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0 STARS ARE STRONG X-RAY SOURCES
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0 STARS ARE DEFINED BY THEIR TREMENDOUS LUMINOSITIES

ks = 310 Wk
luminosity ~ 10° Lgun
surface temperature ~ 45,000 K

Orion: the bright, blue stars are O stars
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0 STARS ARE DEFINED BY THEIR TREMENDOUS LUMINOSITIES

luminosity ~ 10° Lgy,




0 STAR RADIATION-DRIVEN WINDS

O stars are also defined by their strong, radiation-driven
stellar winds
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0 STAR RADIATION-DRIVEN WINDS

C Pup (O4 supergiant): M ~ few 10°® Msun/Yr c v 1548 1551 A
STELLAR WIND OF { PUPPIS
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0 STAR RADIATION-DRIVEN WINDS

UV absorption spectroscopy: P Cygni profile
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0 STAR RADIATION-DRIVEN WINDS
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X-RAYS ARE PRODUCED BY EMBEDDED WIND SHOCKS (EWS)
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http://astro.swarthmore.edu/~cohen/presentations/ifrc3_xmbko1.e-2.gif

X-RAYS ARE PRODUCED BY EMBEDDED WIND SHOCKS (EWS)

A shock is a discontinuity where flow kinetic energy is
converted to heat
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X-RAYS ARE PRODUCED BY EMBEDDED WIND SHOCKS (EWS)

>99% of the wind is cold and X-ray absorbing

height ('R, - 1)




X-RAYS ARE PRODUCED BY EMBEDDED WIND SHOCKS (EWS)




1-D NATURE OF HYDRO SIMULATIONS IS A SEVERE LIMITATION

Lack of observed time variability suggests numerous (>100)
individual post-shock cooling volumes in the wind



2-D LDI SIMULATIONS

Clumps are small-scale and numerous
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X-RAY OBSERVABLES

Thermal X-ray emission from the shock-heated wind plasma

Photoelectric (continuum) absorption by the clumpy, cool wind

Chandra: Carina



CHANDRA LAUNCHED IN 1999

first high-resolution X-ray spectrograph

response to photons with hv ~ 0.5 keV up to a few keV (corresp.
~5A to 24A)

CHANDRA [N

&~ 0.05 || | \ l‘
X=-RAY OBSERVATORY = 00 Aol R oM s Mo N Mo A
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X-ray imaging? > 0.5 arc sec, at best (100s of AU)
spectroscopy (A/AA < 1000 corresp. v > 300 km/s)



X-RAY SPECTRAL FORMATION

Emission lines:
from hot,

transparent gas
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X-RAY SPECTRAL FORMATION

Thermal emission
Equilibrium
Optically thin



X-RAY SPECTRAL FORMATION

like the solar corona

low density

Thermal emission collisions up, spontaneous down;

nearly all bound electrons in the
Equilibrium ground state;
Optically thin “coronal approximation”
= emission line dominated



X-RAY SPECTRAL FORMATION

like the solar corona

low density

Thermal emission

steady-state; Maxwellian, T; = Tq;

Equilibrium ionization: collisional from ground

Optically thin state = recombination



X-RAY SPECTRAL FORMATION

like the solar corona

Thermal emission
Equilibrium
Optically thin

low density

Some strong lines may show

optical depth effects (2nd order

But, co
optical

effect on spectra);
d wind component can be
y thick to X-rays produced

in the hot component



X-RAY SPECTRAL FORMATION

plasma with T > 10° K radiates X-rays (hv > 100 eV)

shocks heat plasmato T ~ 10° K

If AVshock ~ 300 km/s
and T ~ (Avshock)2



CHANDRA GRATING SPECTROSCOPY

C Pup (O4 If)

in front of the Gum Nebula
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CHANDRA GRATING (HETGS/MEG) SPECTRA

C Pup (O4 If)
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CHANDRA GRATING (HETGS/MEG) SPECTRA

C Pup (O4 If)
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CHANDRA GRATING (HETGS/MEG) SPECTRA
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CHANDRA GRATING (HETGS/MEG) SPECTRA

Zoom in C Pup (O4 If)
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CONCLUSIVE EVIDENCE THE X-RAYS ARISE IN THE WIND

