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Abstract

Low-density CH2 foams are utilized in z-pinch applications as a radiation pulse shaper

for driving internal or external targets. In the dynamic hohlraum configuration, with

an internally located Inertial Confinement Fusion (ICF) capsule, the pinch generated

radiation must propagate through this foam before impacting the capsule. The foam is

initially at a very low macroscopic density (5− 15mg/cm3), but is actually composed of

a webbed structure of solid CH2 separated by voids. It is not known how this structure

affects either the radiation transport or the hydrodynamics in the foam.

For computational reasons, it is typically assumed that the dynamic hohlraum foam

is a uniform high-density vapor. During the early stages of the pinch process, this CH2

plasma is not in equilibrium with the penetrating, non-thermal radiation field. The

additional energy in the radiation field is calculated to propagate in the region just below

the carbon K-edge, and different atomic models predict significantly different absorption

opacities in this region. Determining the proper computational methods and physical

models for these foams requires experimental data of the radiative transfer characteristics

for the radiation spectra of interest.

To address this issue, experiments have been fielded at Sandia National Laboratory’s

Z facility to investigate the radiative transfer process in 5mg/cm3 CH2 foams. Absorp-

tion spectroscopy of aluminum and/or magnesium-fluoride tracers embedded in planar

CH2 samples are the primary diagnostic of the radiative transfer through the foam. An
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extensive set of simulations are performed for each experiment to model the driving ra-

diation spectra, the sample response, and the detailed spectroscopic absorption of the

tracer elements. Through these simulations, a specific set of physical models and data

tables are found to consistently reproduce the experimental data. This thesis provides

a detailed description of the experiments and computational methods utilized to investi-

gate the radiative transfer characteristics in these foams, along with a discussion about

the implications for z-pinch driven ICF in the dynamic hohlraum configuration.
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Thesis Guide

The primary goals of this thesis are to measure the dynamics of the radiative transfer

process in low density CH2 foam, and develop a computational method and suite of

physical data tables to understand and model this process in the z-pinch environment

at Sandia National Laboratory’s Z facility. This has been identified as an important

problem because of the application of low density CH2 foam in the dynamic hohlraum

driven Inertial Confinement Fusion (ICF) program at Sandia.

This thesis is written without any assumption on the reader’s knowledge of ICF,

z-pinches, or radiation transport. Therefore, Chapter 1 contains a number of lengthy

sections on the introduction of these concepts. Section 1.1 is devoted to the general goals

and requirements of ICF as a method for achieving controlled fusion in the laboratory,

while §1.2 focuses on the physics behind the ICF implosion process. This discussion

is aimed specifically at describing the importance of the radiation driver in ICF, and

identifying the requirements of the radiation timing at the surface of an ICF capsule.

Once these important details have been described for general ICF, §1.3 describes the

basic concept of the z-pinch, a description of the Z facility at Sandia National Laboratory,

and the dynamic hohlraum approach to ICF. These sections highlight the role of a low-

density CH2 foam in the dynamic hohlraum concept, and discuss the importance of

understanding the transport of radiation in this foam in order to understand the radiation
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field that drives an ICF capsule. Finally, §1.4 discusses the most common methods

for calculating the transport of radiation in high-energy-density plasmas, and weighs

the assumptions of each transport method in the context of their validity to different

conditions of the plasma.

After defining the importance of the radiative transfer in CH2 foam in Chapter 1,

Chapter 2 moves on to describe published work that has special relevance to the problem

at hand. Section 2.1 describes computational studies on the application of different ra-

diation transport approximations to some simple analytic problems. The primary intent

of this section is to provide a few examples where approximations can break down, and

what effect that has on the calculated radiation transport. Section 2.2 summarizes work

that has been published on the measurement of radiative transfer in other low-density

foams. This section focuses on the methods that were used to make these measurements,

and the assumptions that were required to model the data.

After setting the stage in Chapters 1 and 2, Chapter 3 describes the general ex-

perimental methods used in this thesis. Section 3.1 describes a set of calculations to

explore the effects of different physical models on the calculated radiation transport in

a CH2 plasma under similar conditions as in the experiments. These calculations reveal

the sensitivity of the transport solutions on the wide-range of choices available in the

radiation-transport models. With these issues in mind, §3.2 describes the experimental

method used to constrain the models, and describes the details of the spectroscopic tracer

method that acts as the primary diagnostic of the radiative transfer. Then, §3.3 discusses

the details of the experimental geometry on Sandia’s Z facility, the diagnostics that are

used to measure the observables in the experiments, and the spectral characteristics of

the z-pinch source.

Chapter 4 is devoted to describing the computational methods employed in this thesis
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for modeling the experiments. This chapter includes a detailed explanation of the com-

puter codes that are used to model the experiments, with a focus on the physical models

that are contained in each code. Because some of these codes contain a choice of physics

models, or rely on uncertain input parameters, this chapter also investigates the sensi-

tivity of the calculated solutions on the various uncertainties in the models. In addition,

this chapter includes the description of a new code, SPECTROFIT, that was developed

for this thesis. As discussed in §4.5, this code is utilized to provide an unbiased analysis

of the experimental data to facilitate the comparison of this data to the computational

models.

Since the experiment geometry presented in this thesis is relatively new, Chapter 5

describes two thin foil experiments intended to verify the computational methods in this

geometry. These experiments have two primary goals. One goal is to test the atomic

models of the tracer elements (aluminum and magnesium) in the spectral range that is

relevant to the experiments. The other goal is to provide a level of confidence in the

computational methods for simulating the radiation drive and the associated radiation-

hydrodynamics in the absence of the foam material.

Finally, Chapter 6 describes three generations of experiments that were conducted to

measure the radiative transfer in low-density CH2 foam. This chapter focuses on both

the details of the experiments, and the requirements on the computational models to

reproduce the measurements. At the end of that chapter, §6.4 summarizes the foam ex-

periments and contrasts a number of different computational models and data tables to

the ‘baseline’ calculations that successfully reproduced the experimental measurements.

§6.4.6 discusses the relevance of these experiments to the dynamic hohlraum ICF pro-

gram, and provides possible directions for future work. Chapter 7 then summarizes the

work performed for this thesis and the primary conclusions.
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Chapter 1

Introduction

1.1 Inertial Confinement Fusion

Inertial confinement fusion (ICF) and magnetic confinement fusion (MCF) have histori-

cally received the majority of attention and funding in fusion energy research [1]. Each

approach strives to create and confine a hot (> 10keV ) deuterium-tritium plasma for

time-scales long enough to create more energy through fusion reactions than was required

to achieve confinement. In this case, the primary fusion reaction under consideration is:

2H + 3H → 4He(3.5MeV ) + n(14.1MeV ), (1.1)

which has a peak reaction rate of < σv >≈ 9 × 10−16cm3/s at an ion temperature of

≈ 60keV [2, 3].

In MCF, the confinement of a low-density (1013 − 1014cm−3) plasma is achieved

through the application of a magnetic field in a near steady state. The relation typ-

ically applied to determine the approximate conditions of a MCF plasma required to
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Figure 1.1: The inertial confinement fusion concept [9].

reach ignition is expressed through the Lawson criterion [4]:

nτ >
12 T

< σv > (17.6MeV )
, (1.2)

where n is the plasma density, τ is the confinement time, T is the plasma temperature

(energy units), and < σv > is the fusion reaction cross section averaged over a Maxwellian

velocity distribution. For a 10keV D-T plasma, then < σv >≈ 10−16cm3/s requiring that

nτ > 1014s/cm3, or that a 1014cm−3 plasma must be confined for τ > 1s.

In contrast to the MCF approach, ICF relies on the inertial energy of an imploding

spherical capsule to confine and compress the D-T plasma [5–7]. Rather than heating the

plasma in a near steady state, ICF would achieve ignition by isentropically compressing

and shock heating the D-T fuel. Typically, an ignition scale ICF capsule is ≈ 1mm in

radius with a ≈ 100µm thick outer ablator and an inner core of D-T gas surrounded

by a thin layer of cryogenic solid D-T [8]. A schematic of the ICF process is shown
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in Figure 1.1 [9]. The ablator is super-heated by intense laser, ion, or x-ray radiation

causing it to quickly expand outward under its increased vapor pressure. Like a rocket,

the exploding ablator pushes inward on the fuel thereby compressing it to peak final

densities of n ≈ 1026cm−3 and temperatures of T > 10keV . At the time of ignition, the

fuel contains a central hot spot ≈ 50µm in radius surrounded by the bulk of the much

colder D-T fuel. Fusion reactions begin in the hot spot and the charged fusion reaction

products (alpha particles) deposit their energy in the surrounding fuel. This initiates a

thermonuclear burn wave that consumes a fraction of the bulk D-T fuel and releases the

majority of the fusion energy through the 14.1MeV neutrons.

According to the Lawson criterion, an ICF plasma at an average density of 1025cm−3

only needs to achieve containment at 10keV for ≈ 1ns. However, the derivation of the

Lawson criterion relies on a classical energy balance in a plasma at steady-state. This

criterion is not applicable for an inertially confined plasma. In this case, the capsule

compression as expressed through the density-radius product, ρr, is a more appropriate

figure of merit [10].

Since the fusion burn wave in an ICF capsule is propagated in large part by the α

fusion reaction products, the hot-spot must be both dense and large enough to absorb

most of these particles. As long as the α particles contain enough energy to heat the

D-T to ≈ 10keV (ie. enough of the D-T has been fused), then the burn wave will be

self-sustaining. Thus, the minimum ρr required for an ICF capsule to reach ignition is

limited by either the burn-up required to sustain the fusion reactions, or the range of α

particles in a hot D-T plasma (whichever dictates a larger ρr).

First, consider the minimum burn-up requirements for a D-T plasma to produce

enough fusion energy to sustain a temperature of ≈ 10keV . This can be found by an

energy balance between the fuel burn-up and the energy required to to heat the D-T fuel
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mass. The rate of thermonuclear reactions in the ICF fuel can be expressed by [10]:

dn

dt
= NDNT < σv >=

(
1

2
N0 − n

)2

< σv >, (1.3)

for n the number of reactions and N0 the number density of the equimolar D-T fuel.

Defining the fuel burn-up as φ = 2n
N0

, and assuming that the fusion cross section is

approximately constant in time, then integrating Eq. 1.3 yields:

φ =
N0τ < σv >

2 + N0τ < σv >
. (1.4)

The burn time in ICF is limited by the disassembly of the capsule as it rebounds outward.

This final expansion launches a rarefaction wave that propagates into the fuel at the speed

of sound, cs. Calculations indicate that the fusion reaction rate is extinguished by the

time this rarefaction wave propagates ≈ 1/3 of the way into the fuel [17]. Thus, setting

τ = r
3cs

and writing N0 as the D-T mass density, ρ, the burn-up can be expressed as:

φ =
ρr < σv >

6cs + ρr < σv >
. (1.5)

This equation has been shown to compare well with full-scale radiation-hydrodynamics

calculations of laser driven ICF capsules, and it provides a convenient rule of thumb for

calculating the fraction of D-T fused during the implosion.

According to Eq. 1.1, the fusion of deuterium and tritium produces an energy of

17.56MeV per reaction, or about 3.4×1011J/g of fusion fuel in the form of neutrons and

α particles. Assuming that the 14.1MeV neutrons escape without interacting, and that

the alphas are completely absorbed, each fusion reaction deposits about 6.7 × 1010J/g

in the surrounding fuel. For a D-T plasma in thermodynamic equilibrium (equivalent

electron and ion temperatures), it requires ≈ 2.3× 109J/g to heat the fuel up to 20keV .

Equating these then requires that the burn-up must be > 3.4% for ICF ignition (with a
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self-sustaining burn wave). Therefore, Eq. 1.5 indicates that the the D-T hot-spot must

be compressed to a ρr > 0.21g/cm2 in order to sustain the temperatures required for

efficient fusion.

However, the analysis above assumes that the α particles are completely absorbed.

This is only true if the range of these particles is less than the size of the hot-spot. The

α range in a D-T plasma at 10keV and ≈ 50g/cm3 has been determined by Fraley et.

al. [14] to be ≈ 0.3g/cm2. Thus, the hot-spot must have a ρr > 0.3g/cm2 in order to

capture a large majority of the α particles. This is a more stringent requirement than

that dictated by the burn-up, and is therefore the minimum hot-spot ρr required to

achieve ignition.

Outside the hot-spot, the majority of the fusion fuel is much colder and more dense.

How much colder and more dense it is depends on the efficiency of the implosion. That

is, since a colder plasma can follow a lower isentrope, it requires less energy to com-

press a cold plasma then a very hot one. The lowest possible isentrope (ie. the highest

compression efficiency), is that for a fermi-degenerate plasma [15]. Figure 1.2 shows the

fermi-degenerate pressure of D-T as a function of density for both an ideal fermi fluid,

and that given by the Sesame equation-of-state tables [25]. Also shown on this plot is

the phase-space of an ICF hot-spot at ≈ 50g/cm3 and ≈ 10keV (P ≈ 105Mbar) based

on the criteria derived above. Assuming that the pressure in the main fuel is similar to

that in the hot-spot, and that the main fuel is very nearly fermi-degenerate, then the

main fuel density must be about 10 times higher than that in the hot-spot. Since the

main fuel is at a slightly larger radius, this corresponds to a ρr
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Figure 1.2: P-ρ phase-space plots for an ignition scale D-T ICF capsule. The hot-spot
has a ρr of ≈ 0.3g/cm2, and the main fuel is nearly fermi-degenerate.

Figure 1.3: (a)BUCKY simulated plasma conditions at the time of peak compression
for a NIF type ICF capsule with the radial build shown in (b).
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must be much lower than the fermi energy.

Thus, at the time of ignition, an ICF capsule must contain a 10keV hot-spot with

a ρr of about 0.3g/cm2 surrounded by a layer of D-T at a temperature << 1keV with

a ρr ≥ 2g/cm2. An example of the ICF fuel configuration around the time of ignition

is shown in Figure 1.3(a). This calculation was conducted using the 1-D BUCKY [11]

radiation- hydrodynamics code (see §4.2) for a National Ignition Facility (NIF) [12, 13]

radiation drive history and the capsule design shown in Figure 1.3(b) [16]. The hot spot

is ≈ 40µm in radius with a peak temperature of ≈ 17keV while the main fuel contains

a peak density of ≈ 850g/cm3 (2× 1026cm−3) at a radius of ≈ 45µm.

—

In order to achieve the ρr required for ignition, an ICF capsule must be irradiated by

a high power source of radiation with a carefully tuned time history. In addition, this

radiation field must contain a high degree of uniformity to avoid seeding hydrodynamic

instabilities, which reduce the compression efficiency of the implosion process. Configu-

rations that have been investigated to drive ICF capsules under these strict requirements

are divided into two main categories; direct-drive and indirect-drive ICF.

Direct-drive ICF is the direct irradiation of an ICF capsule by laser, light-ion, or

heavy-ion beams [18]. The driver energy is coupled to the capsule through inverse

bremsstrahlung (for a laser driven system) or through charged particle collisions (in

ion beam driven systems [20]). Electron conduction then transfers energy inward at the

ablation front to drive the capsule implosion. A schematic of the direct-drive ICF concept

is shown in Figure 1.4(a). This configuration has the benefit of a high drive efficiency,

but can have a relatively low illumination symmetry due to the individual beam-spots

on the capsule surface. For a discussion on direct-drive ICF, and the issues associated

with beam-spot induced hydro instabilities, see S. Eliezer and H. Hora [19]. Laser driven
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Figure 1.4: (a)In the direct-drive ICF concept, laser or ion beam radiation is incident
directly on the capsule surface. (b)In the laser driven indirect-drive concept, laser beams
are incident on the inside surface of the cylindrical hohlraum, which re-emits x-rays.

direct-drive is under serious investigation at both the University of Rochester OMEGA

Neodymium glass laser and the Naval Research Facility (NRL) NIKE KrF Laser. Re-

cent progress in laser beam smoothing [21] and foam layered capsule design for hydro

smoothing [22] have shown promise for improved implosion stability.

Due to the initial difficulties in drive symmetry with direct-drive ICF, a large fraction

of ICF research has historically been devoted to the indirect-drive approach. In this

configuration, the ICF capsule is located at the center of a high-Z radiation case, or

hohlraum. Laser or z-pinch radiation is directed onto the wall of the hohlraum, which

re-emits a portion of the incident energy in the form of x-rays. These x-rays are then

absorbed, thermalized, and re-emitted by other parts of the hohlraum wall thereby filling

the cavity with a nearly uniform field of x-rays. The x-rays are then absorbed in the

capsule ablator to drive the ICF implosion.

