Update on θ^{1} Ori C: the Magnetically Confined Wind Shock model does a pretty good job

David Cohen Department of Physics & Astronomy Swarthmore College

Asif ud-Doula, Véronique Petit, Stan Owocki, Maurice Leutenegger, Marc Gagné, and Jackie Pezzato (Swarthmore '17), Randy Doyle (Swarthmore '16)

Outline/overview:

 θ^{1} Ori C is a magnetic prototype: tilted dipole, slow rotator, moderate confinement ($\eta_{*} \sim 20$)

X-rays trace the dissipation of wind KE in the magnetosphere

Properties of θ^{1} Ori C

O7V (but with some reported variation) age < I Myr $T_{eff} \sim 42,000 K$ $Iuminosity \sim I0^{5.4} L_{sun}$

 $\dot{M} \sim 5 \times 10^{-7} M_{sun}/yr$ v_∞ ~ 2500 km/s

tilted dipole, $B_p \sim 1 \text{ kG}$ i ~ $\beta \sim 45^{\circ}$

Properties of θ^{1} Ori C

O7V (but with some reported variation) age < 1 Myr $T_{eff} \sim 42,000 \text{ K}$ Iuminosity ~ 10^{5.4} L_{sun}

 $\dot{M} \sim 5 \times 10^{-7} M_{sun}/yr$ v_∞ ~ 2500 km/s

tilted dipole, $B_p \sim 1 \text{ kG}$ i ~ $\beta \sim 45^{\circ}$

θ^I Ori C One of only two O stars in the ONC

tilted dipole: oblique magnetic rotator

H_{α} intensity map (ADM model)

edge-on: H_{α} weaker

pole-on: H_{α} stronger

Sundqvist et al. 2012

tilted dipole: oblique magnetic rotator

MHD simulations: 2-D, hemispherical slice

density

temperature

X-ray emission

Figure 4. Colour plots of log density (left) and log temperature (middle) for arbitrary snapshot of structure in the standard model with $\eta_* = 100$ and no IC cooling. The right-hand panel plots the proxy X-ray emission XEM_{T_x} (weighted by the radius *r*) from (26), on a *linear* scale for a threshold X-ray temperature $T_x = 1.5$ MK.

ud-Doula et al. 2014

3-D MHD simulation: log Temperature

from A. ud-Doula

Chandra

CHANDRA X-RAY DESERVATORY

Orion Nebula Cluster - Chandra color-coded by X-ray hardness

response to photons with $hv \sim 0.5$ keV up to a few keV (corresp. ~ 5 Å to 24Å) spectroscopy (R < 1000 corresp. >300 km/s)

small effective area (poor sensitivity) but very low background and very well calibrated kT = hv gives T ~ 12 X 10⁶ K for 1 keV

Orion Nebula Cluster - Chandra color-coded by X-ray hardness θ¹ Ori C:
strongest X-ray
source in the
cluster

 θ^2 Ori A: nonmagnetic O star with softer X-rays

X-ray light curve: phase coverage: new data (11 new pointings to supplement 4 in Gagne et al. 2005)

Line ratios as temperature indicators

 $Mg \times I / Mg \times I$ is proportional to temperature

Chandra spectra of prototype non-magnetic (zeta Pup, top) and magnetic (θ^{\dagger} Ori C, bottom) stars

Line widths from gas kinematics

non-magnetic O stars: v_{line} ~ v_{wind} but MCWS: v_{line} < v_{wind}

Chandra spectra of prototype non-magnetic (zeta Pup, top) and magnetic (θ^{1} Ori C, bottom) stars

X-ray line emission process thermal emission from collisional plasma

Plasma heating from hydrodynamic shock wind kinetic energy converted to heat: $T \sim 10^6 (v_{shock}/300 \text{ km/s})^2 \text{ K}$

from ud-Doula et al. 2014

Overall level and hardness of X-ray emission affected by:

amount of wind material fed into the magnetosphere

efficiency of shock heating (duty cycle of shock build up vs. fall-back/downflow)

specific kinetic energy: shock velocity (pre-shock wind velocity)

from ud-Doula et al. 2014

Goal: use the X-ray spectrum to measure the amount of hot plasma and its temperature distribution, compare results to simulations

Spectral modeling: coadded 15 observations

collisional-radiative equilibrium model (APEC): temperature and emission measure are free parameters, along with line widths and (potentially) abundances

fit to Chandra spectrum

Spectral modeling

zoom-in: black = model; red, blue = data (two grating arrays on *Chandra* produce two spectra, simultaneously)

fit to Chandra spectrum

data - model agreement is quite good

Spectral modeling

work presented here is preliminary

best-fit model parameters: temperature distribution in the plasma, line widths, absorption