Zoom in C Pup (O4 If)
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CHANDRA GRATING (HETGS/MEG) SPECTRA

/o00om In even more
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DATA MODELING APPROACH

Quantitative modeling of the X-ray
spectrum based on the LDI
numerical hydro simulations



DATA MODELING APPROACH

Line Asymmetry
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DATA MODELING APPROACH

Wind Profile Model

KM
4TR.V_
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Increasing 7,

v

A=



LINE PROFILES SHAPES

j ~ p? for R.>R,,

= 0 otherwise




HOT PLASMA KINEMATICS AND LOCATION

R, controls the line width via v(r)

Ro=1.9R,




FITTING THIS MODEL TO AN EMISSION LINE
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DISTRIBUTION OF R, VALUES FOR ZETA PUP

15 O
Wavelength (A)




NUMERQUS SHOCKS ABOVE 1.5 R,




HIGH-RESOLUTION X-RAY SPECTROSCOPY OF 0 STAR WINDS

The profiles also tell us about the
level of wind absorption



Wind Profile Model

Increasing 7.

v

A=



FITTING THIS MODEL TO AN EMISSION LINE
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QUANTIFYING THE WIND OPTICAL DEPTH

ity of th ld win :
opacity of the cold . wind mass-loss rate

component (due to bound-free
transitions in C, N, O, Ne, Fe)

, wind terminal
stellar radius .
velocity



SOFT X-RAY WIND OPACITY
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ZETA PUP CHANDRA: THREE EMISSION LINES
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ZETA PUP CHANDRA: THREE EMISSION LINES
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ZETA PUP CHANDRA: ALL 16 EMISSION LINES
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ZETA PUP CHANDRA: ALL 16 EMISSION LINES
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ZETA PUP CHANDRA: ALL 16 EMISSION LINES
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SOFT X-RAY WIND OPACITY
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FITTING THE ENSEMBLE OF OPTICAL DEPTH VALUES

O
M becomes the free parameter of the fit to the T.(A) trend

Wavelength (A)




FITTING THE ENSEMBLE OF OPTICAL DEPTH VALUES

O
M becomes the free parameter of the fit to the T.(A) trend
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TO FIND THE MASS-L0SS RATE
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THEORETICAL MASS-L0OSS RATE IS CLEARLY TOO HIGH

0.12

0.10

0.08

0.06

0.04

Count Rate (counts s™' A™})

0.02

. ! I ! ! !

_ Vink mass-loss rate:
- 64X 10¢°M

lyr

sun

Our best fit:
1.8 X 10-¢ M, fyr -

sun

0.047

0.00

14.90 14.95

[5.00 15.05
Wavelength (A)

15.10 L5.15



AND HISTORICAL MASS-LOSS RATE DETERMINATION, TOO
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X-RAY LINE PROFILE BASED MASS-L0SS RATE

implications for clumping

basic definition: f = <p?>/<p>*

clumping factor



X-RAY LINE PROFILE BASED MASS-L0SS RATE

implications for clumping

basic definition: fy = <p?>/<p>2

from density-squared \

diagnostics like Ha, from (column)

IR & radio free-free density diagnostic
ike T, from X-ray

profiles



ZETA PUP: RADIALLY VARYING CLUMPING

. fi=54 @r<1.12R- HX
B 7 c
forM=1.8X10 Msun/yr f,=226 @1.12<r<15R Ho

fo = <p?>/<p>? =139 @1.5<r<2R  Hg
=% @2<i< 15 IR

Mcl = Msmooth / fC|05 fC| — 54 @r> 15 R*

radio
radio




ZETA PUP: RADIALLY VARYING CLUMPING

base of the wind (r < 1.5 R ) fu=54 @r<1.12R- Ho

s clumped - —> fy=22.6 @1.12<r<1.5R HX
) f1=139 @15<r<2R  Ho
...OUL... fi=9.8 @2<r<15R- IR
\ fi=54 @r>15R- adic

recall: X-ray R, = 1.5 R,




EXTENSION OF X-RAY PROFILE MASS-LOSS RATE DIAGNOSTIC TO OTHER STARS

lower mass-loss rates than theory predicts
with clumping factors typically of ~ 20
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X-ray mass-loss rates: a few times less
than theoretical predictions
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MASSIVE STAR WINDS VIA X-RAY SPECTROSCOPY