As an example, a schematic of the laser indirect-drive approach to ICF is shown in
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Figure 1.4(b). The hohlraum is composed of a high-Z (usually gold) cylinder with two

laser entrance holes (LEH) at either end. In the most recent ignition scale target designs

for the NIF, the hohlraum is ≈ 10mm long with a case-to-capsule ratio of Rcc ≈ 3.5

[23,24], which implies a hohlraum radius of ≈ 3mm. The laser beams enter through the

LEH and illuminate the inside walls of the gold hohlraum. The high conversion efficiency

of the hohlraum wall re-emits from 60%− 70% of the laser energy in the form of x-rays,

which are thermalized by further absorption and re-emission within the cavity. Because

the hohlraum surface area is≈ 10 times that of the capsule surface area, only 10%−15% of

the initial driver energy is available to implode the capsule. Thus, indirect-drive ICF has

a lower driver efficiency than the direct-drive approach. However, the increased radiation

symmetry on the capsule surface within the thermal radiation field has the promise of

actually increasing the hydrodynamic stability, and therefore achieving a higher capsule

compression.

1.2 ICF Implosion Physics

Regardless of the method, both direct and indirect drive ICF strive to one common

goal: irradiate the surface of an ICF capsule with a properly tuned pulse of radiation to

compress the capsule to a high enough ρr that more energy is generated through fusion

than was required to heat the fuel. This section describes the basic capsule physics

that dictate the pulse timing, and the stringent requirements on that timing in order

to achieve the desired compression. Because this thesis is focused on the z-pinch driven

approach to ICF (see §1.3.2), these driver requirements are discussed in the context of

the indirect drive approach, where the capsule is driven by a pulse of x-rays.

Achieving the optimal ρr of an ICF capsule requires near isentropic compression of
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Figure 1.5: Isentropes (black) in pressure-density phase space for a DT plasma with an
initial density of 0.25g/cm3 and an initial temperature of 0.1eV . Also shown is the path
in pressure-density space of the bulk DT fuel in a NIF type capsule for a well timed drive
history (red) and a mistimed drive history (blue).

the DT fuel. The isentropes (lines of constant entropy) of a compressible fluid have the

minimum possible slope in the pressure-density phase space. Thus, compressing the fuel

along an isentrope requires the least amount of energy for any given increase in density.

Figure 1.5 shows a number of isentropes for DT, each separated by a change in entropy of

108J/keV/g as calculated from data in the Sesame equation of state tables [25]. For each

change in entropy of 108J/keV/g, the pressure at any given density increases by a factor

of about 2. This increase in pressure decreases the compressibility and therefore lowers

the overall ρr of the capsule implosion. Thus, the characteristics of the drive history on

an ICF capsule must be carefully tailored such that the main fuel implodes with the least

possible change in entropy.

The characteristics of an isentropic capsule implosion were addressed in detail by R.E.

Kidder through a series of papers in the mid 1970’s [26–30]. He proposed an analytical
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solution to the hydrodynamics equations for the isentropic compression of a spherical

capsule. Assuming that the fluid is initially at rest in a state of uniform entropy, it can

be shown that the capsule will implode isentropically under a time-dependent pressure

boundary condition given by:

P (R, t) = P (R, 0)

[
1−

(
t

tc

)2
]−5=2

, (1.6)

where P (R, 0) is the initial pressure at time t = 0 and tc is the time of total collapse

(the time when the capsule radius goes to zero). Thus, a driver must impart a pressure

history on the DT fuel like that of Eq. 1.6 in order to achieve maximum compression.

However, the assumption that the fuel is at an initial state of uniform entropy places a

restriction on the initial radial pressure, density, and temperature profiles. These profiles

correspond to:

P (r, 0) = P (0, 0)

[
1 + β

( r

R

)2
]5=2

(1.7)

ρ(r, 0) = ρ(0, 0)

[
1 + β

( r

R

)2
]3=2

(1.8)

T (r, 0) = T (0, 0)

[
1 + β

( r

R

)2
]

, (1.9)

where β is a unit-less coefficient which depends on the total implosion time by:

β =
1

3

(
ρ(0, 0)

γP (0, 0)

)(
R

tc

)2

. (1.10)

According to these equations, if the DT fuel initially has a uniform pressure, density,

and temperature profile, then isentropic compression can only be achieved for ’slow’

implosions (β << 1). For moderate (β ≈ 1) to fast (β >> 1) implosions, the fuel

conditions must have an unphysically strong dependence on radius. Therefore, a rapidly

imploding ICF capsule with initially uniform fuel conditions cannot be isentropically

compressed. However, if the ICF fuel can be rearranged into a thin spherical shell, then
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Eq. 1.7-1.9 are approximately satisfied for very high β. This is one of the reasons why

modern ICF capsule designs, such as that shown in Figure 1.3(b), have the bulk of the

DT fuel mass in a thin layer just inside the ablator.

The analysis above depends on a tailored time-dependent pressure profile on the

boundary of the ICF capsule. Clearly, it is not possible to apply such a profile directly.

Instead, the capsule ablator is heated by a radiation field that is tailored to launch a

series of shock waves which compress the fuel approximately like the pressure boundary

condition given in Eq. 1.6. However, the strength of these shocks must be carefully tuned

in order to minimize the increase from the initial state of entropy.

The change in entropy of a fluid under a strong shock is determined by the Hugoniot

relations as discussed in the authoritative book by Zel’dovich and Raizer [31]. The

Hugoniot relation for the specific energy, ε, on either side of a shock front can be written

as:

ε1 − ε0 =
1

2
(P1 + P0)(V0 − V1), (1.11)

where P is the plasma pressure, V is the specific volume (1/ρ), and the subscripts 0 and

1 correspond to the conditions ahead and behind the shock front respectively. Assuming

the hydrodynamics of the plasma motion to follow that of a perfect gas, and assuming

constant specific heats, cv and cp, then the specific energy and the specific enthalpy can

be written as:

ε = cvT =
1

γ − 1
PV ; h = cpT =

γ

γ − 1
PV, (1.12)

where γ is the ratio of the specific heats . Solving these for the ratio of the specific

volumes (i.e. the compression) and taking the strong shock limit where P1 >> P0, then

the maximum compression attainable from a single shock in a DT gas (γ ≈ 5/3) is:

η =
γ + 1

γ − 1
≈ 4. (1.13)
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This is not a sufficient compression to reach the final density of 1025cm−3 required for

ignition. In addition, assuming the entropy of a perfect gas with constant specific heats

to be given by S = cv ln [PV °], then the change in entropy across the shock front as

determined by Eq. 1.12 is given by:

∆S = cv ln

[
P1V

°
1

P0V
°

0

]
= cv ln

[
P1

P0

(
(γ − 1)(P1/P0) + (γ + 1)

(γ + 1)(P1/P0) + (γ − 1)

)°]
(1.14)

Thus, the stronger the shock, the higher the change in entropy. Eq. 1.13 and 1.14 indicate

that, to achieve a high compression with a low change in entropy requires many weak

shocks rather than one very strong one.

—

As an example of the drive conditions required to achieve the near isentropic compression

of an indirect-drive, ignition scale ICF capsule, a few calculations have been conducted

of the capsule performance for a NIF-type target. These calculations were carried out by

the BUCKY 1-D radiation hydrodynamics code discussed in §4.2. Plotted in Figure 1.6

are two proposed radiation drive histories that may be achieved inside a hohlraum on

the NIF. Each drive has a low-energy foot pulse at a temperature of ≈ 75eV , a second

pulse at ≈ 120eV , and a final peak at ≈ 270eV . The only difference between the two

curves is a 1ns delay in the timing of the main pulsea. Using an ICF capsule with the

radial build shown in Figure 1.3(b), the implosion dynamics were calculated in BUCKY

with a complete rad-hydro model (including the thermonuclear burn of the capsule core)

using each drive history as a radiation boundary condition on the capsule surface.

To visualize the hydrodynamics of the calculated implosions, mass contours (la-

grangian zone boundaries) over the entire simulation time are shown in Figure 1.7(a) and

(b) for the longer and shorter drive histories respectively. Each plot looks qualitatively

aThe shorter drive pulse delivers ≈ 1% less total energy to the capsule



17

Figure 1.6: Radiation drive histories on the surface of an ICF capsule attainable inside
an indirect drive hohlraum on the NIF. The two drives are identical with the exception
of the main drive pulse which occurs 1ns earlier for the shorter total drive (dotted).

similar with a few minor differences. As expected, the longer drive history corresponds

to a peak compression that occurs ≈ 1ns later than the shorter drive history. During

this compression, the main fuel layer in Figure 1.7(a) remains at a lower total thickness

than in the equivalent stage shown in Figure 1.7(b). In addition, at the time that the fuel

begins its main compression, there is a much sharper curvature in the rate of implosion

as shown in Figure 1.7(b) than that for the equivalent stage shown in Figure 1.7(a). This

sharp curvature is due to a mistiming in the arrival of each shock within the fuel layer.

To better visualize this important feature of the implosion, a magnified view of the

mass contours at the start of the peak implosion is shown in Figure 1.8(a) and Fig-

ure 1.8(b) again for the longer and shorter drive histories respectively. In Figure 1.8(a),

the three main shocks pass through the bulk fuel in rapid succession leaving no room

for the shocked fuel to decompress before the inertia of the imploding shell collapses it
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(a) (b)

Figure 1.7: BUCKY simulated mass contours (lagrangian zone boundaries) in the ab-
lator (black) and the DT fuel (red) for the NIF type capsule shown in Figure 1.3(b).
These calculations were conducted for the (a) longer drive history and the (b) shorter
drive history in Figure 1.6.

(isentropically) to the axis. This results in a relatively smooth, rounded path as the fuel

layer begins its implosion. The situation is quite different in Figure 1.8(b). In this case,

the fastest moving shock overtakes the slower shocks before they can pass completely

through the fuel layer. Because the main fuel has not been ‘prepared’ by the weaker

shocks, this very strong shock leads to a high pressure ratio across the shock front that,

according to Eq. 1.14, creates a large change in entropy. Thus, by the time the inertia of

the imploding shell begins its isentropic compression of the fuel layer, the fuel is already

along a higher isentrope. This results in lower compressibility and a correspondingly

greater thickness in the fuel layer during the implosion.

The path of the bulk fuel layer in pressure-density phase space in comparison to the

DT isentropes is shown for each simulation back on Figure 1.5. The bulk fuel starts at
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(a) (b)

Figure 1.8: BUCKY simulated mass contours (lagrangian zone boundaries) in the ab-
lator (black) and the DT fuel (red) when the shocks pass through the bulk fuel. These
calculations were conducted for the (a) longer drive history and the (b) shorter drive
history in Figure 1.6.

a density of 0.25g/cm3 and gains an entropy of ≈ 3 × 108J/keV/g as it is externally

heated. As each successive shock passes through the fuel it suffers a quick compression,

decompression, and a corresponding change in entropy. For the simulation with the

later peak drive pulse, the shocks come in quick succession preventing the fuel from

significantly decompressing before the start of the isentropic compression. In this case,

the bulk fuel isentropically compresses along the ∆S ≈ 4 × 108J/keV/g isentrope to a

final (average) density of ≈ 300g/cm3 and a peak ρr of ≈ 1.53g/cm2. In contrast, the

simulation with the earlier peak drive pulse gains an additional 108J/keV/g of entropy

because of the larger pressure ratio that occurs across the strong shock front in the

under-shocked fuel layer. This causes the bulk fuel to isentropically compress along the

the ∆S ≈ 5 × 108J/keV/g isentrope therefore lowering the attainable compression. In
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this case, the bulk fuel reaches an average density of ≈ 150g/cm3 and a peak ρr of only

≈ 0.72g/cm2.

Published results of similar NIF capsule designs calculated in LASNEX [32] show a

very high sensitivity in the resulting fusion yield to uncertainties in the pulse timing. A

sensitivity study by R.E. Olson [33] on an oxygen doped beryllium capsule design showed

that it only required a 200ps mistiming in the radiation drive to reduce the overall capsule

yield to ≈ 1/2 of the optimal. Additionally, Kilkenny et.al. [34] report a factor of 10 drop

in the fusion yield by a 500ps mistiming in the rise of the main radiation pulse. As a result

of this sensitivity, the ignition plan for the NIF [34] requires that the shock timing (and

therefore the radiation timing) be known to ≈ 100ps for a high confidence of successful

ignition [35]. These requirements are the same for any indirect-drive approach where the

ICF capsule absorbs ≈ 200kJ of driver energy, including that for z-pinch driven ICF.

1.3 Z-Pinch Driven ICF

1.3.1 The ’Fast’ Z-pinch

The classical z-pinch is a plasma physics phenomenon that was first investigated by

J. Bennett [36] in 1934 and termed a ”pinch” by L. Tonks [37] in 1937. The pinch

mechanism, in its most basic form, is simple. A large voltage applied across either a

neutral or partially ionized gas will break it down into a plasma of ions and electrons

which conduct a strong axial current. The current flowing in this plasma induces an

azimuthal magnetic field that in turn induces a J × B Lorentz force directed radially

inward. This force causes the plasma to implode toward the axis thereby increasing

the current density and further heating the plasma column. In the original studies of
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z-pinch phenomenon, it was believed that a DT gas could be compressed in a z-pinch

configuration to a sufficient density and temperature to reach fusion ignition conditions.

The pinch theoretically reaches a state of equilibrium with the magnetic field (called

the Bennett equilibrium) where it is confined in a hot, dense state for a time sufficient

to satisfy the Lawson criterion. While minor efforts are still in effect to investigate

this [38], it was discovered that the z-pinch configuration suffers from many debilitating

magneto-hydrodynamic instabilities. Because the plasma is supported and compressed

by a magnetic field, any axial variations in the plasma density will efficiently seed m = 0

(sausage) or m = 1 (kink) instabilities that disrupt the implosion. These effects are

difficult to mitigate, and cause the pinch to prematurely disassemble. Thus, attempts to

utilize the z-pinch as a magnetic confinement fusion approach were mostly abandoned.

A resurgence in the interest of z-pinches occurred in the 1980’s with the progress of

pulsed-power technology. Pulsed-power driven z-pinches differ from the classical MHD

z-pinch in that very high, short duration currents drive the plasma column to the axis

without ever reaching a state of equilibrium with the magnetic field [39]. The current

pulse-width is comparable to the implosion time such that the z-pinch stagnates on the

central axis just after the peak of the current drive, and disassembles as it rebounds.

Figure 1.9 shows a schematic diagram of this ’fast’ z-pinch process. In a simple 1-D

model of a thin shelled plasma (or liner), the equation of motion for the imploding z-

pinch can be written as:

m
∂2r

∂t2
= −B(t)2

2µ
(2πrl) = −µI(t)2

4πr
l, (1.15)

where m is the plasma mass, l is the length of the z-pinch, µ is the magnetic permeability,

B(t) is the time-dependent magnetic field at the pinch surface, and I(t) is the pinch

current. As the liner implodes, the magnetic field energy is converted into kinetic energy,
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Figure 1.9: The ’fast’ z-pinch concept.

W . Multiplying Eq. 1.15 by ∂r/∂t yields:

m
∂r

∂t
d

(
∂r

∂t

)
= − µ

4π
l

[
1

r

(
∂r

∂t

)
I(t)2

]
dt. (1.16)

Integrating the right-hand-side by parts, and noting that W = 0.5m(∂r/∂t)2, then the

equation for the kinetic energy of the imploding z-pinch can be written as:

W =
µ

4π
l

∫ t

0

∂I(t′)2

∂t′
ln

(r0

r

)
dt′, (1.17)

for r0 the initial z-pinch radius, and r the radius at time t. If the time-dependent current

and radius profiles are known, then this equation can be integrated to determine the

kinetic energy at time t. However, because the logarithm is a slowly varying function,

then an approximate solution can be found by assuming a constant dependence on r.

The integration in Eq. 1.17 is then trivial and yields the following expression for the
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kinetic energy:

W ≈ µ

4π
I(t)2 ln[C]l, (1.18)

where C is the convergence, r0/r, at time t. The kinetic energy density, w, at the time

of pinch stagnation can then be written as:

w ≈ µ

4π
I(tp)

2 C2 ln(C)

πr2
0

, (1.19)

for tp the time of peak pinch current. Assuming that the current peaks at a value of

20MA, the initial pinch radius is 1cm, and that the convergence is ≈ 10, then the kinetic

energy density of the z-pinch at stagnation is w ≈ 3× 107J/cm3.

At the time of stagnation, a shock wave from the on-axis impact propagates through

the plasma thereby converting a portion of the kinetic energy into thermal energy, which

is radiated away in the form of x-rays. Assuming that the radiation is approximately

black-body in nature, then the power balance for the plasma temperature, Tp, can be

written as:

σT 4
p ≈ ηuw, (1.20)

where η is the conversion efficiency from kinetic to thermal energy (determined by the

shock hugoniot of the plasma), and u is the speed of the imploding liner. Relating u

to W by W = 0.5mu2, and substituting Eq. 1.19 in for w yields a final (approximate)

expression for the temperature of the z-pinch:

Tp ≈
[(

η

σ

√
µ3

32π5

)√
l

m

C2 ln(C)3=2

r2
0

I(t)3

]1=4

. (1.21)

Thus, for a z-pinch that is initially 1cm tall and 1cm in radius with a total mass of

3mg, a 20MA peak current will produce a plasma temperature of Tp ≈ 215eV (assuming

η ≈ 0.1). This corresponds to a pinch luminosity of ≈ 220TW/cm2.
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Figure 1.10: Example energy balance in a 2-D simulation of a ’fast’ z-pinch [40].

