind, which can be envisioned as integrating over a series
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Fig. 2.— Continuum absoprtion. Contours of constant optical depth (integrated along the

observer’s line of sight) overlay a wind map (left; see figure 1). The observer is to the left. The

resulting line profile (right, not convolved with instrumental response function) shows the effect

of an optically thick wind.

of infinitesimally-thin shells, each of which produces a rectangular profile with its width set by

the shell velocity. Absorption (and occultation by the star) skews the line profile blueward by

preferentially removing redder photons (see Figure 2).

Some other work has been done in the past using similar but less general treatments. In

the context of EUV emission lines, MacFarlane et al. (1991) calculated the profile resulting from

a single, thin spherical shock using similar arguments. He found that emission from a single

shell produces a flat-topped rectangular line profile in the absence of absorption. Increasing the

absorption (increasing the τ∗ parameter) preferentially decreases the flux at longer wavelengths,

because the red-shifted photons tend to come from the far side of the star and pass through more

wind material on the line of sight to the observer. Ignace (2001) found an analytic solution to

equation 2-9 with β = 0 (i.e. with a constant velocity wind v(r) = v∞). Waldron & Cassinelli

(2001) summed the flux from 10 spherical shocks with a distribution of velocities and emissivities

to synthesize line profiles and compared them to Chandra observations of ζ Orionis (O9.7 Ib),

concluding that good correspondence to the observed profiles was only obtained in the limit of

very little absorption due to the symmetry of the profiles.

The Owocki & Cohen (2001) treatment assumes opacity is constant across the wavelength

range of the line. Opacity in the line itself has quite a different effect on the line profile.

Ignace & Gayley (2002) have used the Sobolev approximation to treat line opacity in the constant-

velocity case, deriving an analytical description of the profile shape in the high-τ∗, optically-
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thick-line limit. They predict that line opacity will reduce the blueward shift of the line centroid,

making it more symmetric.

We will primarily be exploring models in the optically-thin-line limit with integer, non-zero

values of β. β = 1 is considered the most appropriate value given the typical O star value

of β = 0.8 determined from UV observations (Groenewegen, Lamers, & Pauldrach 1989), the

determination by Puls et al. (1996) of the value β = 1.15 for ζ Puppis.

3. Line profile fitting

To accomplish the quantitative analysis of line profile shapes presented here, a suite of

original tools was written in the Mathematica3 programming language. This section outlines the

techniques implemented in this software.

3.1. The data set

The data set consists of the ±1 order coadded MEG spectrum from a 67 ks observation

of the O4f star ζ Puppis first reported on by Cassinelli et al. (2001). The FWHM of the MEG

spectral response is ∆λMEG = 0.023 Å (Chandra X-Ray Center 2001)4. All the distinguishable

lines in this spectrum are many times more broad, allowing their profiles to be well resolved.

For our purposes a more useful measure of instrumental broadening is the width of a Gaussian

response function scaled by the terminal velocity of the wind, σx.

σ =
∆λ

2.35
(3-1)

σx =
σ

λ0

c

v∞
=

∆λ

2.35λ0

c

v∞
(3-2)

All models are convolved with a Gaussian of standard deviation σx to simulate the instrumental

broadening before being compared to spectral data. Table 2 lists the values of σx for each fit.

A key assumption of our fitting procedure is that the noise in the data set is described by a

pure Poisson distribution and that there is no significant background flux. Visual inspection of

the spectrum indicates that there is no substantial continuum contribution to the flux, and we

expect no background for the sky or instrument. Global spectral modeling using standard thermal

plasma emission codes by Raymond & Smith (1977) shows that the free-free and recombination

continua are negligible for the plasma temperatures implied by these lines.

3Mathematica is published by Wolfram Research, http://www.wolfram.com/.

4The Chandra Proposers’ Observatory Guide is available at http://cxc.harvard.edu/udocs/docs/.

http://www.wolfram.com/
http://cxc.harvard.edu/udocs/docs/
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3.2. Blends and limits

The breadth of the lines in this spectrum causes many of them to be contaminated by emis-

sion from neighboring lines. After eliminating triplets as unsuitable for fitting due to excessive

blending, other potential blends were identified by visual inspection and by referring to the line

strengths calculated by Mewe, Gronenschild, & van den Oord (1985) and those in the Astrophys-

ical Plasma Emission Database (APED, Smith et al. 2001)5. A line with rest wavelength λ0 is

considered to extend over a wavelength range defined by

λ0

(

1 +
v∞
c

)

+ ∆λMEG ≥ λ ≥ λ0

(

1 −
v∞
c

)

− ∆λMEG . (3-3)

The widths of neighboring lines are calculated the same way, and any overlap in the ranges is

excluded from the fit. See Table 2 for the wavelength range over which each fit was performed,

and appendix A for details of suspected blends. The terminal velocity value determined by

Prinja et al. (1990) v∞ = 2485 km s−1 is adopted here.

