X-rays from Magnetic Massive Stars

David Cohen Swarthmore College

motivated by the MiMeS Delawareland meeting and preparation of the ipod paper

X-ray Properties: are magnetic stars distinguished from non-magnetic stars?

X-ray luminosity: over-luminous?
 Harder X-rays: hotter plasma from MCWS?
 Emission lines: narrower due to confinement?
 Variability: rotational modulation plus stochastic?
 are magnetic O stars distinct from magnetic B stars?

I.X-ray Luminosity

All magnetic O stars are overluminous (compared to the $L_x \sim 10^{-7} L_{bol}$ relationship seen in normal O stars)

Figure 4. Diagram showing the X-ray luminosity (in erg s⁻¹) versus bolometric luminosity (in erg s⁻¹). The dashed line indicates the typical relation for O stars (from Sana et al. 2006); HD 108, HD 191612 and θ^1 Ori C all lie above it. Asterisks show the position of hot stars in NGC 6231 (Sana et al. 2006) with three outliers: the two objects lying above the line are CW binaries whereas the one lying below is a Wolf–Rayet binary.

Nazé et al., 2007, MNRAS, 375, 145

Can we put the other ~5 magnetic O stars on this plot?

I.X-ray Luminosity

Some B stars are overluminous (but the behavior of "normal" B stars' L_x/L_{bol} is complex; steeply declining from 10⁻⁷ with decreasing T_{eff})

Figure 1. X-ray efficiency of the ONC massive stars as a function of effective temperature. The stars in which fields are detected are circled. *Filled symbols* are for stars with indirect indications of the presence of a magnetic field and *grey symbols* are for confirmed or suspected binaries. Plotting symbols indicate the following properties: *squares* are for stars showing possible X-ray rotational modulation, *circles* are for T Tauri type X-ray emission, *triangles* are chemically peculiar (CP) stars, and the *diamond* star was not observed. The *dotted line* indicates the typical efficiency for massive stars.

I. X-ray Luminosity

Some B stars are overluminous (but the behavior of "normal" B stars' L_x/L_{bol} is complex; steeply declining from 10⁻⁷ with decreasing T_{eff})

What L_x or L_x/L_{bol} is required for a B star to be considered overluminous in X-rays?

FIG. 2.—The ratio L_X/L_{Bol} for each of the 20 program stars that were detected above the 3 σ level. For three stars, τ Sco, β Cen, and ξ^1 CMa, we indicate the total generated luminosities with asterisks, which are connected to the points, representing the emergent X-ray luminosities, by a line. The upper limits (3 σ) for seven stars are indicated with open triangles. Be stars are indicated by filled circles with lines, and β Cephei variables by filled triangles.

Cohen, Cassinelli, & MacFarlane, 1997, ApJ, 487, 867

Cohen, Cassinelli, & MacFarlane, 1997, ApJ, 487, 867

I. X-ray Luminosity

Some B stars are overluminous (but the behavior of "normal" B stars' L_x/L_{bol} is complex; steeply declining from 10⁻⁷ with decreasing T_{eff})

Table 1. Magnetic early B-type stars with available X-ray observations

Name	HD	Sp	$B^{\mathbf{a}}$	$v \sin i$ P_{rot}		Dipole	Obliquity ^b	Ref		
			G	$\rm kms^{-1}$	d		β			
τ Sco	149438	B0V	$\langle \sim 500 \rangle$	5	41.033	no		1		
β Cep-type and SPB-type stars										
ξ^1 CMa	46328	B0.7IV	5300 ± 1100	9 ± 2	2.18	yes	79.1	2		
β Cep	205021	B2III	360 ± 40	27 ± 2	12.00089	yes	$85^{\circ} \pm 10^{\circ}$	3,4		
V2052 Oph	163472	BlV	250 ± 190	60 ± 4	3.63883	yes	$35^{\circ} \pm 18^{\circ}$	5		
ζ Cas	3360	B2IV	335^{+120}_{-65}	17 ± 3	5.37045	yes	$77^{\circ} \pm 6^{\circ}$	6		
Peculiar B stars										
NU Ori	37061	B0V(n)	~620	225 ± 50		yes		7		
V1046 Ori	37017	B2V	$\langle \sim 1500 \rangle$	≲95	0.9	?	42°–59°	8, 9, 13		
HR 3089	64740	B1.5Vp	(572 ± 114)	160	1.33	?		9, 13, 14		
LP Ori	36982	B2Vp	~1100	80 ± 20		yes		7		
$\sigma \operatorname{Ori} E$	37479	B2Vp	~ 10000	140 ± 10	1.191	yes	66°	10		
HR 5907	142184	B2.5Ve	~ 20000	280	0.5083	yes(?)	4° (?)	11,12		

a for dipole field configuration, B is the polar field strength.