The primary complication associated with 1-D models of the z-pinch dynamics is the

lack of accounting for a 2-D instability structure. It is well known that fast z-pinches

are Rayleigh-Taylor (R-T) unstable such that the growth of R-T bubbles and spikes

can thicken the imploding liner. This has the effect of broadening the stagnation time

creating a 2-D x-ray yield with a much lower peak and a much broader temporal profile

than a 1-D calculation might predict. In Eq. 1.21, these 2-D effects are absorbed into the

coefficient η, which must be determined by a detailed calculation of the liner thickness

and the propagation of the shock at stagnation. Figure 1.10 shows the energy balance

from a detailed 2-D calculation of a fast z-pinch [40]. Note that the primary source of

energy deposition is through the Lorentz force, which goes directly into the kinetic energy

of the imploding liner. It is also evident from Figure 1.10 that the outer 50% of the liner

moves at a decreasing velocity with respect to the inner 50%, and reaches the axis ≈ 5ns

later.
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(a)
(b)

Figure 1.11: (a)Schematic illustration of the Z machine diode. (b)Picture of a wire-
array in the dynamic hohlraum configuration on Z.

1.3.2 The Dynamic Hohlraum

The simple analysis above demonstrates the relatively high radiation powers that can be

achieved with a fast z-pinch. However, driving sufficiently high currents to create a 200eV

plasma is not trivial, and a great deal of research has been conducted on the development

of pulsed-power for this purpose. Sandia National Laboratories in Albuquerque, New

Mexico has built a pulsed-power generator called the Z machine for conducting research

in high power, fast z-pinches [41]. The Z machine typically drives a 100ns wide current

pulse, peaked at 20MA, through a z-pinch load that is 1 − 2cm tall and 1 − 2cm in

radius. This load is generally constructed of an array of very thin tungsten wires that

bridge the gap between the anode and the cathode of the Z machine diode. A schematic

of the Z machine diode is shown in Figure 1.11(a), and a photograph of a typical wire

array load is shown in Figure 1.11(b). Experimental studies of z-pinch performance on

the Z machine have demonstrated x-ray powers up to 230TW , and total x-ray yields up

to 1.8MJ .
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Figure 1.12: Z machine load current (black) and associated x-ray power profile (red)
for a high-performance, single-array z-pinch with no internal load [42].

As an example, Figure 1.12 shows the current and x-ray power profile from a high-

performance shot on the Z machine [42]. The current drive is ≈ 150ns long, peaking

at a value of 20MA, while the x-ray power profile occurs in a ≈ 5ns full-width-at-half-

maximum (FWHM) pulse peaking at a value of 210TW . This large amount of x-ray power

available from a fast z-pinch on the Z machine can be used in a number of applications.

These include x-ray effects experiments, material opacity and equation of state studies,

basic plasma instability experiments, and inertial confinement fusion.

Of the many proposed approaches to achieve indirect-drive ICF with a fast z-pinch,

the dynamic hohlraum is the most energy efficient [43]. That is, the dynamic hohlraum

can deliver the most amount of energy to an ICF capsule for a given amount of input

power. A schematic of the dynamic hohlraum configuration for driving an ICF capsule

is shown in Figure 1.13 [44]. There are essentially three components; a tungsten wire-

array(s), a foam ‘converter’, and the ICF capsule. As was discussed in §1.3.1, the main

source of radiation from a fast z-pinch is the thermal emission associated with the shock-

heating of the liner. Thus, when the z-pinch liner strikes the surface of the foam, a shock

wave is launched in both the liner and foam, which radiates x-rays to the interior [45].
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Figure 1.13: Schematic illustration of the dynamic hohlraum configuration for conduct-
ing indirect-drive ICF experiments using a fast z-pinch driver. [44]

Experiments indicate that the shock front propagating into the foam is the primary source

of radiation in the dynamic hohlraum [46], and can reach emission temperatures greater

than 600eV [47]. Assuming that the foam is optically thin to these x-rays, then the

radiation will thermalize in the hohlraum, heat the ablator layer of the ICF capsule, and

induce an indirect-drive type implosion. A schematic of the ‘dynamic hohlraum phase’

of the z-pinch implosion is shown in Figure 1.14. One point of special importance is that

the radiation emitted by both the shock-front and the hohlraum ‘wall’ must propagate

through the CH2 foam before interacting with the capsule. It is therefore important to

understand the transport of radiation in that foam medium in order to understand the

radiation drive at the capsule surface.

Dynamic hohlraum arrangements on the Z machine typically utilize a 1 − 2cm tall,
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Figure 1.14: Schematic illustration of the dynamic hohlraum phase of the z-pinch
implosion. The shock-front in the CH2 foam is the primary source of radiation, which is
absorbed and re-emitted by the Tungsten liner. After propagating to the center of the
foam, the x-rays are absorbed in the ICF capsule ablator and induce an indirect-drive
implosion.

3− 4mg nested wire array (a small diameter wire array within a larger diameter array),

and a 5−14mg/cc CH2 foam placed on the axis. The foam converter is between 2.5−5mm

in radius with a 0.5− 1mm radius ICF capsule at the center.

As an example, the dynamic hohlraum configuration and the experimental hohlraum

temperature and shock radius for some typical experiments on the Z machine are shown

in Figure 1.15(a) and (b) [46]. The z-pinch consists of a nested, 1.5cm long tungsten wire

array containing 240 wires at an initial radius of 2cm and 120 wires at initial radius of 1cm

with a 5mm radius, 5mg/cc CH2 foam converter on axis. Also shown in Figure 1.15(b)

is the capsule radius evolution on a shot with the same z-pinch and hohlraum geometry.

The capsule had an initial radius of 1.05mm, and contained a 12atm D2/0.075atm Ar

gas fill. The figure indicates that the capsule is driven with a radiation temperature up

to ≈ 135eV and reaches a maximum convergence ratio of ≈ 5. The shock arrives at the
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(a) (b)

Figure 1.15: (a) Diagram of the dynamic hohlraum geometry. (b) Experimental shock
radius (red stars), capsule radius (green diamonds), and hohlraum temperature at the
capsule location (black triangles) along with the simulated equivalents in a dynamic
hohlraum on Z [46].

hohlraum axis ≈ 1ns after the peak of the capsule implosion, at which time the radiation

temperature sharply increases under the final stagnation of the z-pinch plasma. In this

particular experiment, calculations suggest that the core temperature of the capsule only

reached ≈ 500eV , and therefore did not produce any observable neutron or argon x-ray

signals.

The most recent dynamic hohlraum experiments on Z utilize a 2.5cm radius, 14mg/cc

CH2 foam converter and a 1.2cm tall z-pinch. This geometry can drive a capsule with

a hohlraum temperature up to ≈ 200eV , and therefore has the possibility of compress-

ing a capsule to higher temperatures and densities. Figure 1.16(a) and (b) show the

argon emission spectrum and an image of the capsule self-emission near the time of peak

compression in one of these experiments [48]. Comparisons between the argon emission

spectrum and detailed calculations of the spectroscopic line transitions indicate that the

capsule core reached a density of 1− 2× 1023cm−3 and a temperature of ≈ 1000eV [49].

The neutron production from similar shots was measured at ≈ 2×1010, which is 10−30%



30

(a) (b)

Figure 1.16: (a) Argon emission spectrum and (b) a self-emission image of the capsule
implosion near the time of peak compression in a dynamic hohlraum on the Z machine
[48].

of the clean 1-D capsule simulation yield [48]. However, as evident from Figure 1.16(b),

the capsule implosion suffers from a polar/equator asymmetry due to the closer prox-

imity of the capsule equator to the encroaching shock front. This is one of the primary

concerns surrounding the z-pinch driven dynamic hohlraum approach to ICF. As was

discussed in §1.1, implosion symmetry is critical to achieving the ρr conditions required

for an ignition level fusion yield.

The other issue of primary concern in the dynamic hohlraum is the overall pulse

shape. As discussed in §1.2, obtaining the ρr required for successful ICF requires carefully

tailored radiation drive profiles in order to compress the fuel along a low isentrope. In

a z-pinch driven dynamic hohlraum, the radiation output can be tailored with shock

converters or burn-through foils placed inside the radius of the imploding liner. If these

are properly chosen, it will produce a radiation pulse at the capsule that launches shock-

waves with the proper timing for a high ρr.
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Tuning the profile will require an extensive collection of data regarding the effects of

different converters and foils on the radiation drive, as well as a good understanding of

the radiation propagation through the foam medium. The former can be accomplished

with a large-scale parameter study on the Z machine. This thesis is a first attempt at

addressing the latter.

1.4 Computational Radiation Transport

The last few sections of this thesis have been devoted to defining the requirements for

successful ICF, as well as explaining the current state-of-the-art for achieving these re-

quirements in a z-pinch driven dynamic hohlraum. As was discussed in detail in §1.2, one

of the primary requirements is a well-understood, carefully timed radiation drive history

on the capsule surface. The specific example in §1.2 demonstrated a ≈ 50% drop in the

calculated ρr of an ignition scale ICF capsule by a < 1ns(≈ 5%) mistiming in the main

radiation pulse. This has serious implications for a z-pinch driven dynamic hohlraum.

Namely, if there are inadequacies in the radiation transport model within the CH2 foam

converter, then capsules designed under the calculated drive profile may be irradiated by

a very different drive history during the experiment. This would cause a diminished ρr

and a correspondingly poor capsule performance.

It can be shown that the mean free path of some important frequencies in a 5mg/cc

CH2 plasma is on the order of the dynamic hohlraum radius over a significant portion

of the hohlraum temperature rise (see §3.1). Under these conditions, radiation is neither

free-streaming nor diffusing. This is a difficult regime in which to calculate the radiation

transport, and one must pay careful attention to the assumptions made in computing the

radiative transfer rates. To better understand the possible inadequacies associated with
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the standard computational radiation transport methods in this regime, it is beneficial

to look at these methods in detail while paying close attention to the assumptions made

throughout their derivations.

—

The radiative transfer equation has been the subject of many papers and books in the

open literature [50–52]. In its most simple form, the equation is the same for both

neutrons and photons, and much of its rich history is owed to the nuclear energy commu-

nity. However, there are distinct differences in the details of the transport equation for

thermal x-rays within a high-temperature plasma than are typically considered for the

transport of neutrons and gammas in a nuclear reactor. For this reason, the following

discussion is taken from Mihalas [53] and Rybicki [54] for the transport of radiation in

stellar atmospheres, which are qualitatively similar to that of a laboratory plasma under

a high-temperature thermal radiation field.

The specific intensity, I, of a radiation stream propagating along a direction within

a hot gas is determined by a conservation of flux. Requiring that the intensity of a

ray from an infinitesimal volume element be equivalent to the incident intensity plus

any emission and minus any absorption, then the space-, frequency-, angle-, and time-

dependent intensity can be written as:

1

c

∂

∂t
I(−→r , ν, Ω̂, t) + Ω̂ · ∇I(−→r , ν, Ω̂, t) + χ(−→r , ν, t)I(−→r , ν, Ω̂, t)

=

∫ ∞

0

∫

4…

σs(
−→r , ν ′ → ν, Ω̂′ → Ω̂, t)I(−→r , ν ′, Ω̂′, t)dΩ̂′dν ′ + S(−→r , ν, Ω̂, t),

(1.22)

where the various variables and constants are defined as:

I(−→r , ν, Ω̂, t) = chνf(−→r , ν, Ω̂, t)=̂ Specific photon intensity

f(−→r , ν, Ω̂, t)=̂ Photon distribution function
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χ(−→r , ν, t) = σa(
−→r , ν, t) + σs(

−→r , ν, t)=̂ Total plasma opacity

S(−→r , ν, Ω̂, t)=̂ Intensity contribution from external sources

This is the form of the transport equation typically found in many textbooks. For

completeness, however, Eq. 1.22 must be corrected for the quantum effects of stimulated

emission and scattering (a substantial deviation from the neutron transport equation)

[59]. Defining the induced emission and scattering term from the Einstein-Milne relations

as (c2/2hν3)I(−→r , ν, Ω̂, t), then Eq. 1.22 can be rewritten as:

1

c

∂

∂t
I + Ω̂ · ∇I + σaI = S

(
1 +

c2

2hν3
I

)

+

∫ ∞

0

∫

4…

σs(ν
′ → ν, Ω̂′ → Ω̂)I(ν ′, Ω′)

(
1 +

c2

2hν3
I(ν, Ω)

)
dΩ̂′dν ′

−
∫ ∞

0

∫

4…

σs(ν → ν ′, Ω̂ → Ω̂′)I(ν, Ω)

(
1 +

c2

2hν ′3
I(ν ′, Ω′)

)
dΩ̂′dν ′,

(1.23)

where the total opacity, χ, has been split into the frequency-dependent scattering and

frequency integrated absorption terms to account for the new dependence on ν ′ of the

scattering out of ν. Eq. 1.23 is the most general form of the equation for radiative

transfer attainable without invoking any assumptions about either the radiation field or

the conditions of the plasma.

If the plasma is assumed to be at local thermodynamic equilibrium (LTE), and there

is no nuclear or fluorescence decay radiation, then the source term depends only on the

conditions of the plasma. In this case, the source term is defined by Kirchoff’s law as:

S(−→r , ν, Ω̂, t) = σ1
a(
−→r , ν, t)B”(

−→r , ν, t), (1.24)

where B” is the Planckian frequency distribution function given by:

B”(
−→r , ν, t) =

2hν3

c2

1

eh”=kT − 1
, (1.25)
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and σ1
a is a scaled photo-absorption cross-section given by, σ1

a = σa(1−e−h”=kT ). Inserting

Eq. 1.24 into Eq. 1.23 and collecting terms that depend on σ1
a yields:

1

c

∂

∂t
I + Ω̂ · ∇I = σ1

a(B” − I)

+

∫ ∞

0

∫

4…

σs(ν
′ → ν, Ω̂′ → Ω̂)I(ν ′, Ω′)

(
1 +

c2

2hν3
I(ν, Ω)

)
dΩ̂′dν ′

−
∫ ∞

0

∫

4…

σs(ν → ν ′, Ω̂ → Ω̂′)I(ν, Ω)

(
1 +

c2

2hν ′3
I(ν ′, Ω′)

)
dΩ̂′dν ′.

(1.26)

This partial integro-differential equation is still quite non-linear, but can be solved by

many of the standard transport approximations found in the literature. Of the deter-

ministic methods, the ones that have received the most widespread use in high-energy

density plasma computations are; Pn methods, flux-limited diffusion, discrete ordinates

(Sn), and variable Eddington transport.