embedded wind shocks above R, = 1.5 Retar
lower wind mass-loss rates

clumping with f ~ 10 to 20, down to wind base

Spectroscopy + modeling : information about

spatial structure




A SUBSET OF MASSIVE STARS HAVE LARGE-SCALE MAGNETIC FIELDS

theta-1 Ori Cis the prototype magnetic O star

Hubble Space Telescope, Orion Nebula




A SUBSET OF MASSIVE STARS HAVE LARGE-SCALE MAGNETIC FIELDS

theta-1 Ori C is the prototype magnetic O star

Chandra X-ray image of the core of Orion




FIELDS ARE OFTEN TILTED DIPOLES

RRM model, Richard Townsend



A SUBSET OF MASSIVE STARS HAVE LARGE-SCALE MAGNETIC FIELDS

about 10% and the fields appear to be “fossil” fields

— NO active dynamo MHD simulation, Asif ud-Doula

http://astro.swarthmore.edu/~cohen/presentations/t1oc-lowvinf-logd_new.m4v
Frame 001 | 23 Fep 2005 |



http://astro.swarthmore.edu/~cohen/presentations/t1oc-lowvinf-logd_new.m4v

A SUBSET OF MASSIVE STARS HAVE LARGE-SCALE MAGNETIC FIELDS

MHD simulation, Asif ud-Doula
http://astro.swarthmore.edu/~cohen/presentations/t1oc-lowvinf-logT_new.m4v

Frame 001 | 23 Feb 2005 |
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A SUBSET OF MASSIVE STARS HAVE LARGE-SCALE MAGNETIC FIELDS

Wind flows from two hemispheres collide:
ShOCk heating to > 107 K MHD simulation, Asif ud-Doula

hotter than seen in EWS

temperature 4 emission measure
N




X-RAYS ARE HARDER AND LINES ARE NARROWER

shocked plasma is confined by the magnetic field

9 10
Wavelength (A)

9 10,
Wavelength (A)




NGC 1624-2: 0 STAR WITH A GIANT MAGNETOSPHERE
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ABSTRACT
We observed NGC 1624-2, the O-type star with the largest known magnetic field (8, ~ 20kG),
in X-rays with the Advanced CCD Imaging Spectrometer (ACIS-S) camera on-board the Chan-
dra X-ray Observatory. Our two observations were obtained at the minimum and maximum
of the periodic Har emission cycle, corresponding to the rotational phases where the mag-
netic field is the closest to equator-on and pole-on, respectively, With these observations, we
r am to charactenize the star's magnetosphere via the Xeray emission produced by magneti-
k Confined region (Ha )) cally confined wind shocks. Our main findings are as follows, (i) The observed spectrum of
- NGC 1624-2 is hard, similar to the magnetic O-type star &' Ori C, with oaly a few photons
detected below 0.8 keV. The emergent X-ray flux is 30 percent lower at the Hae minimum
phase. (ii) Our modelling indicated that this scemingly hard spectrum is in fact a consequence
i of relatively soft intrinsic emission, similar to other magnetic Of?p stars, combined with a
()[)e n-ﬁeld regi()n large amount of Jocal absorption (~1-3x 107 ¢m?). This combination is necessary 10 re-
= produce both the prominent Mg and Si spectral features, and the kack of flux at low energies.
NGC 1624-2 is intrinsically luminous in X-rays (log L§" ~ 33.4) but 70-95 per cent of the X-
. . . . . ray emission produced by magnetically confined wind shocks is absorbed before it escapes the
Figure 1. Schematic of a magnetic massive star dynamical magnetosphere magnetosphere (log L™= ~ 32.5), (iii) The high X-ray luminosity, its variation with stellar
(e.g. Sundqvistet al. 2012; Petit et al. 2013). Solid blue lines indicate regions rotation, and its large attenuation are all consistent with a large dynamical magnetosphere with
] . metically confined wind shocks,
below the last closed magnetic loop that confine the wind, located near the S ———
Alfvén radius R5. Most of the Hx emission originates here. Dashed lines
indicate regions where the momentum of the wind results in open field lines.
The bulk of the X-rays are produced in the region indicated in purple; see
Section 6. The insets illustrate the view of an observer as the star’s rotation
changes the orientation of the magnetosphere. It is important to note that due
to the long rotation periods of magnetic O-type stars, the dynamical effects of
rotation on the magnetospheric structure are negligible (ud-Doula, Owocki
& Townsend 2008).
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Figure 5. ACIS-S spectra of NGC 1624-2 during the low state (thin black)
and the high state (thick red). The bottom panel shows a representation
of the instrumental response, i.e. the spectra that would be observed if the
emission model was flat. The small differences between the two epochs are
caused by slight variations in response and adaptive signal-to-noise binning.
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ABSTRACT