For τ Sco, HR 3089, and V1046 Ori, an approximate average field strength is shown in angle brackets

^b β is the angle between the magnetic and rotational axes for the dipole field configuration

References: 1 Donati et al. (2006); Sota et al. (2011); 2 Hubrig et al. (2011); 3 Telting et al. (1997); 4 Donati et al. (2001);

5 Neiner et al. (2003b) 6 Neiner et al. (2003a); 7 Petit et al. (2008); 8 Bohlender et al. (1987);

9 Romanyuk & Kudryavtsev (2008); 10 Reiners et al. (2000); 11 Abt et al. (2002); 12 Grunhut et al. (2010);

13 Bychkov et al. (2003); 14 Borra & Landstreet (1979)

I.X-ray Luminosity

Some B stars are overluminous (but the behavior of "normal" B stars' L_x/L_{bol} is complex; steeply declining from 10⁻⁷ with decreasing T_{eff})

Name	d	$L_{\rm X}$	$\log (L_{\rm X}/L_{\rm bol})$						
	pe	$10^{30} {\rm erg s^{-1}}$							
τ Sco	150	40	-6.4						
Magnetic β Cep-type and SPB-type stars									
ξ^1 CMa	420	30	-6.6						
β Cep	200	6.4	-7.0						
V2052 Oph	400	0.3	-8.0						
ζCas	180	0.5	-7.5						
Other magnetic early-type B stars									
NU Ori	400	1.0	-8						
V1046 Oria	380	0.1	-8.0						
σ Ori E ^b	640	80	-5.6						
HR 3089°	300	2	-7.2						
LPOri	470	0.02	-8.5						
HR 5907	120	0.4	-7.4						

 Table 4. X-ray luminosities of magnetic early B-type stars

see these values plotted on the next slide

Distances are from van Leeuwen (2007) except of LP Ori, σ Ori E, HR 3089;

a the distance between the X-ray source;

2XMM J053522.0-042938 and the position of V1046 Ori is 3";

^b L_X (quiescent+flare) in 0.1-2.4 keV band from Sanz-Forcada et al. (2004) ;

 $^{\rm c}$ $L_{\rm X}$ in 0.1-2.4 keV band from Drake et al. (1994);

Cohen, Cassinelli, & MacFarlane, 1997, ApJ, 487, 867

I.X-ray Luminosity

What do we know about the L_x and L_x/L_{bol} values of the confirmed magnetic OB stars?

Maybe only the O stars are consistently overluminous in X-rays II. X-ray Hardness & Plasma Temperature
 naive MCWS expectation is for stronger shocks,
 higher temperatures, and hard X-rays
 θ¹ Ori C: prototype magnetic O star

temperature 5.5 7.0 6.0 6.5 7.5 log T (K) $\Upsilon\left(R_{*}\right)$ 5 0 1 2 3 4 $X(R_*)$

hotter than seen in EWS

emission measure

simulations by A. ud-Doula; Gagné et al. (2005)

θ^{I} Ori C: hotter plasma than prototypical EWS source Mg XII / Mg XI is proportional to temperature

other magnetic O stars (Of?p stars) have softer spectra, but still harder than EWS sources

Nazé et al., 2007, MNRAS, 375, 145

and a small but measurable amount of high-temperature plasma

Nazé et al., 2007, MNRAS, 375, 145

II. X-ray Hardness & Plasma Temperature

Some hotter plasma in HD 191612, but it dominates in θ^1 Ori C

Nazé et al., 2007, MNRAS, 375, 145

plasma temperature distributions of selected OB stars

Wojdowski & Schulz, 2005, ApJ, 627, 953

some magnetic B stars have low plasma temperatures though there *may* be some hotter plasma present

Table 3. The spectral parameters derived from the XMM-Newton EPIC observations of our program stars assuming the multi-temperature CIE plasma models (vapec) corrected for the interstellar absorption (tbabs). The values which have no error have been frozen during the fitting process. The corresponding spectral fits are shown in Figs. 1,3,2. For comparison, the spectral parameters inferred from modeling XMM-Newton data of β Cep and Suzaku spectra of τ Sco are also shown.