1.4.1 The Pn equations and flux-limited diffusion

Dividing Eq. 1.26 into an infinite set of partial differential equations parameterized by

the variable Ω̂ can eliminate the dependence on the angle. The most general way to

derive these equations is to expand the intensity, I, and the scattering cross-section, σs,

into a set of orthogonal basis functions in the variable Ω̂. More specifically restricting

the derivation to the case of a one-dimensional slab, the Legendre polynomials are a

convenient set of functions to use as the basis set. In 1-D, the azimuthal integral can

be carried out directly such that dΩ̂ = 2π sin θdθ = −2πµdµ, for µ ≡ cos θ. Then, the

photon intensity and scattering cross-section can be written as:

I(x, ν, µ, t) =
∞∑

l=0

2l + 1

4π
Il(x, ν, t)Pl(µ) (1.27)

σs(x, ν ′ → ν, µ, t) =
∞∑

l=0

2l + 1

4π
σsl(x, ν ′ → ν, t)Pl(µ)Pl(µ

′), (1.28)
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where Pl(µ) are the set of Legendre polynomials, and the angularly independent coeffi-

cients are given by:

Il(x, ν, t) = 2π

∫ 1

−1

I(x, ν, µ, t)Pl(µ)dµ (1.29)

σsl(x, ν ′ → ν, t) = 2π

∫ 1

−1

σs(x, ν ′ → ν, µ′ → µ, t)Pl(µ
′)Pl(µ)dµ, (1.30)

Under this expansion, the index l in Eq. 1.27-1.30 then refers to the angular symmetry

of each component of the radiation field. For example; I0 and σs0 represent the isotropic

components of the photon field and scattering cross-section; I1 and σs1 represent the

linearly anisotropic components; I2 and σs2 represent the quadratically anisotropic com-

ponents; and so on. Substituting Eq. 1.27 and 1.28 into Eq. 1.26 and rearranging terms

gives:

1
c

∂

∂t

∞∑

l=0

(2l + 1)IlPl(µ) + µ∇
∞∑

l=0

(2l + 1)IlPl(µ) = σ1
a

[
4πB” −

∞∑

l=0

(2l + 1)IlPl(µ)
]

+
∫ ∞

0

[ ∞∑

l=0

(2l + 1)σs;l(ν ′ → ν)Pl(µ)2π

∫ 1

−1
I(ν ′, µ′)Pl(µ′)dµ′

(
1 +

c2

2hν3
I(ν, µ)

)]
dν′

−
∫ ∞

0

[ ∞∑

l=0

(2l + 1)σs;l(ν → ν ′)Pl(µ)I(ν, µ)
(

2π

∫ 1

−1
Pl(µ′)dµ′

+
c2

2hν′3
2π

∫ 1

−1
I(ν ′, µ′)Pl(µ′)dµ′

)]
dν ′,

(1.31)

where the intensity terms under the frequency integrals have not yet been expanded

for clarity. Because the Legendre polynomials are an orthogonal set of functions, then

the integration of this equation over µ can be easily accomplished by first multiplying

Eq. 1.31 by Pn(µ)(2n + 1)/2. Doing this and expanding the remaining terms in I gives:
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(
2n + 1

2

) [
1
c

∂

∂t

∞∑

l=0

(2l + 1)IlPl(µ)Pn(µ) + µ∇
∞∑

l=0

(2l + 1)IlPl(µ)Pn(µ)

]

=
(

2n + 1
2

)[
σ1

a

(
4πB”Pn(µ)−

∞∑

l=0

(2l + 1)IlPl(µ)Pn(µ)
)

+
∫ ∞

0

[ ∞∑

l=0

(2l + 1)σs;l(ν ′ → ν)Pl(µ)Pn(µ)Il(ν ′)
]
dν ′

−
∫ ∞

0

[ ∞∑

l=0

∞∑

l′=0

(2l + 1)(2l′ + 1)σsl(ν → ν ′)
( ∫ 1

−1
Pl(µ′)dµ′

)
Il′(ν)Pl′Pl(µ)Pn(µ)

]
dν′

+
∫ ∞

0

[
c2

8πhν3

∞∑

l=0

∞∑

l′=0

(2l + 1)(2l′ + 1)σsl(ν ′ → ν))Il(ν ′)Il′(ν)Pl′Pl(µ)Pn(µ)
]
dν ′

−
∫ ∞

0

[
c2

8πhν ′3

∞∑

l=0

∞∑

l′=0

(2l + 1)(2l′ + 1)σsl(ν → ν ′))Il(ν)Il′(ν ′)Pl′Pl(µ)Pn(µ)
]
dν′

]
.

(1.32)

Finally, integrating over µ in the interval [−1, 1] provides the general form of the time-

dependent Pn equations including stimulated emission and scattering processes in the

form:

(2n + 1)
1
c

∂

∂t
In +∇

[
nIn−1 + (n + 1)In+1

]
= (2n + 1)σ1

a

[
2πB”

∫ 1

−1
Pn(µ)dµ− In

]

+ (2n + 1)
∫ ∞

0
σsn(ν ′ → ν)In(ν ′)dν ′ (1.33)

−
∫ ∞

0

[
1

8π

∞∑

l=0

∞∑

l′=0

σsl(ν → ν ′))Il′(ν)
(

2π

∫ 1

−1
Pl(µ′)dµ′

)
Anll′

]
dν′

+
∫ ∞

0

c2

16πh

∞∑

l=0

∞∑

l′=0

[
1
ν3

σsl(ν ′ → ν))Il(ν ′)Il′(ν)− 1
ν ′3

σsl(ν → ν ′))Il(ν)Il′(ν ′)
]
Anll′dν ′

where the coefficient Anll′ is determined from Legendre orthogonality relations as:

Anll′ ≡ (2n + 1)(2l + 1)(2l′ + 1)
∫ 1

−1
Pl′(µ)Pl(µ)Pn(µ)dµ =




2δl′;l

6(l + 1)δl′;l+1 + 6lδl′;l−1

· · ·




(1.34)

These equations represent an infinite set of coupled partial differential equations and are

exactly equivalent to Eq. 1.26 in 1-D.
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Since it is obviously not reasonable to include the entire set of equations in the

actual calculation of the photon intensity, Eq. 1.33 is truncated by an assumption on the

directional dependence of the photon field. For example, the simplest subset of these

equations typically considered in radiation transport computations are the P1 equations.

In this case, the Pn equations are ’closed’ by assuming that In = σsn = 0 for n ≥ 2. This

is equivalent to assuming that the photon intensity and scattering cross-section have only

isotropic and linearly anisotropic components. Assuming this closure and solving for the

terms in Anll′ gives the time-dependent P1 equations including stimulated emission and

scattering as:

n = 0:

1
c

∂

∂t
I0 +∇I1 = σ1

a

[
4πB” − I0

]
+

∫ ∞

0
σs0(ν ′ → ν)I0(ν ′)dν ′ − I0

∫ ∞

0
σs0(ν → ν ′)dν′

+
c2

8πh
I0

∫ ∞

0

[
1
ν3

σs0(ν ′ → ν)− 1
ν ′3

σs0(ν → ν ′)
]
I0(ν ′)dν ′

+
c2

8πh
I1

∫ ∞

0

[
1
ν3

σs1(ν ′ → ν)− 1
ν ′3

σs1(ν → ν ′)
]
I1(ν ′)dν ′,

(1.35)

n = 1:

1
c

∂

∂t
I1 +

1
3
∇I0 = −σ1

aI1 +
∫ ∞

0
σs1(ν ′ → ν)I1(ν ′)dν′ − I1

∫ ∞

0
σs0(ν → ν ′)dν ′

+
3c2

8πh
I0

∫ ∞

0

[
1
ν3

σs1(ν ′ → ν)− 1
ν ′3

σs0(ν → ν ′)
]
I1(ν ′)dν ′

+
3c2

8πh
I1

∫ ∞

0

[
1
ν3

σs0(ν ′ → ν)− 1
ν ′3

σs1(ν → ν ′)
]
I0(ν ′)dν ′,

(1.36)

This closed set of equations is then completely independent of the variable µ, and can

be numerically solved in a computer program of the radiation transport. However, the

solution to the P1 equations is only good for radiation fields that have a very weak

directional dependence. In a few dedicated radiation transport codes, the Pn equations

are considered up to n = 14 [55] in order to include the effects of highly non-linear

scattering cross-sections and the associated asymmetries of the propagating photon field.

As is evident by Eq. 1.35 and Eq. 1.36, even the simplest form of the time-dependent
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Pn equations are rather complex and can be computationally expensive. This is a problem

in coupled radiation-hydrodynamics calculations where the frequency dependence is often

divided into ≥ 100 frequency groups. Thus, the P1 equations are often further simplified

by taking the diffusion approximation. In this approximation, it is assumed that the

linear anisotropy of the intensity field has a much lower total intensity than the isotropic

component (|I1| << I0). Furthermore, if it is assumed that the linear anisotropy is

steady state, and that there are approximately no frequency changes during collisions

(i.e. σsl ≈ σsl(ν
′ → ν)δ(ν ′ − ν)), then Eq. 1.36 can be rewritten as:

I1 = − 1

σtr

∇I0, (1.37)

where the radiative transfer cross-section has been defined as:

σtr = σ1
a +

∫ ∞

0

σs0(ν → ν ′)dν ′ + σs1 = σ1
a + σs + σs1. (1.38)

Inserting Eq. 1.37 into Eq. 1.35, and neglecting terms proportional to |I1|2 then yields

the diffusion equation including stimulated emission and scattering:

1

c

∂

∂t
I0 −∇ · 1

3σtr

∇I0 = σ1
a

[
4πB” − I0

]
− σs0I0 +

∫ ∞

0

σs0(ν
′ → ν)I0(ν

′)dν ′

+
c2

8πh
I0

∫ ∞

0

[
1

ν3
σs0(ν

′ → ν)− 1

ν ′3
σs0(ν → ν ′)

]
I0(ν

′)dν ′.
(1.39)

If it is again assumed that no energy change occurs in scattering, then the stimulated

scattering terms identically cancel, and Eq. 1.39 can be approximated as:

∂I0

∂t
= ∇ · cD∇I0 + cσ1

a

[
4πB” − I0

]
, (1.40)

where D is the diffusion coefficient defined as D ≡ [3σtr]
−1 . This is the textbook

form of the time-dependent diffusion equation, and is one of the options for the radiation

transport algorithm in the BUCKY radiation-hydrodynamics code referenced throughout

this thesis (see §4.2).
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—

There are a number of issues associated with the implementation of Eq. 1.40. As was

stated during the derivation, the diffusion approximation assumes that the radiation

intensity is nearly isotropic everywhere in the medium. Thus, there must be a similar

amount of radiation flowing in each direction for the diffusion equation to provide an

accurate solution of the radiative transfer. If the opacity of the medium is very low, or if

there are steep gradients in the intensity field, then the main component of the radiation

field is no longer isotropic and the diffusion approximation breaks down. The extreme

case occurs when the radiation is free-streaming. In this case σtr ≈ 0, and Eq. 1.40

becomes:

∂I0

∂t
“∞′′∇I0, (1.41)

implying that the radiation propagation speed goes to infinity. To correct this unphysical

result, a flux-limiter is applied to the diffusion coefficient that prevents the propagation

from occurring faster than the speed of light [56, 57]. One very common limiter used in

radiation transport is the ‘SUM’-limiter, which has the form:

D =
1

3σtr + 1
I0
|∇I0|

. (1.42)

Inserting this into Eq. 1.40 and taking the limit as σtr goes to 0, then the intensity gradient

becomes the dominant term in the denominator and the diffusion equation becomes:

∂I0

∂t
= c∇I0, (1.43)

which is the proper classical result in the free-streaming limit.

The problem with flux-limited diffusion is that, although it provides a good approx-

imation to the transport equation in the optically thick and optically thin limits, the

solution is ad-hoc in between. That is, the only restriction placed on the flux-limiter is
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that it must converge to the proper form in the two extreme limits. Clearly, there are a

number of different choices that one can make for the form of the flux-limiter to satisfy

these requirements.

A few additional examples of commonly used flux-limiters are the ‘MAX’-limiter:

D =
1

max
(
3σtr,

1
I0
|∇I0|

) , (1.44)

the Larsen-limiter:

D =
1

[(
3σtr

)n

+

(
1
I0
|∇I0|

)n]1=n
, (1.45)

(for n a dimensionless parameter), and the simplified Levermore-Pomraning-limiter [58]:

D =
1

σtrR

[
coth R− 1

R

]
, for R ≡ |∇I0|

σtrI0

. (1.46)

Each of these converges to the same limits as the SUM-limiter, but have very different

profiles in between. However, the SUM- and MAX-limiters represent the lower and

upper bound of the total radiation flow attainable by most implementations of flux-

limited diffusion. To illustrate this, Figure 1.17 shows the single group flux-limiter,

D̃ = 3σtrD, versus the scaled radiation energy gradient (R in Eq. 1.46) for the SUM-,

MAX-, Larsen-, and Levermore-Pomraning-limiters. As required, each scaled diffusion

coefficient approaches 1 as R goes to 0, and approaches 0 as R goes to infinity. However,

at values of R between 1 and 10, the diffusion coefficient is quite a bit different across the

different limiters. In this region, the sum limiter is by far the most restrictive (with the

lowest diffusion coefficient) while the max limiter is the least restrictive (with the highest

diffusion coefficient). Therefore, if the characteristics of the radiation field have an R

value between about 1 and 10, then the radiation is neither free-streaming nor diffusing,

and flux-limited diffusion theory is suspect.
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Figure 1.17: Flux-limiter factors, D̃ = 3σtrD, versus the scaled radiation gradient, R,
for some common flux-limiters.

1.4.2 Discrete ordinates and the method of short-characteristics

As was shown in §1.4.1 the flux-limited diffusion approximation breaks down in the region

where the scaled energy gradient, R, is between about 1 and 10. If the characteristics

of the radiation field and the medium are in this regime for a significant period of time,

then a non-diffusive solution may be required in order to properly predict the radiative

transfer rates. One alternative approach to solving the transport equation, which avoids

an assumption on the angular distribution of the intensity field, is the method of discrete

ordinates.

Rather than expanding the transport equation into an infinite set of equations that

are independent of the variable Ω̂, the angular integral in Eq. 1.26 can be solved by a

numerical approximation. Expanding the scattering cross-section into Legendre polyno-
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i wi µi

N = 2 1 0.5000000000 0.2113248654

2 0.5000000000 0.7886751346

N = 5 1 0.1184634425 0.0469100770

2 0.2393143352 0.2307653449

3 0.2844444444 0.5000000000

4 0.2393143352 0.7692346551

5 0.1184634425 0.9530899230

Table 1.1: Integration angle cosines and weights for discrete-ordinates and multi-angle
short-characteristics.

mials as in Eq. 1.28, the 1-D planar transport equation can be written as:

1

c

∂

∂t
I + µ∇I = σ1

a [2πB” − I] (1.47)

+
1

2

∫ ∞

0

(
1 +

c2

2hν3
I(ν)

) ∞∑

l=0

(2l + 1)σsl(ν
′ → ν)Pl(µ)

[∫ 1

−1

Pl(µ
′)I(ν ′, µ′)dµ′

]
dν ′

− 1

2

∫ ∞

0

I(ν)
∞∑

l=0

(2l + 1)σsl(ν → ν ′)Pl(µ)

[∫ 1

−1

Pl(µ
′)

(
1 +

c2

2hν ′3
I(ν ′, µ′)

)
dµ′

]
dν ′,

where the dependence on x, ν, and t has been implicitly assumed for brevity. Now,

the angular integrals can be approximated by numerical quadrature using the generic

formula: ∫ 1

−1

f(µ)dµ ≈
N∑

i=0

wif(µi) (1.48)

for wi the integration weights at each quadrature node, µi, as given in Table 1.1. Applying

this to Eq. 1.47 then yields the 1-D time-dependent discrete ordinates equation including

stimulated emission and scattering:
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1

c

∂

∂t
I(µi) + µi∇I(µi) = σ1

a [2πB” − I(µi)] (1.49)

+
1

2

∫ ∞

0

(
1 +

c2

2hν3
I(ν, µi)

) L∑

l=0

N∑
j=0

(2l + 1)σsl(ν
′ → ν)Pl(µj)wjPl(µj)I(ν ′, µj)dν ′

− 1

2

∫ ∞

0

I(ν, µi)
L∑

l=0

N∑
j=0

(2l + 1)σsl(ν → ν ′)Pl(µj)wjPl(µj)

(
1 +

c2

2hν ′3
I(ν ′, µj)

)
dν ′,

where the expansion in σsl has been cut-off after L terms, and the index i = 0, 1, . . . , N

corresponds to the N different angles in the quadrature set. This equation is non-linear,

and must be solved by assuming an initial form of I for the right hand side, and iterating

until the solution converges. Because the quadrature sets are symmetric about µ = 0,

Eq. 1.49 corresponds to N/2 equations which propagate the radiation in the forward

direction, and N/2 equations which propagate the radiation in the backward direction.

The total radiation intensity is then found by integrating over all angles such that:

I0(x, ν, t) =
N∑

i=0

wiI(x, ν, µi, t). (1.50)

The quadratic dependence on I in Eq. 1.49 due to the stimulated emission and scat-

tering terms can complicate the numerical convergence of the iterative solutions. If it is

assumed that the contribution to the specific intensity from induced scattering is small,

then the time-dependent discrete ordinates equation can be written as:
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1

c

∂

∂t
I(µi) + µi∇I(µi) + χiI(µi) = qi, (1.51)

for χi =
1

2

∫ ∞

0

I(ν, µi)
L∑

l=0

N∑
j=0

(2l + 1)σsl(ν → ν ′)Pl(µj)wjPl(µj)dν ′ + σ1
a

and qi =
1

2

∫ ∞

0

L∑

l=0

N∑
j=0

(2l + 1)σsl(ν
′ → ν)Pl(µj)wjPl(µj)I(ν ′, µj)dν ′ + 2πσ1

aB” .

This is the form most commonly utilized in 1-D radiation transport codes. In contrast

to the diffusion equation, discrete ordinates does not require a flux-limiter. This can

be easily verified by taking the limit as all interaction cross-sections go to zero (free-

streaming) in Eq. 1.51. In this case, the equation becomes @
@t

Ii = −cµi∇Ii and the

radiation simply propagates unattenuated throughout the medium. Thus, Eq. 1.51 is

generally applicable for diffusive conditions, free-streaming conditions, and everywhere

in-between.

—

The discrete ordinates equation can be discretized on a spatial mesh and solved

iteratively by standard finite difference methods, or it can be recast into an optical

depth grid and solved along characteristic rays by the multi-angle method of short-

characteristics [60,61].