3.3. Synthesizing line profiles

For a quantitative comparison between a given model and an observed line profile, the

model must produce a predicted spectrum commensurate with the observational data. This is

the algorithm implemented in Mathematica for this purpose:

1. Chose a set of values for the model parameters, β, q, Ro, and τ∗. β must be an integer6

≥ 0. Symbolically evaluate the optical depth integral (equation 2-5) to obtain an analytic

expression for τ as a function of µ and r.

2. Chose a domain (a range of x values) over which to evaluate the line profile (see section

3.2). At a series of x coordinates (equation 2-8) within the domain, numerically integrate

the radial integral in equation 2-9.

3. Convolve the resulting spectrum with a Gaussian of width σx (equation 3-2) which char-

acterizes the instrumental broadening.

4. Normalize the convolved profile so it has unit area in the desired domain.

5. Integrate the normalized profile function across the wavelength range of each observational

bin within the desired domain. Multiply the resulting binned profile function by the total

number of counts observed within the domain to produce a model spectrum that predicts

the same total number of counts.

5The Interactive GUIDE for ATOMDB is available at http://obsvis.harvard.edu/WebGUIDE/.

6Mathematica is capable of symbolically integrating equation 2-5 for integer values of β.

http://obsvis.harvard.edu/WebGUIDE/
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This predicted spectrum is a set of expectation values for the number of photons counted in each

bin, which may then be directly compared with the data using an appropriate fit statistic.

3.4. Parameter estimation and confidence regions

3.4.1. The maximum likelihood statistic

The Poisson distribution governs the probability of a photon arriving in a bin (spatial and/or

spectral) during a given time interval. If ei is the expectation value of the photon count in bin

i, the probability that the observed count will be ni is

Pei
(ni) =

eni

i e−ei

ni!
. (3-4)

The probability of observing a particular set of N photon-count values ni is the product of the

probability for each bin.

P =
N
∏

i=1

eni

i e−ei

ni!
. (3-5)

Cash (1979) showed that the likelihood ratio for this distribution generates the statistic

C = −2 ln P = −2
∑

i

(ni ln ei − ei − ln ni!) , (3-6)

which may be replaced with

C = 2
∑

i

(ei − ni ln ei) . (3-7)

The set of model parameters a0 that minimizes C (so that C = Cmin at a0) obviously max-

imizes P , so it considered the most likely parameter set, or the best fit. ∆C = C − Cmin is

distributed like χ2 with M degrees of freedom, where M is the number of free parameters, and

can be used like ∆χ2 to define confidence intervals (Cash 1979). The region of parameter space

in which ∆C is less than some value corresponding to the desired confidence level defines the

confidence region of that probability. Tables of ∆χ2 for different confidence levels and degrees of

freedom are given in Press, Teukolsky, Vetterling, & Flannery (1992, §15.6). Numerical simula-

tions by Nousek & Shue (1989) and Yaqoob (1998) demonstrate the superiority of the C statistic

for performing fits and determining confidence intervals. We have chosen C as our fit statistic,

and determine our confidence regions using ∆C. Figure 3 shows fits to two representative lines.
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Table 1. Stellar properties determined or adopted for ζ Puppis by various authors.

Reference M R Lbol/10
39 Teff Ṁ/10−6 v∞ Lx/1032

(M�) (R�) (erg s−1) (kK) (M� yr−1) (km s−1) (erg s−1)

Bieging et al. (1989) (61) (18) (3.5) (42) 5.0 (2400) · · ·

Sciortino et al. (1990) 52 17 2.63 41 (4.8) 2600 2.6

Prinja et al. (1991) · · · · · · · · · · · · · · · 2485 · · ·

Lamers & Leitherer (1993) (59) (16) (3.9) (42) 2.4 (2200) · · ·

Puls et al. (1996) 52.5 19 3.4 42 5.9 2250 · · ·

Note. — Values in parentheses were not determined in the cited paper.
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Fig. 3.— Two representative lines with best-fit models. Shown are Chandra MEG spectra of