Star	ξ^1 CMa	ζ Cas	V2052 Oph	$\beta \mathrm{Cep^a}$	$ au{ m Sco}^{ m b}$
$N_{\rm H}^{\rm c} [10^{20} {\rm cm}^{-2}]$	1.4	3	15	2.5 ± 0.1	3
kT_1 [keV]	0.12 ± 0.01	0.08 ± 0.02	0.14 ± 0.12	0.24 ± 0.01	0.11 ± 0.01
EM ₁ [10 ⁵³ cm ⁻⁶]	22.48 ± 5.64	1.29 ± 1.05	0.006 ± 0.025	11 ± 2	17.0 ± 2.61
kT_2 [keV]	0.32 ± 0.01	0.31 ± 0.02			0.34 ± 0.01
EM ₂ [10 ⁵³ cm ⁻³]	19.3 ± 3.36	0.27 ± 0.07			10.4 ± 0.51
kT_3 [keV]	0.68 ± 0.05		0.65 ± 0.11	0.69 ± 0.03	0.71 ± 0.10
EM ₃ [10 ⁵³ cm ⁻⁶]	6.41 ± 2.57		0.003 ± 0.002	1.3 ± 0.3	7.2 ± 0.3
kT_4 [keV]					1.52 ± 0.06
EM ₄ [10 ⁵³ cm ⁻⁶]					5.2 ± 0.3
$\langle kT \rangle \equiv \sum_{i} kT_{i} \cdot \mathrm{EM}_{i} / \sum_{i} \mathrm{EM}_{i} [\mathrm{keV}]$	0.3	0.1	0.3	0.3	0.5
$Flux^{d} [10^{-12} erg cm^{-2} s^{-1}]$	1.1	0.093	0.006	1.0	16.4

^a the values are adopted from Favata et al. (2009)

^b the values are adopted from Ignace et al. (2010)

c correspond to the ISM hydrogen column density for all stars

^d in the 0.3-7.0 keV band, except of τ Sco in the 0.3-10.0 keV band, absorbed;

Oskinova et al., 2011, MNRAS, 416, 1456

II. X-ray Hardness & Plasma Temperature

current status: rather diverse behavior among magnetic massive stars; but some degree of enhanced hot plasma in many objects.

hypothesis: weaker winds have weaker shocks, perhaps related to cooling lengths

 θ^{I} Ori C shows narrow lines compared to ζ Pup

θ' Ori C shows narrow lines, at least for those lines formed in the hotter (> 10⁷K) plasma

but those lines are weak in the Chandra spectrum, due to ISM attenuation

FIG. 9.—Line widths for the strongest lines in the *Chandra* spectra plotted against the temperature of peak line emissivity, taken from APED. The open circles represent the Doppler width as measured by SHERPA. The filled diamonds represent the rms velocity as measured by ISIS. The mean rms velocity and standard deviations of these lines are indicated by the horizontal lines. Note that two of the lines formed in the coolest plasma are significantly broader than the mean, but most of the lines have nonthermal line widths of a 250–450 km s⁻¹.

Gagné et al., 2005, ApJ, 628, 1005

HD 148937 (Of?p) Chandra + XMM grating spectroscopy

note: full-width

Nazé, Zhekov, & Walborn, 2012, ApJ, 746, 142

FIG. 6.—Derived line widths (HWHM) for three strong lines in seven stars: two stars representative of coronal sources (Capella and AB Dor: *open symbols connected by dotted lines*), τ Sco (*filled diamonds and solid line*), and four O stars (*filled symbols and dashed lines*), which are presumably wind X-ray sources.

B (and even late O main sequence) stars may generally show narrow lines, independent of magnetism, so beware.

B Cru (B0.5 III) no field down to very low limit

Figure 7. The Fexvii line at 15.014 Å with three different wind profile models. The red, dashed line is a constant velocity wind model with $v_{\infty} = 280 \,\mathrm{km \, s^{-1}}$ (the best-fitting value for a constant outflow velocity, which produces emission lines with $v_{hwhm} \approx 150 \,\mathrm{km \, s^{-1}}$). The model with $v_{\infty} = 2000 \,\mathrm{km \, s^{-1}}$, $\beta = 1$ and $R_{\min} = 1.5 R_*$ is represented by the blue, dot-dash line. An infinitely narrow model is shown as the green, dotted line. The residuals for each model fit are shown in the lower panel, as red circles for the global best-fitting, modestly broadened (v_{∞} = 280 km s⁻¹) model, green squares for the narrow profile model and blue triangles for the broad wind model. The wind model with the higher velocity $(v_{\infty} = 2000 \,\mathrm{km \, s^{-1}})$ clearly does not provide a good fit, while the narrower constant velocity ($v_{\infty} = 280 \,\mathrm{km \, s^{-1}}$) wind model does. Furthermore, while the very narrow model cannot be absolutely ruled out, the $v_{\infty} = 280 \,\mathrm{km \, s^{-1}}$ model is preferred over it with a high degree of significance. All the models shown here have been convolved with the instrumental response function (RMF) and multiplied by the wavelength-dependent effective area (GARF).