If it is assumed that the radiation field is steady state over a particular time-step,

and that scattering is not an important contribution to the transport dynamics, then

Eq. 1.51 can be simplified to:

µi
∂I(x, ν, µi, t)

∂x
= σ1

a(x, ν, t) [2πB”(x, ν, t)− I(x, µi, ν, t)] . (1.52)

Defining the monochromatic optical depth, τ , as:

∂τ = σ1
a∂x, (1.53)
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then Eq. 1.52 can be transformed to optical depth space as:

µi
∂Ii

∂τ
= [2πB” − Ii] . (1.54)

Or, multiplying through by µ−1
i e

τ
µi gives:

∂

∂τ

(
Iie

τ
µi

)
=

2π

µi

B”e
τ
µi . (1.55)

Separating this equation into outward (0 < µ ≤ 1) and inward (−1 ≤ µ < 0) going rays,

and integrating along characteristics (paths along each µi) from some nearby point in

the slab (denoted by τk−1 and τk+1) gives:

0 < µ ≤ 1:

∫ I
+

i (¿k)e
τk
µ

I
+
i (¿k−1)e

τk−1
µi

d
(
I ′e

τ ′
µ

)
=

2π

µi

∫ ¿k

¿k−1

B”e
τ ′
µi dτ ′ (1.56)

−1 ≤ µ < 0:

∫ I
−
i (¿k)e

τk
µi

I
−
i (¿k+1)e

τk+1
µi

d
(
I ′e

τ ′
µ

)
=

2π

µi

∫ ¿k

¿k+1

B”e
τ ′
µi dτ ′. (1.57)

Finally, carrying out the integrals gives the analytic equations of multi-angle short-

characteristics at the point τk:

I
+

i (τk) = I
+

i (τk−1)e
−¢¿i,k−1 + 2π

∫ ¢¿i,k−1

0

B”e
−¢¿ ′d∆τ ′ (1.58)

I
−
i (τk) = I

−
i (τk+1)e

−¢¿i,k + 2π

∫ ¢¿i,k

0

B”e
−¢¿ ′d∆τ ′, (1.59)

where the optical depth interval, ∆τ , has been defined as:

∆τi;k =
(τk+1 − τk)

|µi| . (1.60)

Eq. 1.58 and 1.59 can then be solved by sweeping forward and backward through the

slab. The only difficulty lies in solving for the source integrals. Typically, it is sufficient

to consider the source term to have only a linear or quadratic dependence on τ(x). In

either case, the solution can be written as a three coefficient evaluation:

∫ ±
B”e

−¢¿ ′d∆τ ′ = α±k B”(τk−1) + β±k B”(τk) + γ±k B”(τk+1), (1.61)
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Linear Interpolation Quadratic Interpolation

α+
k e0;k − e1,k

¢¿k−1
e0;k +

e2,k−(¢¿k+2¢¿k−1)e1,k

¢¿k−1(¢¿k+¢¿k−1)

β+
k

e1,k

¢¿k−1

(¢¿k+¢¿k−1)e1,k−e2,k

¢¿k−1¢¿k

γ+
k 0

e2,k−¢¿k−1e1,k

¢¿k(¢¿k+¢¿k−1)

α−k 0
e2,k+1−¢¿ke1,k+1

¢¿k−1(¢¿k+¢¿k−1)

β−k
e1,k+1

¢¿k

(¢¿k+¢¿k−1)e1,k+1−e2,k+1

¢¿k−1¢¿k

γ−k e0;k+1 − e1,k+1

¢¿k
e0;k+1 +

e2,k+1−(¢¿k−1+2¢¿k)e1,k+1

¢¿k(¢¿k+¢¿k−1)

Table 1.2: Coefficients for solving the source integrals for linear or quadratic interpola-
tion of B” in the multi-angle short-characteristics equations.

where the angular subscript, i, has been suppressed for clarity. Table 1.2 lists the values of

these coefficients for both linear and quadratic interpolations of B” , where the exponential

functions, e(0;1;2);k are given by:

e0;k = 1− e−¢¿k−1

e1;k = ∆τk−1 − e0;k

e2;k = (∆τk−1)
2 − 2e1;k.

Once I
+

and I
−

have been determined at every point, τk, then the first moment of the

specific intensity (the scalar flux) can be computed as:

I0(τk, ν, t) =
N∑

i=1

wi

[
I

+

i (τk, ν, t) + I
−
i (τk, ν, t)

]
. (1.62)

It should be noted that, unlike the implementation of the diffusion equation, the

method of short-characteristics described here is only applicable in planar geometry, and

is only derived for time-independent radiation transport. This places serious restrictions

on the usefulness of short-characteristics for many problems, and thought should always

be given to its applicability before using it to model the radiation transport.
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1.4.3 Other forms of approximate transport

There are many other approximate radiation transport techniques that have been devel-

oped for a range of different applications. However, only a few of these have been widely

accepted as a significant benefit over those methods already discussed. Two notable

examples of those that have been widely utilized in neutral particle transport are the

variable Eddington method and time-independent integral transport.

In the derivation of the P1 equations in §1.4.1, it was assumed that the quadratically

anisotropic specific intensity was negligible (I2 ≈ 0). If instead it is assumed that I2 =

fI0, for f the variable Eddington factor given by:

f ≡
∫ 1

−1
µ′2I(µ′)dµ′

∫ 1

−1
I(µ′)dµ′

, (1.63)

then the Variable Eddington Factor (VEF) equations can be written as:

n=0:
1

c

∂

∂t
I0 +∇I1 = σ1

a [4πB” − I0]− σsI0 +

∫ ∞

0

σs0(ν
′ → ν)I0(ν

′)dν ′, (1.64)

n=1:
1

c

∂

∂t
I1 +∇(fI0) = −σtrI1, (1.65)

where it is assumed that the stimulated scattering terms can be neglected. The Eddington

factor must then be calculated to fit the problem of interest. For example, if f = 1/3,

then the VEF equations are equivalent to the P1 equations and can be reduced identically

to the time-dependent diffusion equation. Since the diffusion equation is a very good

approximation in optically thick media at thermal equilibrium, then f = 1/3 will force

the VEF equations to produce the proper radiative transfer rates in the limit of diffusion.

The real advantage of the VEF method over the P1 equations occurs when the radia-

tion is nearly free-streaming. That is, in the optically thin limit, the P1 equations can be

shown to propagate radiation at a speed of c/
√

3 . However, if the variable Eddington

factor is chosen to be f = 1, then the VEF equations avoid this unphysical result by
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propagating the radiation at a speed of c. Thus, as indicated by Eq. 1.63, the Eddington

factor should be a function of the anisotropy of the specific intensity in the medium. The

difficulty is in choosing the proper form of f such that the VEF equations will predict the

correct transfer rates for all radiation fields. The issue becomes somewhat like that of the

flux-limiter. Namely, the VEF equations can predict the proper radiative transfer rates

at the limits of diffusion and free-streaming, but unless the Eddington factor is calculated

from a transport calculation of the full specific intensity, I, then the VEF solutions can

be unreliable in-between.

A final class of important deterministic radiation transport approximations is the

integral transport method. This method has a significant advantage over those already

discussed in that it does not, in principle, require making any a-priori assumptions about

the distribution of the radiation field. Integral transport works by integrating the trans-

port equation over angle and thereby solving directly for the scalar flux (which has been

referred to here as I0). It does, however, require making an assumption on the direc-

tionality of the scattering terms. In addition, little work if any has been conducted

on determining the integration kernels required for a closed solution when including

stimulated emission and/or scattering terms. Regardless, because the transport solu-

tion depends on both the dimensions and opacity of the plasma, the integration kernel

must be re-evaluated for every frequency at every time-step. This is typically not prac-

tical for multi-group radiation-hydrodynamics calculations. For these reasons, integral

transport has only been utilized in applications of neutron transport (with a few rare

exceptions [62]) where scattering is assumed to be nearly isotropic [50].
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Chapter 2

Literature Search

2.1 Computational Studies on the Radiation

Transport Equation

As was discussed in §1.4, there are a number of different approximations to the transport

equation. Each of these are valid under a particular range of conditions, and care must be

taken to verify that these conditions are met in order to properly compute the radiative

transfer rates. Because of this, there have been a number of studies conducted on the

differing solutions that can arise by applying different transport methods to the same,

sometimes even simplistic problem.

One such study was published recently by G.L. Olson et al. [57] on the subject of

diffusion, P1, and variable Eddington transport. They first considered the simple case of

a non-equilibrium radiative transfer problem consisting of an initially cold, homogeneous,

infinite, and purely absorbing medium with constant opacity. Defining the material heat
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capacity as a function of the plasma temperature in the form:

cv = 4aT 3 (2.1)

for a the radiation constant (a ≡ 4σSB/c ), then the material energy balance equation

can be written as:

1

c

∂T 4

∂t
= σ1

a

( a

C
I0 − T 4

)
. (2.2)

Choosing σ1
a = 1 and inserting this result into the transport equation, then the first two

of the mono-energetic Pn equations (i.e. the zeroth- and first-angular moments) can be

written as:

∂Î0

∂τ
+

∂Î1

∂x
= θ − Î0 + Ŝ, (2.3)

∂Î1

∂τ
+

1

3

∂Î0

∂x
+

2

3

∂Î2

∂x
= −Î1, (2.4)

where τ is the unit-less time variable, τ ≡ σ1
act = ct , and the scaled transport variables

are defined as:

Î0 ≡ I0

caT 4
H

=

(
Tr

TH

)4

, Î1 ≡ I1

caT 4
H

, Î2 ≡ I2

caT 4
H

, θ ≡
(

T

TH

)
, Ŝ ≡ S

aT 4
H

,

for TH the hohlraum reference temperature. Finally, assuming that the internal radiation

source is turned on at τ = 0 with a magnitude of:

Ŝ =

[
1, |x| ≤ 1

2
, ct ≤ 10

0, elsewhere
, (2.5)

and setting an initial scaled temperature value of θ(x, 0) = 10−10, then Olson et al. were

able to calculate an analytic solution to the transport equations in Eq. 2.3 and 2.4.

Figure 2.1(a) shows a comparison between the analytic calculation, and those solu-

tions obtained by non-flux-limited diffusion, the P1 equations, and the VEF method. In
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(a) (b)

Figure 2.1: An analytic benchmark solution to the coupled radiation transport and
material energy equations compared to (a) diffusion, P1, VEF, and (b) flux-limited
diffusion for the SUM-, MAX-, and Larsen(n=2)-limiter [57].

this case, the variable Eddington factors were chosen by an independent discrete ordi-

nates solution to the transport equation. Note from Figure 2.1(a) that, with the proper

functional form of f , the VEF equations, and therefore the discrete ordinates solution,

give a very accurate result at all times. On the other hand, non-limited diffusion prop-

agates the radiation too quickly, especially at early times. This rapid transport occurs

because the scaled energy gradient, R, defined in Eq. 1.46 becomes large near a boundary

layer. As was shown in §1.4.1, in the limit as R goes to infinity, the diffusion approx-

imation breaks down and predicts rapid, unphysical transport speeds. In the opposite

sense, the P1 equations propagate the radiation too slowly at later times, but give a

good approximation at early times near the source boundary layer. The late time lag

occurs because of the limiting propagation speed of c/
√

3 in the P1 equations, which was

discussed in §1.4.3.

Figure 2.1(b) shows the comparison between the analytical calculation and flux-

limited diffusion solutions using the SUM-limiter given by Eq. 1.42; the MAX-limiter
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given by Eq. 1.44; and the Larsen-limiter given by Eq. 1.45. All three flux-limiters give

accurate results at early times near the boundary layer where the scaled energy gradient

is large. This is expected since each limiter has the same form in the limiting case as R

goes to infinity. Later in time, the SUM-limiter begins to lag behind the analytic solution

as the radiation propagates through a region of intermediate R where the SUM-limiter

is the most restrictive. In the opposite sense, the MAX-limiter propagates radiation out

ahead of the analytic solution at all times, but gives a fairly good approximation by the

time τ = 10. This is fairly deep into the material where R is on the order of 1, and the

MAX-limiter gives the equivalent solution as the non-limited diffusion approximation.

The Larsen-limiter gives solutions that are similar to the MAX-limiter with a slightly

better approximation to the analytic solution at each time. No matter which form of

the flux limiter is applied, it is clear from Figure 2.1(a) that flux-limited diffusion is a

significant improvement over non-limited diffusion.

—

The previous test problem is useful because it can be solved analytically, and there-

fore gives a direct benchmark by which to compare the various approximate transport

methods. However, assuming a constant, temperature-independent opacity is not physi-

cal. To account for this, Olson et al. [57] proposed a related problem where the opacity

is assumed to vary as the cube of the temperature in the form σ1
a = σ1

a;0T̂
−3 = σ1

a;0θ
−3=4

, for T̂ = T/TH . Then, using the same form of the heat capacity as defined above, and

setting σ1
a;0 = 1, then Eq. 2.3 and 2.4 must be rewritten as:

∂Î0

∂τ
+

∂Î1

∂x
= θ−3=4(θ − Î0), (2.6)

∂Î1

∂τ
+

1

3

∂Î0

∂x
+

2

3

∂Î2

∂x
= −θ−3=4Î1, (2.7)
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(a) (b)

Figure 2.2: (a)Normalized radiation (solid) and plasma (dashed) temperatures for the
temperature-dependent opacity problem as calculated by the P5 equations, (b) and the
radiation temperatures for a few other transport approximations at τ = 30 [57].

where it has been assumed that all internal source functions are negligible. These equa-

tions are non-linear and have no direct analytic solution. To develop a time-dependent

approximation to this problem, Olson et al. applied a Marshak boundary condition at

τ = x = 0, and solved the radiation transport equation by the P5 approximation. The

results of this calculation for both the scaled radiation and material temperatures are

shown in Figure 2.2(a). The radiation wave front stays sharp over the entire calculation

due to the strong dependence of the opacity on the material temperature. This is in stark

contrast to the solution shown in Figure 2.1(a), where the wave front rapidly spreads af-

ter a time of τ = 0.1. The solution shown in Figure 2.2(a) is much more physical, and

corresponds to what is often observed in high-energy density laboratory plasmas. This

radiation temperature history was assumed to be a very good approximation in the ab-

sence of a direct analytic calculation, and is therefore taken as the ’benchmark’ solution

to Eq. 2.6 and 2.7.

A comparison between the benchmark solution in Figure 2.2(a), and the solution
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calculated by a number of different transport approximations is shown in Figure 2.2(b)

at a time of τ = 30 (note the expanded spatial scale). The variable Eddington factors

were again calculated by a discrete ordinates method, and give a VEF solution that

falls directly along the P5 benchmark solution (which is not shown for clarity). Non-

limited diffusion, max-limited diffusion, and the P1 equations all provide approximately

the same solution, which propagates the radiation front ahead of the benchmark solution

by ≈ 4% in x. Again, these methods allow too much radiation to flow in the region

where 1 ≤ R ≤ 10, and thus over-predict the radiative transfer rates. On the other hand,

sum-limited diffusion is too restrictive, and propagates the radiation front behind the

benchmark solution by ≈ 10% in x. Larsen-limited diffusion with n = 2 gives the best

diffusive approximation to the benchmark solution, and only propagates the radiation

ahead by ≈ 1%. However, Olson et al. point out that this does not imply the Larsen

limiter will always give the best approximation. Like all of the limiters discussed in this

document, the Larsen limiter has no transport knowledge between the limits of diffusion

and free-streaming, and therefore may not provide the best approximation in any other

particular problem.

It is also noted that, although the material is optically thick ahead of the wave front,

and that the front is far from the material boundary, there are still distinct differences

between the diffusion approximation and a more detailed radiation transport calculation.

This is because the sharp edge of the radiation wave front acts as an internal boundary

where the radiation flow has a very strong directionality and therefore violates the pri-

mary requirement of diffusion. Thus, in the case of a strong radiation wave propagating

through a plasma, simply being optically thick is not sufficient to assure the validity of

the diffusion limit. When any one of the flux-limited diffusion approximations predicts a

solution that is drastically different from any of the other flux-limiters, then a more de-
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tailed transport calculation may predict a very different solution than any of the diffusion

approximations [57].

—

There are many more publications in the literature about the differences between the

various approximations to the transport equation than can be listed here [63–65]. The

point is that, in the absence of an exact solution, an approximation must be made that

necessarily limits the range of conditions over which that solution is applicable. Thus,

when employing any approximate method to solve for the radiation flow in a particular

problem, thought must be given as to where and when the approximations may break

down.

2.2 Radiative Transfer Experiments in Low-Density

Foams

Studies on the propagation of radiation in low-density (< 50mg/cc) foams at high energy-

density have only appeared in the open literature since about 1990. The majority of this

work has been in the characterization of mid- to high-Z foams for laser beam smoothing

studies in direct-drive ICF. It was discovered that, encasing an ICF capsule in a foam layer

with a density approximately equivalent to the electron critical density, then the direct

laser energy is deposited over a larger volume within the capsule ablator [22,66,67]. This

can smooth out the ’speckling’ of the laser beam spots and thereby reduce the Rayleigh-

Taylor instability growth that has historically limited the direct-drive approach to ICF.