(a) Fe XVII at 15.01Å and (c) O VIII at 18.97Å (in gray), with corresponding best-fit profiles

(in black). Laboratory rest wavelengths are indicated by the vertical dashed lines. To the

right we show (b and d) contour plots representing the models. The observer is located at

(p/R∗ = 0, z/R∗ = ∞). The inner circle is of radius R∗, the outer circle of radius Ro. Gray

contours are curves of constant line-of-sight velocity component in units of v∞. Dashed contours

are curves of constant optical depth (τ = 0.5, 1, 2), integrated along the line of sight.
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3.4.2. Mapping the fit statistic in parameter space

We use brute-force mapping of our fit statistic in parameter space to determine best-fit

values and confidence intervals for the fit parameters. Since β is constrained to integer values,

it is held constant for each fit, resulting in a three-dimensional parameter space. An inverted,

unitless parameter

uo ≡ R∗/Ro (3-8)

was used in place of Ro. The algorithm for finding best-fit values and confidence regions is as

follows.

1. Set up a 3-dimensional {q, uo, τ∗} grid in parameter space, with a fixed value of β.

2. At each point, calculate a model profile and the value of the fit statistic C.

3. Take the point with minimum value of C = Cmin to be the best-fit model a0 = {q, uo, τ∗}|C=Cmin
.

4. Subtract Cmin from the grid of C values to obtain a grid of ∆C values. All the points with

∆C less than or equal to a given value are considered to be within the confidence region

corresponding to that value.

In practice, the process usually involved multiple iterations: one or more low-resolution maps

to get an approximate idea of the region of parameter space on which to focus followed by high

resolution mapping to define confidence regions and identify the best-fit point. The step sizes of

the final, high-resolution maps were standardized across all the fits for consistency. Some maps of

small regions around the best-fit points were made at even higher resolutions, but C was always

found to be a very shallow function of the model parameters, so this did not significantly improve

the fits or tighten the confidence regions. This is not surprising, given that the model spectra

vary slowly and smoothly with changes in the model parameters. One dimensional confidence

intervals are simply the projections of the 3-D confidence regions. The validity of the confidence

levels assigned to the regions was checked using Monte Carlo techniques.

Figure 4 shows a parameter-space map of confidence regions for the fit to the N VII line

at 24.78 Å in the ζ Puppis spectrum. Each row of the figure consists of two panels. The left

panels is a two-dimensional slice through the three-dimensional parameter space. Theses planes

of constant τ∗ are color-coded to indicate which regions in the plane are contained within the

3-D confidence regions. The right panels plots the observed spectrum with the best-fit model

from that plane in parameter space. Successive rows correspond to successive values of τ∗. To

demonstrate the typical range of models that can be fit to one line, Figure 5 shows the best-fit

and two extreme models for the Fe XVII line at 17.05 Å. The two extreme models are for the

parameter sets that have the largest and smallest values of τ∗ within the 95.4% confidence region.
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Fig. 4.— Projections of 3-D confidence regions and best-fit models in 2-D slices of parameter

space. Red blocks in the grid are within the 68.3% confidence region, orange the 95.4% region, and

yellow the 99.73% region. Values of τ∗ are indicated above the left-hand panes. The annotations

above the right-hand panels indicate the values of the parameters {β, q, u0, τ∗} for the best-fit

model within that plane. In the right-hand panes the model is plotted in red and the data in

black. Note how the line profile changes with τ∗: as the value increases the red side of the line

is suppressed more and more. This fit is to the N VII line at 24.78 Å in the ζ Puppis spectrum.

The overall best-fit occurs in the second row at {1,−0.5, 0.5, 0.5}.
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3.5. Testing confidence levels with Monte Carlo simulations

Monte Carlo techniques can be used to test the validity of the confidence levels assigned to

∆C contours. By simulating many data sets based on a single “best-fit” model, we can explore

the sensitivity of the model parameters to random variations about the underlying distribution

(Press et al. 1992, §15.6). The algorithm is outlined below:

1. Find set of parameters a0 that generate the best-fit model DS
0 which minimizes the fit

statistic.

2. Simulate many data sets {DS
j } based on the best-fit model:

(a) Synthesize an ideal spectrum (probability curve p(x), where p(x)dx is the relative

probability of a photon in the line being emitted with a scaled wavelength between

x and x + dx) using a0 and convolve it with the instrumental response function (a

Gaussian of width σx).

(b) Calculate the expectation value of the photons count for each bin by multiplying the

total number of observed photons by the probability function integrated across each

bin.

