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If we understand the physical connection
between magnetic fields in massive stars and X-
rays, we could use X-ray observations to identify

magnetic massive stars.

e.g. Which of the stars in
this Chandra X-ray image
of the Orion Nebula
Cluster are massive
magnetic stars?




But we’re not there yet...

X-ray behavior of known magnetic massive stars
IS diverse.

We don’t understand enough about the physical
mechanisms of X-ray production in them.




The Sun: X-rays <-> Magnetic Fields










Stellar rotation vs. X-ray luminosity
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Massive star X-rays are not coronal




X-rays In massive stars are associated with their
radiation-driven winds




Power In these winds:

%Mvi ~3x10”° ergs’!
=~ .001L,

while the x-ray luminosity

L, =107L,

To account for the x-rays, only one part in 10
of the wind’s mechanical power is needed to
heat the wind




Three models for massive star x-ray emission

1. Instability driven shocks

2. Magnetically channeled
wind shocks

3. Wind-wind interaction in
close binaries
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What are these “X-rays” anyway?

...and what’s the available data like?




Launched 2000: superior
sensitivity,
spatial resolution, and
spectral resolution

XMM-Newton

Chandra

sub-arcsecond resolution




Both have CCD detectors for
Imaging spectroscopy:

low spectral resolution: A ~ 20 to 50

And both have grating
spectrometers: R ~ few 100 to 1000

300 km/s




XMM-Newton

The gratings have poor sensitivity...
We’ll never get spectra for more
than two dozen hot stars




The Future:

Astro-H (Japan) — high spectral
resolution at high photon energies
...few years from now

International X-ray Observatory (IXO)
... 2020+




First, imaging (+ low resolution)
spectroscopy with Chandra




Chandra ACIS
Orion Nebula Cluster (COUP)

" Color coded according to
photon energy (red: <1keV;
green 1 to 2 keV; blue > 2 keV)




X-.raye Chandra/ACIS/Feigelson et al. (COUP) + Infrared: VLT/ISAAC/M&Caughrean et ak

Movie from the COUP team: astro.swarthmore.edu/~cohen/presentations/MiMeS2/COUP_optical_xray_m3.mov




Movie from the COUP team: astro.swarthmore.edu/~cohen/presentations/MiMeS2/COUP_variability_m2.mpg




0 Ori C: X-ray lightcurve — periodic variability

Stelzer et al. 2005
not zero




o Ori E: XMM light curve: flare-like variability
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Centrifugally driven breakout (ud-Doula, Townsend, & Owocki 2006, Apd, 640, L191)
...or low-mass binary companion?




XMM EPIC spectrum of ¢ Ori E
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Fig. 9. PN spectra of o Ori E during quiescence and at the peak of the
flare. The best-fit model is also shown.

Sanz-Forcada et al. 2004




Chandra grating spectra: 6! Ori C and a non-magnetic O star
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thermal emission

“coronal approximation” valid: electrons in ground state,
collisions up, spontaneous emission down

optically thin

lines from highly stripped metals, weak bremsstrahlung
continuum (continuum stronger for higher temperatures)
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thermal emission

“coronal approximation” valid: electrons in ground state,
collisions up, spontaneous emission down

optically thin

lines from highly stripped metals, weak
bremsstrahlung continuum (continuum stronger for
higher temperatures)




Chandra grating spectra: 6! Ori C and a non-magnetic O star
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Energy Considerations and Scalings

1keV ~12 x 106 K~ 12 A

Shock heating: Av = 300 km/s

gives T ~10° K (and T ~ v?)

ROSAT 150 eV to 2 keV
Chandra, XMM 350 eV to 10 keV
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/He-like ratio Is temperature sensitive
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01 Ori C — is hotter

WMMWMW

9 10 11 12 13 14
Wavelength (A)

1
)
I
S}
oy

Count Rate (counts s™ A-

10,
Wavelength (A)

H/He >1in 6! Ori C




E o 7T T T T T rrrry] T T T T rrrry T T T
lefe re ntlal . HD [R06267A:06.5V((f)); T CMa:09II; ¢ Ori:09III
. . 1\A:09.5II; ¢ Ori A:09.7Ib
Emission o ;

g' Ori C:04—6p 1

Measure

(temperature distribution)

0! Ori C is much ¢ Pup:0I(n)f
hotter

T Sco:B0.2V

g Cru:B0.5II

s e a3l M 12 3 33331
10’ 10°
Temperature (K)

Wojdowski & Schulz (2005)



L

Count Rate (counts s™ A

~_
T
o,
IV)
j2)
2
=]
g
¥]
)
L
N
~
o
R
=]
=
o
O

12.10 12.15
Wavelength (A)

1000 km s°!
—

12.10 12.15
Wavelength (A)

Emission lines are
significantly narrower, too




Mg XIll Ly-a in 67 Ori C compared to instrumental profile
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Ne X Ly-a in 6! Ori C : cooler plasma, broader — some

contribution from “standard” instability wind shocks
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The X-ray properties of 8! Ori C can be understood in
the context of its magnetic field and the magnetically
channeled wind shock (MCWS) mechanism




Dipole magnetic field
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Line of sight

FiG. 11b
Shore & Brown, 1990




MCWS: Babel & Montmerle 1997

s T [K] . . 7.3

0.0 0.5

Fic. 1.—Temperature map for the postshock region in the approximation
of a steady-state shock. The shock front is indicated by a heavy solid line and
wind trajectories (or magnetic field lines) by dashed lines. Upper panel: closed
magnetosphere, Ly = 1.49 (B ~ 370 G). Lower panel: closed and open
magnetosphere, Ly = 1.39 (BS ~ 300 G).