Thus, there are many studies available in the literature that focus on the interaction of

high-intensity laser radiation with low-density foams [68–70]. However, the laser energy
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is of significantly longer wavelength, and correspondingly shorter mean free paths, than

the x-ray radiation that exists inside a z-pinch driven dynamic hohlraum.

Of the experiments that have been conducted under high-temperature thermal ra-

diation fields, the most recent is that of C.A. Back et al. [71, 72] on the measurement

of supersonic heat waves through mid- to high-Z foams on the OMEGA laser. In these

experiments, Back et al. irradiated 40 − 50mg/cc SiO2 and Ta2O5 foams with a high-

temperature thermal radiation pulse over a fairly short time duration. The foam samples

were placed at one end of a gold ‘halfraum’ (one laser entrance hole), which was 1.2mm

long with a 1.6mm diameter. Two ≈ 1ns square laser pulses produced a radiation tem-

perature at the sample location that peaked at ≈ 190eV , and lasted for a duration of

≈ 4ns (at a temperature above 100eV ). With this drive history, the radiation burn-

through times (the time that it takes for the radiation to penetrate the back surface of

the foam) were measured using a streaked x-ray spectrometer for foam samples up to

1mm thick.

The measured burn-through times are compared to analytic 1-D calculations as a func-

tion of total foam thickness for both Ta2O5 and SiO2 foam experiments in Figure 2.3(a).

The 1-D calculations of the SiO2 burn-through times are conducted with the diffusion

approximation for times greater than 1.1ns, and a near-streaming calculation for earlier

times. In contrast, the calculations of the Ta2O5 burn-through times are conducted with

the diffusion approximation throughout since the total optical depth of the Ta2O5 is

greater than 1 for all sample sizes (due to the high-Z of Ta). In every case, the calcula-

tions actually predict faster burn-through times than were measured in the experiments.

The authors attributed this to an uncertainty in the late-time radiation pulse, pointing

out that the 1-D calculations assume a constant 185eV − 190eV radiation temperature

boundary condition. To address this, integrated 2-D calculations of the hohlraum tem-
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(a) (b)

Figure 2.3: Radiation burn-through data for Ta2O5 and SiO2 foams in comparison to
(a) 1-D analytical models, and (b) 2-D integrated rad-hydro computations [71].

perature history and the sample radiation-hydrodynamics processes were conducted for

each foam sample, and are compared to the experimental data in Figure 2.3(b). The solid

curves are generated using the calculated radiation drive history, while the dashed curves

are generated by correcting the calculated drive to better match the experimentally mea-

sured drive temperatures. The latter shows fairly good agreement, indicating that the

applied radiation transport technique may provide an adequate solution of the radiation

propagation speed. However, it is not known which radiation transport technique, or

which flux-limiter (if any) was utilized in these simulations.

Some other work by T. Afshar-rad et al. [73] measured the propagation of radiation

waves in low-density foams irradiated by a 1ns wide, 138 ± 12eV blackbody produced
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Figure 2.4: Position and velocity of the ionization wave front in a 50mg/cc triacry-
late (C15H206) foam chemically doped with a chlorine monomer (C9H3O2Cll5) under
irradiation by a ≈ 140eV blackbody radiation drive [73].

by the VULCAN laser system at Rutherford Appleton Laboratory. These foams were ≈
50mg/cc triacrylate (C15H206) chemically doped with a chlorine monomer (C9H3O2Cll5)

in samples about 200µm thick. Afshar-rad et al. measured the transmission of a 175eV

backlighter through the width of the foam (perpendicular to the direction of the bulk

radiation propagation) and thereby measured the propagation history of the radiation

front over the entire foam sample. A comparison between the experimental data and both

1- and 2-D calculations are shown in Figure 2.4. The 2-D calculations were conducted

using an implicit Monte Carlo radiation transport technique, but it is unknown which

technique was used in the 1-D calculations. The ionization front is assumed to occur

where the foam becomes 50% transparent to the backlighter radiation, at a calculated
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(a) (b)

Figure 2.5: (a) Experiment configuration for measuring the radiation propagation speed
in CH foams on the TRIDENT laser. (b) Ionization front positions in 30 − 50mg/cc
CH foam as measured by the ionization of an aluminum tracer layer [74].

foam temperature of 80eV . With these assumptions, the propagation velocity of the

ionization front was found to agree quite well with both the 1- and 2-D calculations.

Again, for these optically thick mid-Z foams, the radiation propagation speed appears to

be well modeled.

A study that is very relevant to this thesis was conducted recently by D. Hoarty

et al. [74] on CH foam targets at the TRIDENT laser facility. In these experiments,

they confined 30mg/cc, 300 − 500µm thick CH foams to a gold cylinder (to prevent

rarefaction) on the end of a 1mm diameter gold hohlraum in a configuration shown

in Figure 2.5(a). The primary diagnostic of the aluminum ionization history was a

x-ray crystal spectrometer coupled to a x-ray streak camera system. By placing the

aluminum tracer layer at different depths in the foam, Hoarty et al. were able to infer

the velocity of the ionization front as it propagated through the foam under a measured

drive temperature of ≈ 105eV . The experimental data of the front position versus

time are shown for both 30mg/cc and 50mg/cc CH foams in Figure 2.5(b). The first
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three data points in the 30mg/cc foam indicate an initial front propagation speed of

≈ 14cm/µs, while extrapolation of the data for the 50mg/cc foam indicates a front

propagation speed of ≈ 8cm/µs. However, the authors do not report any attempts to

model the measured propagation. These TRIDENT experiments are an example of the

kind which can be conducted on the Z machine at Sandia for foams that are of interest

to z-pinch applications. Comparing similar data to detailed radiation-hydrodynamics

models may provide more insight into the validity of various transport schemes and

opacity models in low-density CH2 foam.

There are only a few other radiation wave, shock propagation, or opacity studies in

low-density foams irradiated by a high-temperature thermal radiation field to be found

in the literature [75–79]. The most relevant of these was conducted by J.J. MacFarlane

et al. [80] on the Z machine at Sandia. This experiment attempted to measure the length

of time over which the central CH2 foam in the dynamic hohlraum configuration was

transparent enough to transmit radiation from an Au half-disk located at one end of the

foam. Framing camera images were taken over 8 successive times just before the peak

of the implosion. At about 6ns before peak implosion, the framing camera shows that

the albedo emission of the Au half-disk is visible through the 1cm length of the foam.

Atomic ionization models indicate that this corresponds to an electron temperature of

30 − 40eV . However, 2-D simulations of this z-pinch configuration indicate that the

electron temperature is less than this implying that the foam should be optically thick

to the Au re-emission. Either the simulations do not properly calculate the incident

radiation flux from the z-pinch plasma, or they under-predict the time it takes for the

radiation to heat the CH2 foam. This serves as one example of the importance in directly

investigating the radiation propagation speed in CH2 foam, and the need to understand

which calculational methods are required to model the transfer process.
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Chapter 3

Experiment Design

3.1 Motivation

In order to properly model the conditions of the radiation field in any plasma, a number

of factors must be considered. First, a decision needs to be made about how to treat the

spectral components of the problem. Typically this means choosing between either a Gray

(single-group) model, or a more detailed multi-group calculation. Second, because the

radiation transport depends heavily on the opacity of the material, a decision needs to be

made about how to calculate the temperature and density dependent opacities. Because

speed of calculation is often a primary concern, one can chose between doing a simple

in-line calculation of the bulk atomic absorption (and scattering), or construct tables of

opacities using a much more detailed atomic model relying on a-priori assumptions of the

radiation field. Third, because no two radiation transport approximations are alike in

either accuracy or speed, a decision needs to be made about how to model the radiation

transport. The calculation can either be conducted using a very simple approximation

that is rather fast but possibly not very accurate, or it can be conducted using a scheme
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that more suitably represents true transport but at the cost of valuable computation time.

Each of these factors can have a significant impact on the accuracy of the calculation,

and each needs to be addressed in detail before one can truly have confidence in the

computational model.

Many radiation-hydrodynamics codes that are utilized to model z-pinch processes rely

on Gray (single group) diffusion as a means of simulating the radiation transport without

requiring the complication and increased computation time of a multi-group solution.

Because these codes utilize the Rosseland mean opacities, the radiation transport routines

are best suited to simulate the transport of a blackbody radiation profile in a plasma

at local thermodynamic equilibrium (LTE). This is an appropriate approximation for

the case of an optically thick plasma within a thermal radiation field, and thus provides

an acceptable solution for many applications in high-temperature, high-density physics.

However, if any of the aforementioned conditions are violated, Gray diffusion may not

correctly predict the solution in many types of materials. This is particularly true for a

low-Z, low density CH2 foam where the mean free paths can be longer than a millimeter.

Figure 3.1(a) shows the radiation profiles in a 5mg/cc CH2 plasma as calculated

by the BUCKY 1-D radiation-hydrodynamics code (see §4.2) for both Gray and multi-

group flux-limited diffusion. These profiles are plotted at times of 4, 7, and 10ns for

the radiation drive shown in Figure 3.1(b). In the multi-group calculation, it is assumed

that the radiation has a planckian distribution at the radiation temperature of the drive

flux, and the multi-group opacities are taken from DTA calculations using EOSOPA

(see §4.3) for 100 log spaced energy groups between 0.1 and 105eV . As can be seen in

Figure 3.1(a), the calculation using Gray diffusion shows much steeper gradients in the

radiation intensity, and severely under-predicts the depth of penetration into the plasma.

To further demonstrate this characteristic, Figure 3.2 shows the BUCKY modeled
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Figure 3.1: (a) Flux-equivalent radiation temperature profiles in 5mg/cc CH2 foam
calculated by Gray (black) and 100 group flux-limited diffusion (red) at times of 4ns
(solid), 7ns (dashed), and 10ns (dot-dashed) for the blackbody drive history shown in
(b).

radiation spectrum and the EOSOPA modeled DTA multi-group Rosseland mean opacity

at a depth of 1.0mm in the 5mg/cc CH2 at 7ns into the simulation. At this point,

the temperature of the plasma is a relatively cool 5.4eV , and the carbon K-shell is

well populated. This results in a very strong influence of the K-edge (1s22sn2pm →
1s12sn2pm + e−) on the radiation transport. As seen in the figure, there is a window in

the opacity just below an energy of 315eV which passes the radiation in a fairly narrow

spectral band. The resulting radiation spectrum contains a total flux of 4.3∗1010W/cm2,

> 90% of which is contained in photons with energies in the range 140eV ≤ hν ≤ 315eV .

Blackbody radiation spectra with a color-temperature between 26eV and 140eV have

> 20% of the total flux in this energy range, which can thereby create a non-equilibrium

between the plasma and the radiation field. Correctly modeling the radiation flux in

this situation requires a multi-group radiation transport solution. If the temperature of

the CH2 plasma becomes high enough to ionize the outer electrons in the carbon, then

free-free interactions help the plasma relax to a state of equilibrium where Gray diffusion
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Figure 3.2: 100 group Rosseland opacity (black) and radiation energy density (red) at
a depth of 1mm and a time of 7ns for the BUCKY simulation in Figure 3.1.

may again be an adequate approximation.

To make matters worse, if the spectrum deviates from a blackbody, then the loca-

tion of the carbon K-edge with respect to even modest temperature blackbody curves

requires a very detailed treatment of the incident radiation spectra. To illustrate this, Fig-

ure 3.3(a) shows the BUCKY modeled radiation profiles in the same 5mg/cc CH2 plasma

assuming that the incident flux shown in Figure 3.1(b) has a planckian distribution dic-

tated by either the radiation temperature of the incident flux, or a color-temperature that

is two times higher. The incident spectral histories assumed for each of these calcula-

tions are shown in Figure 3.3(b). The BUCKY models again use multi-group flux-limited

diffusion assuming 100 log spaced energy groups between 0.1 and 105eV . Figure 3.3(a)

demonstrates how the change in incident spectra leads to a very different radiation profile

near the peak of the radiation drive. Because the Planckian distribution of the higher

color-temperatures has a much greater fraction of the total energy above the carbon

K-edge, the calculated penetration is lower (even though the average photon energy is



65

0.00 0.05 0.10 0.15 0.20
x (cm)

0

10

20

30

40

50

60
R

ad
ia

tio
n 

T
em

p 
(e

V
)

(a)

0 5 10 15 20
Time (ns)

20

40

60

80

100

120

C
ol

or
-T

em
pe

ra
tu

re
 (

eV
)

(b)

Figure 3.3: (a) Flux-equivalent radiation temperature profiles in 5mg/cc CH2 foam
calculated using 100 group flux-limited diffusion at times of 4ns (solid), 7ns (dashed),
and 10ns (dot-dashed )for the lower (black) and higher (red) color-temperature profiles
shown in (b) and the drive flux profile shown in Figure 3.1(b).

much higher). Clearly, properly modeling the incident spectra is paramount in properly

modeling the radiative transfer.

Because of the importance of the carbon K-edge, modeling the details of the penetra-

tion deep into the CH2 plasma also requires a good treatment of the shape of that edge.

That is, what is often referred to as the K-edge consists of many transitions between

and out of excited states in addition to the dominant bound-free transition from the

ground state. To illustrate, Figure 3.4(a) shows the BUCKY calculated flux-equivalent

radiation temperatures in the CH2 foam using EOSOPA calculated DTA opacities that

either do or do not include the effect of transitions between inner excited states. The

calculations are relatively similar. The case which does not include the effect of the in-

ner excited states predicts flux-equivalent radiation temperatures that are approximately

10% higher (≈ 50% in flux) at x = 0.2cm.

Figure 3.4(b) shows the 500 group Rosseland averaged DTA opacities of CH2 at

Te = 6.95eV and ni = 6.95 × 1020cm−3 as calculated by EOSOPA both including the
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Figure 3.4: (a) Flux-equivalent radiation temperature profiles in 5mg/cc CH2 foam
calculated using 100 group flux-limited diffusion at times of 4ns (solid), 7ns (dashed),
and 10ns (dot-dashed )for EOSOPA modeled CH2 opacities that either do (black) or
do not (red) include the effect of transitions between inner excited energy levels. (b)
Comparison between the EOSOPA modeled Rosseland opacities including (black) or not
including (red) the effect of transitions between inner excited energy levels.

transitions between excited states, and that calculated for just the photo-ionization. The

opacities are almost equivalent with the exception of the few energy bins that lie just

below the K-edge (at ≈ 300eV ). The inset in Figure 3.4(b) shows an expanded view of

this region, which reveals about a factor of two difference in the opacity within this very

limited range. This is not a very large deviation from the total opacity, but in the context

of the radiation spectrum shown in Figure 3.2, and as demonstrated from Figure 3.4(a),

it can have a ≈ 50% effect on the penetrating flux.

The case shown in Figure 3.4(a) is actually a best-case scenario in the differences

between calculated opacities. That is, one would not expect that transitions between

excited states play much of a role in the transport of radiation at these densities. Where

significant differences can arise between different opacity codes is in the calculation of the

excited state populations, or even the splitting between energy levels. These can have
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Figure 3.5: (a) Flux-equivalent radiation temperature profiles in 5mg/cc CH2 foam
calculated using 100 group flux-limited diffusion at a time of 7ns for CH2 opacities that
are modeled by EOSOPA using a DTA (black) or UTA (red) model, XSN (green), and
TOPS (blue). (b) Opacity in CH2 for Te = 6.95eV and ni = 6.95 ∗ 1020 as calculated by
EOSOPA DTA (black) and UTA (red), as well as that calculated by XSN (green), and
TOPS (blue).

a significant effect on the rates and energies of the bound-free transitions that make up

the bulk of the opacity.

As an example, Figure 3.5(a) shows the influence that different opacity models have

on the calculation of the radiation distribution at 7ns in a 5mg/cc CH2 plasma driven

by the incident flux history in Figure 3.1(b) with the higher color-temperature history

in Figure 3.3(b). The calculations are done using opacity tables generated by 4 differ-

ent opacity models: EOSOPA DTA, EOSOPA UTA, XSN, and LEDCOP (mixed using

TOPS). Each of the calculations here are done for the default values of the many ad-

justable parameters in each code assuming a condition of LTE. EOSOPA uses either a

DTA or UTA model; XSN uses an average-atom model; and LEDCOP uses a DTA model

similar to that in EOSOPA. As evidenced by the figure, the 4 different opacity tables

lead to 4 different solutions of the radiation distribution.
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Figure 3.5(b) shows the 500 group Rosseland opacities in 5mg/cc CH2 as calculated

by these 4 different opacity codes for a temperature of 6.95eV and a density of 6.95 ×
1020cm−3. While the overall structure of the opacities are similar, there are remarkable

differences in the positions, amplitudes, and shape of the carbon K- and L-shell edges.