(c) Generate a set of N spectra DS
1 ...D

S
N by randomizing the counts in each bin based on

a Poisson distribution.

3. For each simulated spectrum DS
j calculate the value of the fit statistic (using DS

j as the

“data” and the best fit DS
0 as the “model”) on a small grid centered on a0 and record the

coordinates of the minimum, aS
j .

The result is a scatter of points in parameter space {aS
j } representative of the distribution of pa-

rameter sets that might have produced the observed data. Arbitrarily-shaped confidence regions

may be drawn to include the desired fraction of the points, or confidence regions determined

by ∆C may be tested by calculating the fraction of Monte-Carlo points within them (this is

the technique used here). 1000 Monte-Carlo simulations were run to test the confidence regions

of each fit, and all of the results were consistent with the confidence levels assigned using ∆C.

At the 95.4% confidence level, most of the confidence regions contained more than 96% of the

M-C points. In most cases lowering the ∆C value to tighten the confidence regions and bring the

percentage of M-C points contained closer to 95.4% would have minimal effects on the confidence

intervals. Therefore the ∆C confidence regions are used.

3.6. Hypothesis testing and goodness-of-fit statistics

One disadvantage to using the C statistic is that there is no corresponding goodness-of-fit

statistic like reduced χ2. In fact, there is no standard goodness-of-fit statistic for data with
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Poisson noise (Mighell 1999). One alternative is to employ a variant of the non-parametric

Kolmogorov-Smirnov test. The K-S statistic is calculated between the cumulative probability

distributions of the data and the model. This can be applied in this case by considering a line

profile (with area normalized to unity) to be a probability distribution governing the wavelengths

of incoming photons.

The statistics D+ and D− measure the extremes of the difference between the empirical

cumulative distribution function (ECDF) E(x) and the predicted cumulative distribution Pc(x):

D+ ≡ max [E(x) − Pc(x)] , (3-9)

D− ≡ max [Pc(x) − E(x)] . (3-10)

The K-S statistic is

D ≡ max [D+, D−] . (3-11)

The K-S statistic has the disadvantage of deemphasizing variation at the extremes relative to

variation in the middle of the distribution (Press et al. 1992). This is because both the ECDF and

the predicted cumulative distribution must converge to 0 and 1 at either extreme. The Kuiper

statistic V avoids this problem, as it is unchanged by cyclic permutations of the distributions:

V ≡ D+ + D− . (3-12)

Since Pc is a monotonically increasing function and E(x) is an increasing stepped function, we

need only compare the distributions at the edges of the steps. The procedure used to calculate

these statistics is as follows:

1. From the data set D, form the empirical cumulative distribution function E(x). This is

a function of scaled wavelength x which steps up by a value ni/Nobs at the wavelength

of each bin xi (where ni is the number of photons counted in bin i and Nobs is the total

number of observed photons). E(x) is a normalized cumulative probability distribution.

Let Ei = E(xi).

2. Using the best-fit parameters, form the predicted cumulative distribution function Pc(x).

Let Pi = Pc(xi).

3. Calculate

D+ = max [Ei − Pi] , (3-13)

D− = max [Pi − Ei−1] , (3-14)

and from them, V and D.
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There are approximate formulas (and tabulated values) for the significance levels of the

Kuiper and K-S statistics under two conditions (Press et al. 1992; D’Agostino & Stephens 1986):

(1) there are no model parameters estimated from the data, and (2) the distribution is continuous.

Neither condition is met here, since (1) three parameters are being estimated, and (2) the data

are binned by wavelength and so form a discrete distribution. For these reasons the canonical

formulas vastly underestimate the significance of the observed variation from the best-fit models.

Therefore we must resort to Monte-Carlo techniques to estimate the significance of our statistical

values. By simulating a large number of data sets we may explore the frequency distribution of

the Kuiper statistic. The significance level α(V ) is the probability that variations due to random

noise will produce a value of the Kuiper statistic greater than V , so larger values of V indicate a

“better” fit. Using Monte-Carlo simulations, we can estimate α(V ) as the fraction of MC data

sets that give a value of the Kuiper statistic greater than V . There are actually two slightly

different V distributions that can be obtained using MC techniques. The different procedures

are outlines below:

Calculating α0(V ):

1. Generate a large number of MC simulated data sets {DS
j } based on the best-fit parameters

a0 as described in §3.5.

2. Generate Ej(x) for each simulated data set and Pc0(x) from the a0 model and calculate the

Kuiper statistic. This generates a set of values of the Kuiper statistic V S0
j .

