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Outline/overview:

0! Ori C is a magnetic prototype: tilted dipole, slow
rotator, moderate confinement (Nx ~ 20)

X-rays trace the
dissipation of wind KE in
the magnetosphere




Properties of B! Ori C

O7V (but with some reported variation)
age < | Myr

Teff e 42,000 K
luminosity ~ 10°>* Lsun

M ~ 5 X 107 Msunlyr
Voo ~ 2500 km/s

tilted dipole, B, ~ | kG
|~ B ~ 45°



Properties of 8! Ori C

O7YV (but with some reported variation)
age < | Myr

Teff e 42,000 K
luminosity ~ 10°* Lgun

M e 5 X |0-7 Msun/)’r
Voo ~ 2500 km/s

tilted dipole, B, ~ | kG
i ~ 3 ~45° B' Ori C

One of only two O stars in the ONC



tilted dipole:
oblique magnetic rotator
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H« intensity map (ADM model)

edge-on: Hx weaker pole-on: H stronger

Sundgqyvist et al. 2012



tilted dipole:
oblique magnetic rotator
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MHD simulations: 2-D, hemispherical slice

density temperature X-ray emission

Figure 4. Colour plots of log density (left) and log temperature (middle) for arbitrary snapshot of structure in the standard model with n, = 100 and no IC
cooling. The right-hand panel plots the proxy X-ray emission XEM7, (weighted by the radius r) from (26), on a linear scale for a threshold X-ray temperature
= 1.5 MK.
X

ud-Doula et al. 2014



3-D MHD simulation:

from A. ud-Doula



CHANDRA . .

X-RAY OBSERVATORY

Orion Nebula Cluster - Chandra
color-coded by X-ray hardness

response to photons with hv ~ 0.5 keV up to a few keV

(corresp. ~5A to 24A) N

spectroscopy (R < 1000 corresp. >300 km/s) KT = hv gives

small effective area (poor sensitivity) T~12X 1| 06 K
but very low background and very well calibrated for | keV



0! Ori C:
strongest X-ray
source in the
cluster

02 Ori A: non-
magnetic O star
with softer X-rays

Orion Nebula Cluster - Chandra
color-coded by X-ray hardness




X-ray light curve: phase coverage: new data (| | new pointings to
supplement 4 in Gagne et al. 2005)

HETG coverage
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Line ratios as temperature indicators

/ is proportional to temperature
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Chandra spectra of prototype non-magnetic (zeta Pup, top) and magnetic (0' Ori C, bottom) stars



Line widths from gas kinematics

non-magnetic O stars: Viine ~ Vwind but MCWVS: Viine < Vwind
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Chandra spectra of prototype non-magnetic (zeta Pup, top) and magnetic (0' Ori C, bottom) stars



X-ray line emission process

thermal emission from collisional plasma
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Plasma heating from hydrodynamic shock

wind kinetic energy converted to heat: T ~ 10° (Vshock/300 km/s)? K

high mass loss rate
small cooling length
faster wind

stronger shock
stronger, harder X-rays

low mass loss rate
large cooling length
slower wind

weaker shock
weaker, softer X-rays

from ud-Doula et al. 2014



Overall level and hardness of X-ray emission

affected by:

amount of wind material fed into the
magnetosphere

efficiency of shock heating (duty cycle of
shock build up vs. fall-back/downflow)

specific kinetic energy: shock velocity
(pre-shock wind velocity)

from ud-Doula et al. 2014



Goal: use the X-ray spectrum to
measure the amount of hot plasma and
its temperature distribution, compare
results to simulations



Spectral modeling: coadded |5 observations

collisional-radiative equilibrium model (APEC): temperature and emission measure are
free parameters, along with line widths and (potentially) abundances

Data and Folded Model
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fit to Chandra spectrum
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Spectral modeling

best-fit model parameters: temperature distribution in the plasma, line widths, absorption
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Fit statistic : C-Stat
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_  line widths ~ 300 km/s

ISM column density ~ 6 X 102! cm™
(maybe a bit more than ISM)



Spectral modeling

temperature distribution

from the APEC spectral fit
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SPeCtI"aI mOdeling The overall amount of hot plasma produced in the MHD

simulations is in excellent agreement with the data; the

_ ST temperature distribution is in good agreement, too.
Emission Measure (EM) distribution P 8 &

APEC spectral fit
from 3-D MHD simulation
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rotationally modulated X-ray variability



X-ray light curve: phase coverage: new data (| | new pointings to
supplement 4 in Gagne et al. 2005)
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X-rays:
occultation
causes the

magneto-
spheric
eclipse



Location of hot plasma from eclipse depth: occultation
Eclipse depth depends on distance of X-
_ray magnetosphere from the star
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3-D MHD simulation:

from A. ud-Doula






3-D MHD simulation: what about absorption!?

optical depth - in ADM model

Analytic Dynamical Magnetosphere

it forr =, 03] {r, forr. =,

Figure 7. Spatial variation of optical depth for bound-free absorption of X-ray emission by both the cool downflow and wind outflow components of the ADM
model, as well as by occultation of the opaque star. The top row shows results for a distant observer to the right, with an equator-on view, while the bottom
row is for an observer at the top, with a pole-on view. The model assumes an apex smoothing length h = 0.1 K., and a terminal speed Voo = 3ve for a
corresponding unmagnetized wind. The left, middle and right columns show cases with a corresponding wind optical depth 7. = 0.1, 0.3 and 1.




Spectral signature of absorption in NGC |624-2

Of!p with giant magnetosphere

Low state
High state
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Ratio of edge-on to pole-on spectra for 0! Ori C

Eclipse depth depends on distance of X-
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Ratio of edge-on to pole-on spectra for 0! Ori C
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X-ray light curve: focus on the stochastic, short-term variability

variability of < 10%
HETG coverage consistent with 3-D model:
' lateral structure
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Other magnetic O stars!



Other magnetic O stars: HD 191612 (Of?!p)
X-ray luminosity almost as high as 8' Ori C

A HD108
6'0ri CA
A HD191612

39.5 40
log (Lgoy)

Figure 4. Diagram showing the X-ray luminosity (in erg s~') versus
bolometric luminosity (in erg s~!). The dashed line indicates the typi-
cal relation for O stars (from Sana et al. 2006); HD 108, HD 191612 and
@' Ori C all lic above it. Asterisks show the position of hot stars in
NGC 6231 (Sana et al. 2006) with three outliers: the two objects lying above
the line are CW binaries whereas the one lying below is a Wolf-Rayet

binary.

Naze et al., 2007, MNRAS, 375,145



Broadband X-ray spectra: HD 191612
spectrum softer than @' Ori C
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HD [91612: some very hot plasma
but mostly cooler (few 10° K)

HD191612: EPIC data from Rev. 1068
| I | II | 1 | I P ll 1

kT ~ 3 keV
(35 million K)
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Naze et al., 2007, MNRAS, 375, 145



Conclusions:

The MCWS scenario,and MHD simulations
specifically, predict the observed amount of hot
magnetospheric plasma and its temperature
distribution

Mass-loss rate, wind speed, magnetic
confinement are as expected

Future analysis: absorption, line widths - phase-
dependence; also shock-heating rate from emission line

strengths can constrain duty-cycle/efficiency ADM vs.
MHD

What'’s different about other magnetic O stars with softer
spectra and broader lines!?