These are the areas where the details of the excited-state energy level positions and

populations are important, and each model has a different method of solving for these

values. It is generally accepted that a DTA model is the most comprehensive, and

typically most accurate, of the atomic models tested here. However, DTA calculations

are far more complex, and are only applicable in atoms where there are few enough

electrons that the combinations of wave-functions can be practically calculated. Thus,

DTA models are typically only applied for atomic numbers less than 37. Above this,

a UTA model is commonly considered an acceptable method of calculation. The XSN

average-atom calculations use the least amount of detail (and have the most number of

”knobs”), but are very quick and can be run in-line with the radiation-hydrodynamics

model.

The effect of the differences in the opacity tables on a calculation of the radiation

transport will of course depend on the incident spectra. If that spectra is fairly hot

(> 140eV ), then it probably does not have much of an impact on the penetration. If

however, this spectra has a color-temperature between ≈ 20 and 140eV , then the effect

can be on the order of that shown in Figure 3.5(a). If this level of detail in the radiation

transport is important, then the model that is used to calculate the opacities must be an

important consideration.

One final consideration in the modeling of the radiation field is in the method that

should be used to solve the radiation transport equation. As discussed in §1.4, there are

a number of different approximations that can be used, each of which having a different
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Figure 3.6: (a) Flux-equivalent radiation temperature profiles in 5mg/cc CH2 foam
calculated using 100 group diffusion (black), flux-limited diffusion (red), and short-
characteristics (blue) at times of 7ns (solid) and 14ns (dashed). (b) Spectrally averaged
flux-limiter < 3σRD > (black), Eddington factor < f > (red), and flux-factor η (blue)
at 14ns.

level of accuracy for a particular problem. As noted in §4.2, BUCKY can be used with

either diffusion (flux-limited or not), or multi-angle short-characteristics. In Appendix

B, it has been shown that each can be applicable for a different set of problems, but that

short-characteristics very closely approximates true transport in cases where the radiation

field is time-independent. However, if the radiation field is dynamically changing on a

sufficiently short time scale, flux-limited diffusion will provide a much more accurate

result.

Figure 3.6(a) shows the radiation profiles at 7 and 14ns in 5mg/cc CH2 as calculated

by BUCKY for diffusion, flux-limited diffusion (SUM-limiter), and short-characteristics.

Again, the calculation was conducted using 100 log spaced energy groups between 0.1 and

105eV for the radiation drive shown in Figure 3.1(b) assuming the high color-temperature

history shown in Figure 3.3(b)a. At a time of 7ns into the simulation, all three approx-

aThe high color-temperature drive is used here because it more closely resembles the spectra that is
calculated for the experiments discussed in Chapter 6.
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imations predict similar radiation profiles. The flux-limited solution closely follows the

short-characteristics result for 0 < x < 0.1cm while the diffusion solution follows the

short-characteristics result for 0.2 < x < 0.3cm. In contrast, the three solutions are

rather different at 14ns. At this time, the diffusion approximation predicts much higher

radiation fluences near the back of the sample than the short-characteristics result, but

the flux-limited solution agrees with short-characteristics to within 15% throughout the

sample.

To better visualize the effect of the flux-limiter on the diffusion solution, Figure 3.6(b)

shows the spectrally averaged flux-limiter, < 3σRD >, given by the equation:

〈3σRD〉 =

∫∞
0

3¾R(x;”)E(x;”)

3¾R(x;”)+E(x;”)−1| ∂E
∂x |dν

∫∞
0

E(x, ν)dν
, (3.1)

at a time of 14ns for the conditions modeled by short-characteristics (as an example).

According to Figure 1.17, the closer this value is to 1, the more diffusive the transport

calculation is. However, in many cases the flux-limiter is simply an ad-hoc extrapolation

between the diffusive and free-streaming limits, and in all cases the strength of the flux-

limiter depends only on the gradient in the radiation field. To truly diagnose the isotropy

of the radiation flow, and thus make a determination of the applicability of the diffusion

approximation, requires a calculation of the (angularly dependent) specific intensity.

To illustrate, Figure 3.6(b) also shows the spectrally averaged Eddington factor, <

f >, and flux factor, < η >, given by:

< f > =

∫∞
0

E(x, ν)
∫ 1
−1 „2I(x;„;”)d„∫ 1
−1 I(x;„;”)d„

dν
∫∞

0
E(x, ν)dν

(3.2)

< η > =

∫∞
0

E(x, ν)
|∫ 1
−1 „I(x;„;”)d„|∫ 1
−1 I(x;„;”)d„

dν
∫∞

0
E(x, ν)dν

, (3.3)

as calculated by short-characteristics at a time of 14ns. When the radiation field is
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highly isotropic, < f >≈ 1/3 and < η >≈ 0. When the radiation field is anisotropic (i.e.

streaming), < f >≈< η >≈ 1. The figure illustrates that, the radiation field is fairly

isotropic and diffusive near the front of the CH2 plasma, and approaches a free-streaming

limit near the back. This is what one might expect, but is in stark contrast to what is

indicated by the plot of the flux-limiter. The flux-limiter appears to be the strongest (has

the lowest value) at x ≈ 0.08, and then it steadily becomes more diffusive as x increases.

Based off this comparison, it is rather remarkable that flux-limited diffusion can predict

a reasonable solution at all. Looking carefully at the details, it was determined that

the flux-limiter is the strongest where the gradient in the radiation intensity is at its

peak. This is precisely where the streaming term in the transport equation is the most

important, and where it is therefore most important to limit the diffusion coefficient.

Thus, the fact that the general trend in the flux-limiter is incorrect has little effect on

the accuracy of the solution as long as the diffusion coefficient is properly limited at the

position of the wave-front. Of course, there is no guarantee that the flux-limiter will

accurately limit the diffusion coefficient, even where it is most important.

As a check on the validity of the time-independence assumption in the short- charac-

teristics solution, the simulations in Figure 3.6(a) were also conducted for time-independent

flux-limited diffusion. After the first ≈ 100ps, the result was virtually identical to the

time-dependent case suggesting that the dE/dt term in the transport equation is of small

consequence for the time-scales of interest in this problem. This would indicate that short-

characteristics should be applicable, and in lieu of the discussion in Appendix B, should

also be the most accurate. However, Figure 3.6(a) indicates that flux-limited diffusion is

not a bad approximation, and can predict the results of the short-characteristics solution

to within < 20% (in temperature).

—
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All of the studies discussed above are based on simplifications of reality, but serve as an

example of the effect that any one of these considerations can have on the accuracy of a

calculation. One approximation they all share, however, is in the uniformity of the CH2

medium. That is, all the calculations discussed in this thesis (and utilized throughout

the community) assume that the CH2 foam can be accurately modeled as a uniformly

distributed high-density gas. At room temperature, that is a bad assumption. Figure 3.7

shows an SEM image of a 10mg/cc CH foam manufactured at Sandia National Labora-

tories’ Target Fabrication lab [81]. This foam is very similar to the 5mg/cc CH2 foams

studied in this thesis, and has numerous ‘cells’ with diameters ranging from 5 − 20µm.

Clearly, this foam does not have a uniform density. However, as the foam vaporizes, the

differential pressure between the walls of the cells and the void in-between will cause the

gaseous CH2 to fill the gaps. After a sufficient time, the material will reach a pressure

equilibrium and be well approximated by a uniform gas.

The open question is whether or not this happens on a time scale sufficient for the

uniform gas approximation to hold in the experiments of interest for this thesis. If

not, it is unclear what effect the non-homogeneous structure of the foam medium may

have on the radiative transfer. However, if the observables in the experiment are well

chosen, and can be well modeled under these assumptions, then it will at least show that

the inhomogeneity of the CH2 foam is not an important consideration in modeling the

transport.

In the end, each approximation discussed in this section must be understood in the

context of the others for a calculation of the radiative transfer to be a true representa-

tion of reality. Due to the high number of permutations in these approximations, there

may not be a unique combination of them that provides a good solution. In addition,

some may prove to not have an effect that can be resolved in a reasonable experiment.
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Figure 3.7: SEM image of the microscopic structure in a 10mg/cc CH foam. The cells
in this image have diameters ranging from 5− 20µm [81].

The important thing is to identify which approximations provide an adequate solution

of the radiative transfer so that one can have confidence in the calculated distribution

of radiation throughout a CH2 foam. This is best tested through a series of experi-

ments, with well chosen observables, that rely sensitively on any one (or all) of these

approximations.

3.2 Experimental Method

The ideal way to investigate the radiative transfer in a material is to expose it to a

radiation source and measure how long it takes the different frequencies to transit the

sample. The complication is in reaching conditions in the foam that are relevant to

the issues posed in §3.1, verifying those conditions, and then measuring the radiation

transport. At the energy-densities of interest, the CH2 foam is hydrodynamically active,
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creating a complex environment where the radiative processes feed the hydrodynamics

and visa versa. Therefore, isolating individual phenomena is typically not practical, and

measurements of the radiative transfer must be understood in the context of all the

physical processes occurring in the plasma over the course of the experiment. In this

situation, one relies heavily on the calculations to model the dynamic conditions in the

sample, and then make inferences on the radiation transport from the calculational result.

Since the calculations are what we are trying to verify, we need to identify observables in

the experiment that constrain the calculations in as many ways as possible. Preferably,

these observables are sensitive to the time it takes different frequencies of radiation to

transit the sample, so that the constraints on the calculations are directly relevant to the

radiation transport.

The approach taken in this thesis is to constrain the radiation-hydrodynamics calcu-

lations by measuring the temperature and density conditions in tracer layers buried at

known locations in the 5mg/cc CH2 foam. One method for diagnosing these conditions

is to measure the absorption spectrum of radiation passing through the embedded tracer

layers. This is a well established method for measuring the properties of radiatively

heated materials [82–85]. Because different charge-states of an atom absorb different

x-ray wavelengths, spectrally resolving the radiation passing through the tracer provides

a telltale signature of the relative ionization states that existed at the time the spectrum

was observed. The absorption spectrum can then be related to the possible tempera-

tures and densities in the plasma by detailed calculations of the atomic energy levels and

transition probabilities in combination with the local collisional and radiative ionization

rates.

To illustrate, Figure 3.8(a) shows the calculated transmission spectra for an alu-

minum plasma at a range of temperatures and densities assuming a spectral resolu-
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tion of E/∆E ≈ 1000. Each of the features in the spectra correspond to a set of

K-α transitions in aluminum atoms at different charge-states. For example, the fea-

ture at the longest wavelength corresponds to K-α transitions in fluorine-like aluminum

(1s(2)2s(2)2p5 + γ → 1s(1)2s(2)2p(6)), and the feature at the shortest wavelength corre-

sponds to K-α transitions in helium-like aluminum (1s(2) + γ → 1s(1)2p(1)). The relative

depths of these absorption features are proportional to the percent of each ionization

state that exists in the hot plasma.

To better relate the plasma conditions to the charge state, Figure 3.8(b) shows the

relative ionization states as a function of density at each of the temperatures shown in

Figure 3.8(a). As evidenced by the figure, the average ionization state of the atoms

increases (moves toward a higher positive charge) with increasing temperature, and de-

creases with increasing density. Given this information, it is clear that a K-α absorption

spectrum can dictate the relative ionization states in the plasma, which in turn can be

related to the possible combinations of temperature and density at the time the spectrum

was observed.

For the experiments described in this thesis, the tracer layers are composed of very

thin (1000 − 3000Å) foils of aluminum or magnesium-fluoride that are buried in the

5mg/cc CH2 foam. These low-Z materials are used because the atomic physics of each is

well-understood, and the relative ionization states and associated energy level populations

can be calculated in detail. In addition, the opacity structure of these materials is ideal

for coupling to the radiation that is passing through the foam. Figure 3.9 shows EOSOPA

calculated 500 group Planck averaged opacities for CH2 (Te = 50eV, ρ = 5mg/cc), Al

(Te = 35eV, ρ = 10mg/cc), and MgF2 (Te = 35eV, ρ = 10mg/cc). As discussed in §3.1,

the K-shell edge of carbon dictates the penetrating spectrum at the temperatures and

densities that are expected in these experiments. In this situation, the majority of the
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Figure 3.8: (a) EOSOPA calculated Al absorption spectra at densities of 0.001g/cc
(black), 0.01g/cc (red) and 0.1g/cc(blue). (b) Al ionization fractions as a function of
density for the temperatures shown in (a).
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Figure 3.9: EOSOPA calculated group opacities for 5mg/cc CH2 at Te = 50eV (black),
27mg/cc Al at Te = 35eV (red), and 30mg/cc MgF2 at Te = 35eV (blue).

radiation that passes through the foam is in the frequency range just below the K-edge

at ≈ 300eV . Both Al and Mg have an L-shell edge that lies directly in the path of

this penetrating radiation, so that the bound-free heating is sensitive to the radiation

transport through the foam. This opacity structure should make these materials a good

diagnostic for constraining the radiation-hydrodynamics models.

Therefore, the basic experimental method in this thesis is to use the z-pinch radiation

source at Sandia National Laboratory’s Z facility (as described in §1.3.2) to heat the

foam, and then spectrally resolve the high-energy z-pinch radiation that passes through

the sample as a measure of the relative ionization states that existed in the tracers. It

is then up to a radiation-hydrodynamics code to reproduce the density and temperature

conditions in the plasma in order to demonstrate an understanding of the integrated

physics (including the radiative transfer) occurring throughout the experiment.
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3.3 Experiment Geometry

There are a number of complications involved in designing experiments on the Z machine.

The limited number of shots available for dedicated experiments means that careful

planning and detailed modeling must be conducted in order to get the most out of any

single shot. This ‘dedicated’ shot mode is expensive and requires front-line programmatic

priority to attain shot time. The other approach to conducting experiments on the Z

machine is that of a ‘ride-along’ experiment. In this configuration, the experimental

package is placed external to the z-pinch hardware around the perimeter of the primary

hohlraum (see §1.3). Radiation emitted from the pinch can escape through one of the 9

or 18 radiation exit holes (REH) and then be used to drive a sample placed outside the

REH along the primary diagnostic line-of-sight (LOS). As long as the experimenter is

flexible about the z-pinch load which drives the sample, this approach has the advantage

of not requiring dedicated shot time and can be done at lower cost and higher frequency.

Figure 3.10 shows both a schematic of this ride-along experimental set-up and a pic-

ture of such an experiment on Z. There are up to 7 diagnostics that monitor the z-pinch

performance, and up to 2 spectrometers on each sample that measure the observable of

interest. The 7 z-pinch diagnostics [86–89] are a filtered x-ray diode array (XRD), filtered

photo-conducting diamond array (PCD), bolometer, time-integrated crystal spectrome-

ter (TIXTL), PIN-diode based transmission grating spectrometer (TGS), framing x-ray

pinhole camera (FPC), and the Energy-Space-Time (EST) 1-D streaked imager. The

XRD and bolometer are used in conjunction to measure the z-pinch power as a function

of time; the PCD, TIXTL, and grating spectrometer are used to measure the z-pinch

spectrum; and the EST and pinhole camera monitor the z-pinch radius at early and

late times respectively. The spectrometers that measure the observables in each sam-
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Figure 3.10: Top-view schematic and photograph of the fielding geometry for ‘ride-
along’ experiments on Sandia National Laboratory’s Z machine.
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ple are either a time- and space-resolved elliptical crystal spectrometer (TREX), or a

time-integrated, space-resolved convex crystal spectrometer (TIXTL) (see Appendix A).

When all fielded on a single shot, these diagnostics provide a comprehensive measurement

of the z-pinch dynamics, and the details of the observable to be measured in the sample.

This experiment configuration has a number of advantages over similar experiments

at other high-energy-density facilities (such as laser driven hohlraums). Because there

are typically ≥ 9 radiation exit holes in the z-pinch primary, a number of samples can be

tested on a single shot. In addition, the rather large size of the z-pinch diode allows for

the use of cm-scale samples, or even multiple samples on a single REH. This large scale

size allows for samples to be apertured far from the edges such that the hydrodynamics

can be well-modeled in 1-D. Finally, the z-pinch radiation spectra has a wide distribution

of photon energies which can both heat and backlight a sample placed outside the REH.

3.3.1 The Z-pinch Backlighter

Figure 3.11 shows the measured z-pinch spectrum at peak power from an experiment on

Z [90]. This spectrum consists of a thermal component (Tr ≈ 160eV ), along with a high-

energy non-thermal ‘tail’ that contains ≈ 10% of the radiated power in the energy range

1keV < hν < 6keV . The portion of the spectrum with an energy < 1keV can be thought

of as the ‘heater’, while the portion > 1keV acts as a backlighter. Figure 3.12(a) shows a

time-integrated spectrum of a tungsten z-pinch on Z in the spectral range 4Å ≤ λ ≤ 14Å.