The groundbreaking detection of gravitational waves produced by the inspiralling
and coalescence of the black hole (BH) binary GW150914 confirms the existence of
“heavy” stellar-mass BHs with masses > 25 M. Initial modelling of the system by
Abbott et al. (2016a) supposes that the formation of black holes with such large
masses from the evolution of single massive stars is only feasible if the wind mass-loss
rates of the progenitors were greatly reduced relative to the mass-loss rates of massive
stars in the Galaxy, concluding that heavy BHs must form in low-metallicity (Z <
0.25 - 0.5 Z;) environments. However, strong surface magnetic fields also provide a
powerful mechanism for modifying mass loss and rotation of massive stars, independent
of environmental metallicity (ud-Doula & Owocki 2002; ud-Doula et al. 2008). In this
paper we explore the hypothesis that some heavy BHs, with masses > 25 M., such as
those inferred to compose GW150914, could be the natural end-point of evolution of
magnetic massive stars in a solar-metallicity environment. Using the MESA code, we
developed a new grid of single, non-rotating, solar metallicity evolutionary models for
initial ZAMS masses from 40-80 M, that include, for the first time, the quenching of
the mass loss due to a realistic dipolar surface magnetic field. The new models predict
TAMS masses that are significantly greater than those from equivalent non-magnetic
models, reducing the total mass lost by a strongly magnetized 80 M- star during its
main sequence evolution by 20 M.,. This corresponds approximately to the mass loss
reduction expected from an environment with metallicity Z = 1/30Z-.
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closed field regions trap wind material, reducing mass loss

he radial mass flux at the footpoint is reduced
compared to the non-magnetic value by p,?

I
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Figure 1. Schematic representation of the circumstellar mag-
netosphere of a slowly-rotating magnetic massive star, based on
the description of ud-Doula & Owocki (2002); ud-Doula et al.
(2008). The equatorial radius of the last closed loop is given by
the closure radius R., which is on the order of the Alfvén radius
R 4 where the magnetic energy density balances the wind kinetic
enerocv densitv.
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strong field cause up to 20 additional solar masses to be retained
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MASSIVE STAR WINDS VIA X-RAY SPECTROSCOPY

wind plus magnetic fields have significant eftects

B pole-on
“High state”

-
B equator-on
“Low state”

Confined region (Hat)

—_———===
Open-field region

Figure 1. Schematic of a magnetic massive star dynamical magnetosphere
(e.g. Sundqvist et al. 2012; Petit et al. 2013). Solid blue lines indicate regions
below the last closed magnetic loop that confine the wind, located near the
Alfvén radius Ra. Most of the Ha emission originates here. Dashed lines
indicate regions where the momentum of the wind results in open field lines.
The bulk of the X-rays are produced in the region indicated in purple; see
Section 6. The insets illustrate the view of an observer as the star’s rotation
changes the orientation of the magnetosphere. It is important to note that due
to the long rotation periods of magnetic O-type stars, the dynamical effects of
rotation on the magnetospheric structure are negligible (ud-Doula, Owocki
& Townsend 2008).
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Figure 5. ACIS-S spectra of NGC 1624-2 during the low state (thin black)
and the high state (thick red). The bottom panel shows a representation
of the instrumental response, i.e. the spectra that would be observed if the
emission model was flat. The small differences between the two epochs are
caused by slight variations in response and adaptive signal-to-noise binning.

2
Z
£
%
=
<
=

~
S

Field strength

40

50 60 70
ZAMS mass (M )

80

S
O
v

TAMS age / TAMS age of the non-magnetic model