3. Let α0(V ) be the fraction of the values in the set V S0
j greater than V .

Calculating αRF(V ):

1. Generate a large number of MC simulated data sets {DS
j } based on the best-fit parameters

a0 as described in §3.5.

2. Perform the fitting procedure on each MC data set to yield a new set of best-fit parameters

for each MC set {aS
j} (also as described in §3.5).

3. Generate Ej(x) for each simulated data set and Pcj(x) from the corresponding aj model

(rather than a0) and calculate the Kuiper statistic. This generates a set of values of the

Kuiper statistic V SRF
j .

4. Let αRF(V ) be the fraction of the values in the set V SRF
j greater than V .

In general we expect αRF(V ) ≤ α0(V ), since the fitting procedure should find a model that

matches the simulated data set as well as or better than a0. A model is rejected if α ≤ 0.05. High

values of the significance α ≥ 0.95 can indicate that the model is over-specified, i.e. that there is

not enough information in the data to reliably estimate all the model parameters simultaneously.
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3.7. Goodness-of-fit results

The variation in spectral resolution as a function of wavelength and the need to truncate

the fit range to avoid blends can cause fits to vary in quality and in the usefulness of param-

eter constraints derived from them. Listed in Table 2 are the MEG instrumental resolution

λ0/∆λ, the ratio of the full terminal-velocity width to the FWHM of the instrumental broaden-

ing 2v∞/∆v (which is a measure of how well-resolved a line is), the scaled wavelength range of

the fit {xmin, xmax} (both of which should have absolute values of slightly greater than unity for

an un-truncated fit), and the number of spectral bins within the range of the fit Nobs.

For each fit α0 was calculated from the distribution of V values of 1000 Monte-Carlo

simulations, and αRF from the distribution of V values of 100 simulations with refitting. The

results are reported in Table 3.

The lines at 18.97 Å, 17.054 Å, 15.013 Å, 12.13 Å, and 6.18 Å show a trend in fit quality

according to both Kuiper-statistic distributions. Lines at longer wavelengths are better resolved,

are sampled by more bins, and yield higher-quality fits than lines at shorter wavelengths. These

fits are formally good, though the high significance levels of the two longest-wavelength fits

suggests that the model may be under-determined. Also, the results of the fit to the Si XIV

line at 6.18 Å are somewhat suspect because of the low resolution at that wavelength, the small

number of bins, and the failure to constrain the q parameter.

The lines at 24.78 Å, 16.787 Å, and 15.262 Å yield anomalously-poor fits when compared to

the lines listed above. The value of α0 = 0.039 for the 15.262 Å fit does not meet the criterion

α ≥ 0.05 for a formally-good fit. This line may be contaminated by the Fe XIX lines at 15.198 Å

and 15.3654 Å (APED). The relatively-low significance values for the N VII line may simply be

the result of random variation, or could be a sign that there are resolved spectral features not

explained by this simple model. In any case, the fit is formally good. The 16.787 Å fit may also

be affected by a blend with an Fe XIX line, this one at 16.718 Å. This would add flux to the blue

edge of the line, increasing its skew and explaining the relatively high values of τ∗ and q.

3.8. Effect of terminal velocity uncertainty on estimated parameters

To explore the influence of uncertainty in the wind terminal velocity on the fit results, a fit

with v∞ = 2200 km s−1 was performed on the Fe XVII line at 15.013 Angstroms. The changes

to the best-fit values are insignificant, and the changes in the confidence regions are quite small,

though the quality of the fit is worse for the lower value (see Table 3). It is concluded that

varying the terminal velocity value by less than 10% is unlikely to significantly affect fit results.
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4. Results and Discussion

4.1. Summary

In all, fits were performed on eight lines in the ζ Puppis spectrum between 6.18 Å (Si XIV)

and 24.78 Å (N VII). Table 2 gives the parameters of each fit. The fits were all performed with

a fixed value of β = 1. The estimated values of the parameters q, Ro, and τ∗ are listed in Table

3, and shown in Figure 6 (the values for the Si XIV line are not shown in the figure because it is

at a much shorter wavelength and its parameter values are poorly constrained). The confidence

limits given are at the 95.4% confidence level (the “2σ” level for a Gaussian distribution).