Cohen et al., 2008, MNRAS, 386, 1885

Grating spectroscopy is expensive, and current data quality is sparse and poor; this will not be a mode of discovery. But detailed study of a few stars may prove fruitful. The current challenge is for models and simulations to reproduce even the meager observations.

HWHM ~ few 100 km/s for lines coming from T > 10⁷ K plasma; some contamination by EWS broad-line emission must be accounted for.

The focus should probably be on O stars, given the overall narrowness of X-ray lines in most/all B stars.

IV. X-ray Variability

Rotational modulation may be expected, stochastic variability could also be present

IV. X-ray Variability

θ^{I} Ori C: rotationally modulated X-ray emission

IV. X-ray Variability т Sco: variability at the 99.99% level

FIG. 3.—X-ray light curve formed from the combined MEG +1 and -1 order counts, with 1000 s bins. The mean count rate is indicated by the line. The hypothesis of a constant source can be rejected at a more than 99.99% confidence level.

IV. X-ray Variability

If there are fewer sites of emission in the MCWS scenario, compared to EWS, then we might expect more X-ray variability from the former. Perhaps on post-shock cooling timescales.

Summary and Future Prospects

Low-resolution (CCD) spectroscopy is the only X-ray discovery mode of new magnetic stars for the foreseeable future. High Lx/Lbol, especially for O stars, may be a good indicator. Hardness may be too, but high S/N might be required to identify small amount of harder emission from magnetic processes. X-ray variability may also be a partial indicator of magnetic fields, but the level of variability seems rather low.

Detailed study at high resolution will be possible using archival X-ray grating data and also potentially newly aquired spectra from ASTRO-H. But only of the handful of X-ray bright magnetic OB stars in the sky (and *Chandra* and *XMM* archives).

On the next slide is the correlated ROSAT catalog of pointed observations and OB stars in the Bright Star Catalog, ranked by ROSAT count rate. This is a good reflection of X-ray flux and thus which sources have the potential to provide useful X-ray datasets. There are not many magnetic stars on the list.

J/A+AS/118/481/table2 Post annotation ROSAT all-sky survey catalogue of OB stars (Berghoefer+ 1996)

ReadMe+ftp

Detections (237 rows)