Model	(baper	c<1> + bap	ec<2> + bape	ec<3> + b	apec<4> + bape	c<5> + bapec<6>)TBabs<7>
Source	e No.:	1 Hetive	Bananatan	Ibite	Uslus	
nodel	nodel	Lomponent	Parameter	Unit	value	
Par	comp	L	LT	1530	0.000000	C
1	1	Dapec	KI	KeV	0.200000	trozen
2	1	bapec	Houndanc		1.00000	frozen
5	1	bapec	Redshift		0.0	frozen
4	1	bapec	Velocity	km/s	290,281	+/- 2,523/6
5	1	bapec	norm		1,11264E-02	+/- 5.74059E-04
6	2	bapec	kT	keV	0,400000	frozen
7	2	bapec	Abundanc		1.00000	frozen
8	2	bapec	Redshift		0.0	frozen
9	2	bapec	Velocity	km/s	290,281	= 1.0*4
10	2	bapec	norm		2.00501E-03	+/- 1.13754E-04
11	3	bapec	kT)	keV	0.800000	frozen
12	3	bapec	Abundanc		1,00000	frozen
13	3	bapec	Redshift		0.0	frozen
14	3	bapec	Velocity	km/s	290,281	= 1.0*4
15	3	bapec	norm		5.02117E-03	+/- 9.06196E-05
16	4	bapec	kT)	keV	1.60000	frozen
17	4	bapec	Abundanc		1.00000	frozen
18	4	bapec	Redshift		0.0	frozen
19	4	bapec	Velocity	km/s	290,281	= 1.0*4
20	4	bapec	norm	1.	7.56200E-03	+/- 1.89407E-04
21	5	bapec	kT	keV	3,20000	frozen
22	5	bapec	Abundanc	1.11	1,00000	frozen
23	5	bapec	Redshift		0.0	frozen
24	5	bapec	Velocitu	km/s	290.281	= 1.0*4
25	5	hapec	norm		2.07156E-02	+/- 4.52703E-04
26	ě	hapec	kT	kell	6.40000	frozen
27	ñ	hapec	Abundanc		1.00000	frozen
28	ñ	hapec	Redshift		0.0	frozen
29	ă	hapec	Velocity	km/s	290.281	= 1 1-4
30	õ	hapec	norm	ran o	2 400175-03	+/- 3.00636E-04
31	7	TRabs	nH	10^22	0.616796	+/- 4 19245E-03
		10000	101	** ee	A*0701.00	THE TOPTOR VO

13812.32 using 4807 PHA bins and 4799 degree

Warning: cstat statistic is only valid for Poisson data. Source file is not Poisson

Test statistic : Chi-Squared = 9258.43 using 4807 PHA bins. Reduced chi-squared = 1.92924 for 4799 degrees of freedom Null hypothesis probability = 2.369129e-286

line widths ~ 300 km/s

ISM column density ~ 6 X 10²¹ cm⁻² (maybe a bit more than ISM)

Spectral modeling AND LADE temperature distribution fit to Chandra spectrum from the APEC spectral fit to an addition of the second 8×10⁵⁵ Emission Measure (cm^-3) 6×10⁵⁵ т t

 10^{7}

Temperature (K)

10⁸

4×10⁵⁵

2×10⁵⁵

0

10⁶

Spectral modeling

The overall amount of hot plasma produced in the MHD simulations is in excellent agreement with the data; the temperature distribution is in good agreement, too.

Emission Measure (EM) distribution

rotationally modulated X-ray variability

X-ray light curve: phase coverage: new data (11 new pointings to supplement 4 in Gagne et al. 2005) work presented here is preliminary

X-rays: occultation causes the magnetospheric eclipse

Location of hot plasma from eclipse depth: occultation

3-D MHD simulation: what about 3-D?

from A. ud-Doula

3-D MHD simulation: what about 3-D?

from A. ud-Doula

3-D MHD simulation: what about absorption?

optical depth - in ADM model

Figure 7. Spatial variation of optical depth for bound-free absorption of X-ray emission by both the cool downflow and wind outflow components of the ADM model, as well as by occultation of the opaque star. The top row shows results for a distant observer to the right, with an equator-on view, while the bottom row is for an observer at the top, with a pole-on view. The model assumes an apex smoothing length $h = 0.1R_*$, and a terminal speed $V_{\infty} = 3v_e$ for a corresponding unmagnetized wind. The left, middle and right columns show cases with a corresponding wind optical depth $\tau_* = 0.1, 0.3$ and 1.

Spectral signature of absorption in NGC 1624-2

Of?p with giant magnetosphere

from V. Petit

Ratio of edge-on to pole-on spectra for θ' Ori C

Ratio of edge-on to pole-on spectra for θ' Ori C

X-ray light curve: focus on the stochastic, short-term variability

Other magnetic O stars?

Other magnetic O stars: HD 191612 (Of?p) X-ray luminosity almost as high as θ¹ Ori C

Figure 4. Diagram showing the X-ray luminosity (in erg s⁻¹) versus bolometric luminosity (in erg s⁻¹). The dashed line indicates the typical relation for O stars (from Sana et al. 2006); HD 108, HD 191612 and θ^1 Ori C all lie above it. Asterisks show the position of hot stars in NGC 6231 (Sana et al. 2006) with three outliers: the two objects lying above the line are CW binaries whereas the one lying below is a Wolf–Rayet binary.

Broadband X-ray spectra: HD 191612 spectrum softer than θ¹ Ori C

Nazé et al., 2007, MNRAS, 375, 145

Nazé et al., 2007, MNRAS, 375, 145

Conclusions:

The MCWS scenario, and MHD simulations specifically, predict the observed amount of hot magnetospheric plasma and its temperature distribution

Mass-loss rate, wind speed, magnetic confinement are as expected

Future analysis: absorption, line widths - phasedependence; also shock-heating rate from emission line strengths can constrain duty-cycle/efficiency ADM vs. MHD

What's different about other magnetic O stars with softer spectra and broader lines?