All the fits but one (to the Fe XVII line at 15.262 Å) are formally good, according to both

of the Monte-Carlo-determined, Kuiper-statistic significance levels. The fitting procedure also

placed useful constraints on the values of the estimated parameters. This leads to the primary

conclusion of this work, that this simple, spherically-symmetric wind model can, in fact, fit line

profiles in the ζ Puppis x-ray spectrum. The success of this model is an especially important

result since this is the first attempt at quantitative analysis of the information contained in x-ray

line profiles from a hot star.

4.2. Estimated parameters

The determined amount of wind attenuation is significantly smaller than what one might

expect from a spherically-symmetric, smooth wind, given what is known about this star’s mass-

loss rate and wind opacity. There have been various calculations of the wind optical depth (often

expressed as the radius of optical depth unity) as a function of wavelength for this star. They

range from values much bigger than what we derive here (7 < τ∗ < 30 calculated by Hillier et al.

1993, using Ṁ = 5.0 × 10−6 M� yr−1, R∗ = 19 R�, v∞ = 2200 km s−1), to values modestly

bigger (4 < τ∗ < 8 calculated by Cassinelli et al. 2001, using values from Lamers & Leitherer

1993: Ṁ = 2.4 × 10−6 M� yr−1, R∗ = 16 R�, v∞ = 2200 km s−1). Note that Hillier et al.

(1993) find different values for R1 depending on whether helium recombines or remains ionized

in the outer wind, but at energies above 0.5 keV (where all of the lines presented here occur)

there is little difference between the two scenarios. More recent stellar parameters determined

by Puls et al. (1996) (Ṁ = 5.9× 10−6 M� yr−1, R∗ = 19 R�, and v∞ = 2250 km s−1) agree well

with the values used by Hillier et al. (1993), but would increase the Cassinelli et al. (2001) τ∗
values by a factor of 2, given the same opacity (see eq. 2-6).

If we accept the τ∗ values derived from our fits, then the disparity between those values

and the ones mentioned above suggest that either the mass-loss rates or wind opacities are being

overestimated in previous calculations. The mass-loss rate of ζ Puppis is by now quite well estab-

lished using UV absorption lines and Hα, although improper ionization corrections or clumping

could lead to systematic errors. The wind opacity determination seems much more uncertain,
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Fig. 5.— Models at extremes of the confidence region. Shown are the Chandra MEG spectrum of

the 17.054Å line of Fe XVII (in gray), and (in black) the best-fit model (τ∗ = 0.5), the fit with τ∗
held at its 95.4% confidence upper limit (τ∗ = 1.5) and the fit with τ∗ held at its 95.4% confidence

lower limit (τ∗ = 0.0). The contour plots are the same style as in Figure 3 and correspond to (b)

the τ∗ = 0.0 model, (c) the best-fit model, and (d) the τ∗ = 1.5 model.

Table 2. Parameters of the line-profile fits.

Ion λ0 v∞ λ0/∆λ 2v∞/∆v σx xmin xmax Nobs

(Å) (km s−1)

N VII 24.78 2485 1077 18 0.048 −1.11 1.11 69

O VIII 18.97 2485 825 14 0.062 −1.04 1.14 92

Fe XVII 17.054 2485 741 12 0.069 −0.74 1.16 69

Fe XVII 16.787 2485 730 12 0.07 −1.16 0.74 54

Fe XVII 15.262 2485 664 11 0.077 −0.81 1.19 53

Fe XVII 15.013 2485 653 11 0.079 −1.19 0.79 50

Fe XVII 15.013 2200 653 10 0.089 −1.34 0.89 49

Ne X 12.13 2485 527 9 0.097 −1.23 0.03 49

Si XIV 6.18 2485 269 4 0.191 −0.98 0.59 26

Note. — The width of the instrumental response in wavelength units is

∆λ = ∆λMEG = 0.023 Å, or in velocity units ∆v = c∆λ/λ0. The scaled

wavelength x ≡ (c/v∞)(λ − λ0)/λ0. Nobs is the number of wavelength bins

included in the fit.
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Table 3. Estimated parameter values with 95.4% confidence intervals and goodness-of-fit

calculations.