Dynamical models (ud-Doula; Townsend): color scale shows emission
measure in different temperature regimes

Optical / UV Soft X-ray

-
AN

Medium X-ray Hard X-ray

astro.swarthmore.edu/~cohen/presentations/MiMeS2/zeus-movie.avi




Looking at individual physical variables:

Note that the hot, post-shock plasma:

has relatively low density,

IS concentrated near the tops of the
largest closed-loop regions

(~2R

_Star)’ :
and is very slow moving (due to

confinement)




Frarme 001 | 23 Fep 2005 |

Simulation/visualization courtesy A. ud-Doula
Movie available at astro.swarthmore.edu/~cohen/presentations/apip09/t1oc-lowvinf-logd.avi




Frame 001 | 23 Fep 2005 |

Simulation/visualization courtesy A. ud-Doula
Movie available at astro.swarthmore.edu/~cohen/presentations/apip09/t1oc-lowvinf-logT.avi




Frame 001 | 23 Fep 2005 |
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Movie available at astro.swarthmore.edu/~cohen/presentations/apip09/t1oc-lowvinf-speed.avi




MHD simulation summary.

temperature emission measure

Gagne et al. (2005)

Channeled collision is close to head-on:
Av> 1000 kms!: T>107 K




Differential emission measure

(temperature distribution)
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There are Chandra observations at many
different phases




Chandra broadband count rate vs. rotational phase
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The star itself occults the hot plasma in the magnetosphere
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The star itself occults the hot plasma in the magnetosphere
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0 Ori C column density (from x-ray absorption) vs. phase
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Emission measure

contour encloses T > 10° K




Helium-like species’ forbidden-to-intercombination
line ratios — /1 or z/(x+y) — provide information
about the /ocation of the hot plasma




Helium-like ions (e.g. O*°, Ne*®, Mg+'?, Si*!2, S*+14) —
schematic energy level diagram
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Ultraviolet light from the star’s photosphere drives
photoexcitation out of the °S level

forbidden () intercombination (x+y)

g.s. 1s2 1S




Weakening the forbidden line and strengthening the
Intercombination line
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The f/i ratio Is thus a diagnostic of the local UV mean
intensity...

fefizlletEh (e intercombination (x+y)
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...and thus the distance of the x-ray emitting plasma
from the photosphere

fefizlletEh (e intercombination (x+y)

g.s. 1s2 1S
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He-like f/i ratios and the x-ray light curve both indicate
that the hot plasma is somewhat closer to the
photosphere of 8! Ori C than the MHD models predict.




So, in 8! Ori C, the X-rays tell us about the
magnetospheric conditions in several ways:

*High X-ray luminosity
«X-ray hardness (high plasma temperatures)
*Periodic variability (rotation and occultation)

*Narrow emission lines (confinement)
*f/I ratios quantify location




What about other magnetic
massive stars?




What about confinement?

0! Ori C: n.~20 : decent confinement




What about confinement?

COri: n-~0.1 . poor confinement

0! Ori C: n.~20 : decent confinement

o Ori E: n. ~107 . excellent confinement




0! Ori C has a hard X-ray spectrum with narrow lines

...HD191612 and C Ori have soft X-ray spectra
with broad lines
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T SCO does have a hard spectrum and narrow lines
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Do He-like t/i ratios provide evidence of hot
plasma near the photospheres of O stars?




No, I'm afraid they do not.




Features are very blended in most O stars: here, the
three models are statistically indistinguishable
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o Ori E (. ~ 107: RRM+RFHD)




Chandra ACIS (low-resolution, CCD) spectrum
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DEM derived from Chandra ACIS spectrum
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DEM from RFHD modeling

lﬁiluln.llhl.mm.l.m
6

/ 3




Observed & theoretical DEMs agree well
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RFHD (Townsend, Owocki, & ud-Doula 2007, MNRAS, 382, 139 )
Optical / UV Soft X-ray

Hard X-ray

Diff. Emission (10*° cm®)

Temperature (K)

astro.swarthmore.edu/~cohen/presentations/MiMeS2/hav-rfhd-4p.avi




MCWS dynamical scenario explains 6 Ori C well...
but, in detail, MHD models do not reproduce all the
observational properties

Most other magnetic massive stars have X-ray
emission that is different from 6! Ori C

Some have soft X-ray spectra with broad lines

Closed field regions may not always be associated
with the X-rays (v Sco)

f/i ratios, hard X-rays, variability in massive stars...not
unique to magnetic field wind interaction