Full	RAJ2000	DEJ2000	HR	Name	SpType	Vmag	<u>B-V</u>	E(B-V)	log(NH)	Dist	log(Lbol)	OX-sep	rate
	"h:m:s"	"d:m:s"				mag	mag	mag	[cm-2]	pc	[10-7W]	arcsec	ct/s
16	03 08 10.1	+40 57 20	936	bet Per	B8V	2.12	-0.05	0.06	18,40	29	35.95	1.1	9.135
25	03 55 23.1	+31 02 45	1209	X Per	09.5ep	6.10	0.29	0.60	21.54	465	38.52	5.4	2.652
5	00 56 42.5	+60 43 00	264	gam Cas	BOIVe	2.47	-0.15	0.14	20.30	194	38.45	47.3	2.599
61	05 35 16.5	-05 23 23	1895	the1 Ori	O6p	5.13	0.02	0.35	20.66	450	38.75	7.5	1.998
63	05 35 26.0	-05 54 36	1899	iot Ori	O9III	2.77	-0.24	0.07	20.30	501	39.18	3.1	1.727
53	05 32 00.4	-00 17 57	1852	del Ori	O9.5II	2.23	-0.22	0.08	20.18	501	39.34	6.5	1.667
178	16 35 53.0	-28 12 58	6165	tau Sco	BOV	2.82	-0.25	0.05	20.43	236	38.42	11.7	1.528
67	05 40 45.5	-01 56 34	1948	zet Ori	O9.7Ib	2.05	-0.21	0.05	20.48	501	39.34	7.9	1.189
141	13 25 11.6	-11 09 41	5056	alp Vir	B1III-IV+B2V	0.98	-0.23	0.03	19.00	86	37.99	6.0	1.142
104	08 03 35.0	-40 00 11	3165	zet Pup	O5If	2.25	-0.26	0.07	20.00	437	39.57	67.7	1.096
144	14 03 49.4	-60 22 23	5267	bet Cen	B1III	0.61	-0.23	0.03	19.54	85	38.10	9.0	1.085
64	05 36 12.8	-01 12 07	1903	eps Ori	BOIa	1.70	-0.19	0.04	20.48	463	39.17	12.1	0.885
40	05 12 17.9	-11 52 09	1696	iot Lep	B8V	4.45	-0.10	0.01	19.76	84	35.87	14.4	0.864
17	03 27 10.2	+09 43 58	1038	xi Tau	B9Vn	3.74	-0.09	0.00	18.50	51	35.58	3.7	0.823
182	16 41 20.4	-48 45 47	6187	D 150136	O5III(f)	5.65	0.13	0.45	21.42	1225	39.55	1.2	0.618
236	23 42 43.3	-14 32 42	8988	ome2 Aqr	B9.5V	4.49	-0.04	0.01	19.76	65	35.47	10.8	0.563
<u>98</u>	07 29 05.7	-38 48 43	2875	ID 59635	B5Vp	5.43	-0.16	0.01	19.76	209	36.54	11.1	0.519
89	06 58 37.5	-28 58 20	2618	eps CMa	B2II	1.50	-0.21	0.02	18.02	187	38.16	7.8	0.514
211	19 36 42.4	-24 53 01	7440	52 Sgr	B9	4.60	-0.07	0.01	19.76	75	35.59	7.3	0.486
35	04 38 15.8	+20 41 05	1471	HU Tau	B8V	5.92	-0.05	0.06	20.54	153	35.87	1.9	0.460
80	06 22 42.0	-17 57 21	2294	bet CMa	B1II-III	1.98	-0.23	0.03	19.48	203	38.25	12.5	0.417
66	05 38 44.8	-02 36 00	1931	sig Ori	09.5V	3.81	-0.24	0.07	20.56	501	38.80	12.8	0.392
127	10 42 57.4	-64 23 40	4199	the Car	B0Vp	2.76	-0.22	0.08	20.28	207	38.37	2.9	0.378
189	17 33 36.5	-37 06 14	6527	lam Sco	B2IV+B	1.63	-0.22	0.02	19.23	100	37.72	1.0	0.360
4	00 32 23.8	+06 57 20	132	51 Psc	B9.5V	5.67	0.00	0.05	20.46	105	35.47	17.8	0.339
41	05 12 55.9	-16 12 20	1702	mu Lep	B9IIIpHgMn	3.31	-0.11	0.00	18.50	61	35.94	6.5	0.336
180	16 37 09.5	-10 34 02	6175	zet Oph	09.5Vn	2.56	0.02	0.33	20.78	154	38.62	5.5	0.321
84	06 40 58.7	+09 53 45	2456	15 Mon	O7V((f))	4.66	-0.25	0.07	20.35	692	38.89	5.3	0.313
134	12 47 43.3	-59 41 20	4853	bet Cru	B0.5III	1.25	-0.23	0.05	20.46	147	38.43	71.3	0.311
69	05 47 45.4	-09 40 11	2004	kap Ori	B0.5Ia	2.06	-0.17	0.04	20.58	567	39.06	4.6	0.302
58	05 35 08.3	+09 56 03	1879	lam Ori	O8III((f))	3.54	-0.18	0.13	20.87	501	39.01	9.0	0.300
190	17 34 42.5	-32 34 54	6535	V1036 Sco	07V+07V	5.70	0.04	0.36	21.32	800	38.98	1.0	0.291
54	05 31 55.9	-07 18 06	1855	ups Ori	BOV	4.62	-0.26	0.04	20.35	494	38.33	3.4	0.267
34	04 33 33.0	+18 01 00	1442		B9IVn	6.25	0.07	0.14	20.91	157	35.79	9.9	0.254
27	03 58 57.9	+35 47 28	1228	xi Per	07.5III(n)((4.04	0.01	0.32	21.06	398	38.90	8.0	0.220
126	13 06 16 7	19 27 19	4040		PSV	4.71	0.14	0.03	20.24	145	36.54	21.0	0.210

prospects for high S/N X-ray spectroscopy

ROSAT/ Bright Star Cat. sorted by X-ray count rate