Ion λ0 v∞ q Ro/R∗ τ∗ V α0 αRF

(Å) (km s−1)

N VII 24.78 2485 −0.5+0.6
−0.3 2.0+1.3

−0.6 0.5+2.0
−0.5 0.073 0.667 0.356

O VIII 18.97 2485 −0.1+0.6
−0.4 1.2+2.1

−0.2 2.5+2.5
−1.5 0.066 0.941 0.790

Fe XVII 17.054 2485 −0.6+0.4
−0.2 1.4+0.6

−0.3 0.5+1.0
−0.5 0.059 0.971 0.950

Fe XVIIa 16.787 2485 0.4+0.6
−0.6 1.0+2.3

−0.0 4.5+3.5
−2.5 0.087 0.517 0.490

Fe XVIIa 15.262 2485 −0.8+0.2
−0.2 1.4+1.1

−0.4 1.5+2.5
−1.5 0.095 0.039 0.151

Fe XVII 15.013 2485 −0.2+0.4
−0.3 1.4+0.6

−0.3 1.0+1.0
−0.5 0.067 0.887 0.800

Fe XVII 15.013 2200 −0.4+0.4
−0.2 1.4+0.6

−0.4 1.5+1.5
−1.0 0.078 0.562 0.370

Ne X 12.13 2485 −0.4+0.5
−0.3 1.4+0.6

−0.4 1.0+1.5
−1.0 0.106 0.432 0.100

Si XIVb 6.18 2485 −0.2+ ···

−0.8 1.4+8.6
−0.4 1.5+5.5

−1.5 0.148 0.857 0.622

aThe anomalous results for these lines may be due to contamination. See §3.7.

bAt the 95.4% confidence level upper limit, q is unconstrained for this fit.
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Fig. 6.— The best-fit values of (a) q, (b) Ro, and (c) τ∗ for seven of the eight fitted lines in

the ζ Puppis spectrum (bullets), along with the range given by the 95.4% confidence limits

(triangles). See Table 3.
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both because of the inconsistent values in the literature and because of the difficulty in de-

termining the ionization state of the wind (Macfarlane et al. 1993; Macfarlane, Cohen, & Wang

1994). Recent advances in stellar atmosphere modeling may help to improve these determi-

nations (Pauldrach, Hoffmann, & Lennon 2001). Another means of lowering the wind atten-

uation is to clump the wind into small clouds that are individually optically thick render-

ing the wind porous and enhancing the escape probability of x-ray photons, thus lowering

the mean wind opacity. This would also affect the mass-loss rate diagnostics, but is, itself,

an independent effect. Feldmeier et al. (2002b), Oskinova, Feldmeier, & Hamann (2002), and

Feldmeier, Oskinova, & Hamann (2002a)7 have done work on how such clumping might arise

and how it might affect observed x-ray spectra.

An even more curious result of the τ∗ fits is that they are nearly independent of wavelength.

This is surprising because photoionization cross sections should scale roughly as a power of

wavelength between λ2 and λ3 (Hillier et al. 1993). It is possible that the distribution of ionization

edges could conspire to make this relationship much flatter over a small range of wavelengths

(as the calculations from Cassinelli et al. 2001 seem to indicate). But wind clumping might play

some role, here too. If the wind opacity is dominated by clumps that are individually optically

thick across the wavelength range, then the opacity ceases to be a function of wavelength and

instead depends on the physical cross sections of the clumps themselves. Note that the UV line

opacity necessary to explain the observed absorption line profiles could, in principle, still be

provided by the tenuous inter-clump wind, as the line cross sections are much bigger than the

x-ray photoionization cross sections.

If R1 � Ro, the line profile is insensitive to changes in Ro, since emission much below R1 is

largely absorbed by the wind. The values we find for Ro, though generally small, are comparable

to our values of R1 (from τ∗ by eq. 2-7). It is hard to assess these relatively small onset radii in

the context of the small (sometimes surprisingly small) values claimed on the basis of observed

f/i ratios in He-like ions (Cassinelli et al. 2001; Kahn et al. 2001; Waldron & Cassinelli 2001).

This is partially because we do not fit the profiles of any He-like lines (they are too blended) and

partly because the most extreme result (smallest value for R1) from the line ratios is for S XV,

which is a higher ionization stage than any of the lines we fit. The constraints we were able to

place on R1, though, suggest that the onset of shock formation is fairly close to the photosphere.

The fit results for the parameter q indicate that there is not a strong radial trend in the

filling factor. One might expect some competition in a wind shock model between the tendency

to have more and stronger shocks near the star, where the wind is still accelerating, and the

tendency for shock heated gas to cool less efficiently in the far wind, where densities are low.

Perhaps these two effects cancel to give the observed q ≈ 0 relationship.

The radial variation of the emissivity is undoubtedly more complicated than is allowed for

7These papers are available at http://auriga.astro.physik.uni-potsdam.de/~afeld/publications.html.

http://auriga.astro.physik.uni-potsdam.de/~afeld/publications.html
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by the simple assumptions of this model, but in the absence of additional empirical information

and in the interest of simplicity, the decision was made to attempt fits using a single radial power

law. The quality of the fits justifies this choice to some extent.

From a theoretical point of view, we are already assuming emission arises in a large number of

shocks which are, on some scale, distributed “smoothly” throughout the wind (this is supported

by the variability observations of Berghoefer et al. 1996, as discussed in §1.3). We may then

regard the wind as a two-component fluid, the bulk of which is cold X-ray absorbing material

with a small fraction of embedded X-ray emitting plasma. Each individual shock will contain

material at a range of temperatures controlled by the shock velocity and cooling structure, but

on the scale at which the wind may be regarded as a two-component fluid it does not seem

unreasonable to assume that these variations will also blend into a smooth, radial distribution.

5. Conclusion

The primary result of the analysis presented here is that x-ray emission lines in the proto-

typical O supergiant ζ Puppis, can be adequately fit with a spherically-symmetric wind model

having a small number of free parameters. The derived values of the parameters are quite rea-

sonable in the context of most wind-shock models, being consistent with hot plasma uniformly

distributed throughout the wind above a moderate onset radius, x-ray emission extending out

to the wind terminal velocity, and the need for the inclusion of some wind attenuation. This

provides the most direct evidence yet that some type of wind-shock model applies to this hot

star. However, there are indications that the absorption properties of the wind of ζ Puppis, and

perhaps other hot stars, must be reconsidered.

In the future this model will be fit to Chandra spectra of other hot stars, but the lack of

strong line asymmetries in stars such as ζ Ori and δ Ori and the narrow lines in θ1 Ori C and τ

Sco indicate that spherically-symmetric wind-shock models with absorption may not fit the data

from these stars as well as they do ζ Puppis. The detection of a 1 kG magnetic field on θ1 Ori

C (Donati et al. 2002) and preliminary theoretical work on the effect of magnetic confinement of

the wind on line profiles (Kramer et al. 2003b) suggests that the presence or absence of a strong,

dipole magnetic field may separate hot stars into two classes: those without a strong field would

have spherically symmetric winds and ζ Puppis-type x-ray line profiles, while those with strong

fields would have magnetically confined winds with narrower line profiles (at least from some

viewing angles).
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A. Identified blends

This appendix lists all the potential blends identified in the lines considered for fitting in

the ζ Puppis spectrum (see APED).

Si XIV 6.18 Å (H like)

No blends.

Ne X 12.13 Å (H like)

Blend at λ = 12.285 Å.

λ(1 − v∞
c

) = 12.156, λ(1 − v∞
c

) − ∆λMEG = 12.133

Fe XVII 15.013 Å (Ne like)

Blend at λ = 15.262 Å.

λ(1 − v∞
c

) = 15.135, λ(1 − v∞
c

) − ∆λMEG = 15.112

Fe XVII 15.262 Å (Ne like)

Blend at λ = 15.013 Å.

λ(1 + v∞
c

) = 15.137, λ(1 + v∞
c

) + ∆λMEG = 15.16

Possible unaccounted-for blends at 15.198 Å and 15.3654 Å.

Fe XVII 16.787 Å (Ne like)

Blend at λ = 17.054 Å.

λ(1 − v∞
c

) = 16.913, λ(1 − v∞
c

) − ∆λMEG = 16.89

Possible unaccounted-for blend at 16.718 Å.

Fe XVII 17.054 Å (Ne like)

Blend at λ = 16.787 Å.

λ(1 + v∞
c

) = 16.926, λ(1 + v∞
c

) + ∆λMEG = 16.949

0 VIII 18.97 Å (H like)

Possible blend at λ = 18.63 Å.

λ(1 + v∞
c

) = 18.784, λ(1 + v∞
c

) + ∆λMEG = 18.807
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N VII 24.780 Å (H like)

No blends.

B. Singularity in line profile integral

Equation 2-9 has an obvious singularity at r = R∗. This value only occurs at the low

endpoint of the integral when x = 0 and Ro = R∗ and thus rx = R∗. The singularity does

not pose a problem except when τ∗ is less than about 1, and even so, the numerical integration

package in Mathematica still gives a value, but warns about the singularity. The value of the

integral at x = 0 as we approach R0 = R∗ from above converges smoothly to the one returned

by Mathematica at R0 = R∗, which makes physical sense, so we have not seen the need for more

formal exploration of the convergence.
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