There are a number of features in this spectrum that are of particular interest. To help

identify a few of these, a 160eV blackbody spectrum (scaled by 5 × 10−11cm2s) and an

example cross-section of a tungsten plasma are also shown in the figure. The cross-section

curve was calculated using a relativistic UTA model for a tungsten plasma at LTE with

various temperature and density gradients. These cross-sections are shown because they
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Figure 3.11: Example spectrum recorded at peak power on Z. The data was taken by
the XRDs (blue lines), TGS (green symbols), and PCDs (red lines). The ‘heater’, below
≈ 1000eV , is best fit by a blackbody spectrum at 162 ± 7eV (green lines), while the
backlighter is best fit by an exponential curve of the form (8.7±4.1) exp [−E/(619± 55)]
(red lines) [90].

can be related to the emission intensity of a bound-bound transition. As labeled on the

figure, the obvious emission features are attributed to 4 M-shell unresolved transition

arrays (UTAs). The position and relative strengths of these features are very sensitive to

temperature and density. As an example of this sensitivity, Figure 3.12(b) shows line-

outs of a few different axial locations in a time-integrated, space-resolved spectrum taken

on Z. Note that there are significant differences in the relative amplitudes and spectral

positions of the bound-bound emission features, but the shape of the ‘continuum’ above

≈ 7.5Å is fairly consistent. The differences in the tungsten M-shell features are believed

to be due to hot spots distributed along the length of the z-pinch.

To further investigate issues associated with the consistency of the backlighter spec-

trum, Figure 3.13(a) and (b) show time-integrated spectra of a tungsten z-pinch taken
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Figure 3.12: (a) Time integrated tungsten z-pinch spectrum (black), JATBASE cal-
culated UTA total cross-section for a tungsten plasma with temperature and density
gradients (red), and a planckian spectrum at a radiation temperature of 160eV . (b)
Time-integrated spectrum recorded on Z for 3 different axial positions along a tungsten
z-pinch.
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Figure 3.13: (a) Time-integrated spectra of tungsten z-pinches from 2 different shots
on Z. (b) Time-integrated spectra of a tungsten z-pinch as seen through 3 different
lines-of-sight on Z.
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from multiple shots and multiple lines-of-sight on Zb. The shape of the continuum is

quite consistent even between shots, but there are noticeable differences in the primary

tungsten UTA features. These dynamics make the shape and position of the tungsten

bound-bound emission features difficult to predict, but provide some level of confidence

in the consistency of the continuum.

It is therefore not recommended that the tungsten z-pinch backlighter be used in

the range < 7.5Å unless the backlighter structure can be reasonably determined directly

from the spectrum of interest. When this is not the case, the most smooth part of the

backlighter is typically in the range 8.5Å < λ < 10.5Å, which makes it ideal for the

measurement of K-α absorption in Mg (9.169Å ≤ λ ≤ 9.887Å). The spectral range from

7.5−8.5Å is in the region where the backlighter intensity transitions from the continuum

to the bound-bound emission. The source of the large dip in the intensity through this

region is not understood, but is somewhat consistent between lines of sight, along the

length of the z-pinch, and on a shot-to-shot basis. Thus, if one is interested in a spectrum

of the Al K-α complex (7.757Å ≤ λ ≤ 8.338Å), it is important to make sure that the

continuum is either measured, or can be well-fit.

bEach spectrum was recorded on a z-pinch with the dynamic hohlraum geometry as discussed in
§1.3.2.
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Chapter 4

Experiment Modeling

As shown in Chapter 2 and discussed in the considerations for the experiment design in

Chapter 3, understanding the data from integrated experiments at high energy density

requires detailed computer modeling of nearly every physical process. In many cases,

these models must include calculations of the time-, frequency-, and spatial-dependence

of the radiation source (i.e. the driver); a calculation of the radiation propagation and

associated hydrodynamic response in the experimental sample; and a post-processing

calculation of the rad-hydro data to simulate the observable in the experimental data. In

the most extreme cases, these calculations must be combined into one integrated simu-

lation (on a very sophisticated multi-dimensional computer code) in order to account for

important details of the dynamic conditions in the experiment. In many other instances,

one can utilize a combination of simulations, each specialized to calculate a particular

aspect of the experiment, and piece together a synthetic data set to be compared to the

experimental results. This is the approach taken in this thesis.

A flow-diagram of the calculational method used to model a ride-along experiment

on Z is shown in Figure 4.1. There are three primary steps: First, the data on the
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z-pinch performance is incorporated in a 3-D view-factor simulation to determine the

time-dependent radiation spectra on the experimental sample. This calculation must rep-

resent the experimental geometry, which usually includes the z-pinch, primary hohlraum,

upper anode, and the experimental sample. In this model, the albedos of each surface

are determined by 1-D rad-hydro simulations of the plasma re-emission driven by the

view-factor modeled incident drive spectra. Since the albedo calculation depends on the

assumed albedo in the view-factor simulation, this process is iterated until the resulting

power at the surface of the sample converges at every time-step. Second, the view-factor

modeled drive spectra at the sample surface are input into a 1-D rad-hydro simulation

of the sample dynamics. This simulation provides the time-dependent temperature and

density conditions inside the tracer layer buried in the experimental sample, and can be

calculated for any choice of radiation transport, material opacity, and equation-of-state.

Once the conditions in the sample have been computed, the accuracy of the calcula-

tions can be evaluated in two different ways. One method is to compute the absorption

spectra directly from the calculated tracer conditions. In these calculations, the time-

dependent temperature and density conditions from the rad-hydro model are input into

a detailed configuration analysis (DCA) calculation of the atomic ionization and energy

level distributions in the tracer layer. Folding in the spectral resolution of the diagnos-

tic with the DCA modeled frequency-dependent opacities provides simulated absorption

spectra that can be compared directly to the experimental data. The other method

for evaluating the accuracy of the rad-hydro models comes from a statistical compar-

ison between experimental and calculated absorption spectra. In this method, the χ2

goodness-of-fit is computed between the experimental data and DCA point calculations

of the absorption spectra over a range of temperatures and densities. This analysis pro-

vides a statistical range of tracer conditions that most accurately describe the measured
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Figure 4.1: Flow-diagram of the computational method used to analyze ride-along
experiments in this thesis.
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spectra, which can then be compared to the calculated tracer conditions in an accurate,

consistent, and unbiased way.

The computer codes that are utilized to conduct the simulations in this thesis are:

VISRAD [92], a 3-D view-factor code for calculating the spatial and spectral dependence

of a radiation source in complex geometry; BUCKY [11], a 1-D radiation hydrodynamics

code; EOSOPA [91] and PROPACEOS [93], two codes for computing the opacities of

high-temperature plasmas with detailed atomic models; SPECT3D [94], a code for com-

puting the detailed spectral properties of multi-dimensional plasmas; and SPECTROFIT,

a new code developed to conduct automated chi-squared analysis between experimental

and calculated spectra. These codes, and the sensitivity of the calculated solutions on

their various options and input parameters, will be discussed in detail in §4.1 - §4.5.

4.1 VISRAD

One of the primary difficulties in simulating the radiation-hydrodynamics processes of a

complex experiment is in determining the boundary condition on the sample surface. In

any kind of experiment that drives a sample by indirect radiation, it is important to know

the distribution of radiation sources that fall within that sample’s field-of-view. This is

particularly true if there is not a well-defined localized source. In fast z-pinches, this

complication is associated with the albedo re-emission of the high-Z power flow surfaces

that are in close proximity to the intense z-pinch. Clearly, if these surfaces fall within

the field-of-view of the sample, then the radiation spectra that drives the sample will

contain contributions from multiple sources (with multiple temperatures). It is therefore

necessary to calculate the space- and time-dependent spectra of the radiation that drives

the sample, with careful consideration of the contributions from every hot surface. This
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can be done with a 3-D view factor calculation such as that in VISRAD [92], a 3-D view

factor code developed at Prism Computational Sciences.

VISRAD conducts a power balance by solving the radiosity equation:

Bi − αi

∑
j

ΓjiBj = Ei, (4.1)

where Bi is the flux emitted by surface i, αi is the albedo of surface i, Γji is the fraction of

energy leaving surface j that reaches i, and Ei is the power emitted from i due to external

sources. The user builds a 3-D grid of surface elements composed of planes, cylinders,

and spheres, and assigns an albedo and source power to every element. VISRAD then

solves Eq. 4.1 at every element, i, for the incident radiation that arrives from every other

element, j. The geometric attenuation and additional considerations for the field-of-view

(whether or not an obstruction exists in the straight-line path between j and i) is incorpo-

rated in the coefficient Γji. Finally, assuming that each surface element emits its radiation

intensity, Bi, in a black body distribution, then the VISRAD calculations will combine

the individual spectrum from each element i to determine the total spectrum incident on

any surface in the grid. Therefore, if the time- and space-dependent power sources are

known (the z-pinch radius and power), and the albedos of the surface elements have been

previously calculated, then a separate view factor calculation can be conducted at every

time in the simulation to obtain a time-dependent radiation spectrum at any surface

element in the grid. These data can then be input as a time- and frequency-dependent

radiation boundary condition in a radiation-hydrodynamics calculation of the sample

response for the purpose of designing future experiments, or comparing a calculational

model to existing experimental data.

—

In applying any computational method to model an experimental result, it is important to
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(a) (b)

Figure 4.2: (a) Example 3-D VISRAD grid for modeling a ride-along experiment at
Sandia’s Z facility. (b) VISRAD modeled emission temperatures for a z-pinch tempera-
ture of Tr = 216eV .

study the sensitivity of the model on those parameters that are either unknown or contain

significant uncertainties. In §3.1, the radiation transport model of the experiments in

this thesis was shown to be sensitive to the radiation drive spectra. As explained above,

the approach taken in this thesis is to model these drive spectra in VISRAD for the

experiment geometry described in §3.3. Figure 4.2(a) shows an example 3-D grid used

in VISRAD to model a standard ride-along experiment on Z. As seen in the figure, the

sample’s field-of-view includes a portion of both the z-pinch and the diode hardware. Each

of these surfaces is given a characteristic power source and/or albedo, so that the sample is

exposed to radiation from multiple sources that emit over a range of temperatures. In this

situation, the degree of uncertainty in the radiation drive spectra depends on the degree

of uncertainty in the power sources and albedos. As described in §3.3, the time-dependent

z-pinch power is measured on Z by the XRDs and bolometers (20% uncertainty), and the
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z-pinch radii are measured by a combination of pinhole and streak cameras (10 − 20%

uncertainty). However, the albedos of each surface are calculated based on the incident

radiation spectra and therefore contain an unknown level of uncertainty.

To investigate the effects that each of these uncertainties has on the sample drive, a

sensitivity study was conducted where the drive spectra was calculated in VISRAD as a

function of the variation in each individual parameter. Figure 4.2(b) shows the calculated

emission temperatures of the surfaces in the example VISRAD grid in Figure 4.2(a). In

this calculation, the sample is placed at a radial distance of 4.3cm from the z axis and

centered at a height of 1.219cm above the anode surface. The z-pinch is 1.2cm tall with

a radius of 0.06cm, and is radiating at a power of 101TW (Tr ≈ 216eV ). The primary

hohlraum wall is at a radius of 2.5cm and is given an albedo of 0.694. The z-pinch

glide-planes (inside top and bottom of the hohlraum) are given an albedo of 0.724, and

the outer anode (surface outside the hohlraum) is given an albedo of 0.449. Figure 4.3

shows the total spectrum incident on the sample surface for this calculation, and the

contribution to that spectrum from the major surfaces in the grid. The average energy

of the total spectrum is 666eV compared to the average energy of the z-pinch, which is

828eV , and the average energy of the flux-equivalent 52eV blackbody, which is 199eV .

Also shown in Figure 4.3 is a pie chart of the percent contribution of each surface to the

total flux on the sample. As one might expect, the pinch makes up the dominant fraction

of the drive spectrum, but a considerable 30% comes from the other surfaces.

To illustrate the effect that the uncertainties in each of these contributions has on

the drive spectrum, Figure 4.4 shows the results of a sensitivity study where the z-pinch

power, z-pinch radius, and the albedo of each surface is independently varied by ±20%.

Figure 4.4(a) shows the percent variation in the total drive flux, and Figure 4.4(b) shows

the percent variation in the average energy of the drive spectrum. It is clear from both
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Figure 4.3: Total incident radiation spectrum (black) on the surface of the experimental
sample. This spectrum is a convolution of spectra from the z-pinch (red), lower glide
plane (green), hohlraum wall (blue), and outer anode (purple). The pie chart shows the
fraction of the total spectrum from each surface in the VISRAD calculation.

figures that the uncertainty of the z-pinch power is the dominant source of uncertainty

in the drive spectrum. There is a nearly one-to-one relationship in the uncertainty of

the drive flux to the uncertainty in the z-pinch power, but the maximum change in the

average spectral energy is only ≈ 5% (which is not that surprising since Tr ∼ I
1=4
0 ).

The exact fractions of the total drive spectrum from each surface, and the exact

sensitivity of that spectrum on variations in the parameters of these surfaces is different at

each time-step and for different diode geometries. However, calculations suggest that the

final results are similar to that in the example described above. Thus, the most important

component in the view-factor calculation is the time-dependent radiation power of the

z-pinch, which makes it the most important parameter to directly measure on every

experiment with the highest possible degree of accuracy.
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Figure 4.4: Percent variation in the (a) drive flux and (b) average spectral energy
versus the percent variation in the z-pinch power (black), z-pinch radius (red), glide-
plane albedo (green), hohlraum wall albedo (blue), and anode albedo (purple).

4.2 BUCKY

As discussed in §1.2, the radiation power-density required for ICF is very high. This

high radiation flux rapidly heats the sample material causing hydrodynamic motion that

changes the sample conditions and effects the radiative transfer. Thus, simulating the

sample response at high radiation powers requires integrated calculations of the radiation-

hydrodynamics processes within the experimental sample. These types of calculations

can be conducted with BUCKY, a 1-D radiation-hydrodynamics code developed at the

University of Wisconsin Fusion Technology Institute [11].

BUCKY essentially solves 4 + n coupled partial differential equations in Lagrangian

coordinates (for n the number of frequency groups in the multi-group radiation transport

calculation). These are:

• Mass Conservation:

∂V

∂t
=

∂

∂m

(
r–−1u

)
, (4.2)
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where V is the specific volume (1/ρ), u is the fluid velocity, r is the position of the

Lagrangian fluid particle, m is the Lagrangian mass, and δ is a coefficient which

depends on the coordinate system (= 1 for planer, 2 for cylindrical, and 3 for spher-

ical coordinates).

• Momentum Conservation:

∂u

∂t
= −r–−1 ∂

∂m
(Pe + Pi + Pr + q) + u̇T N , (4.3)

where Pe, Pi, and Pr are the electron, ion, and radiation pressures, q is the Von

Neumann artificial viscosity (to prevent discontinuities across shock fronts), and

u̇T N is the change in velocity due to the slowing of non-thermal particles (typically

fusion reaction products).

• Energy Conservation:

cve

∂Te

∂t
=

∂

∂m

(
r–−1κe

∂Te

∂r

)
− ωc(Te − Ti)−

[
∂εe

∂V
+ Pe

]
∂V

∂t
− A + J + Se (4.4)

cvi

∂Ti

∂t
=

∂

∂m

(
r–−1κi

∂Ti

∂r

)
− ωc(Te − Ti)−

[
∂εi

∂V
+ Pi

]
∂V

∂t
− q

∂V

∂t
+ Si, (4.5)

where T is the temperature, cv is the specific heat capacity, κ is the conductivity,

ωc is the electron-ion collision rate, ε is the specific energy, A is the radiative heat-

ing, J is the radiative cooling, S is the contribution from external sources, and the

subscripts e and i refer to electrons and ions respectively.

• Radiation Transport: Multi-group radiation transport is computed using a choice

of flux-limited diffusion or multi-angle short characteristics (see Appendix B).
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As indicated by the energy conservation equations, BUCKY can calculate the transfer

of energy in a plasma where electrons and ions are not in thermal equilibrium. In this

mode, ions and electrons are assumed to have Maxwellian distributions characterized by

their individual temperatures, and thermal conduction is controlled using the Spitzer

conductivity of each species (flux-limited for electrons) coupled by a thermal relaxation

term. The electron and ion pressure terms in the energy and momentum conservation

equations are determined from tabulated equation of state data typically taken from the

Sesame equation of state tables. The radiative heating, radiative cooling, and the radia-

tion pressure terms are calculated from the radiation energy density which is computed

by one of the radiation transport equations. These rates, and the radiation transport

model, utilize Rosseland and Planck averaged multi-group opacities that are typically

generated by the EOSOPA or PROPACEOS codes. Finally, energy deposition from ex-

ternal sources is calculated for a user-supplied time history of ion beam (or target debris)

energy, laser beam energy, x-ray energy, and/or neutron and charged particle energy from

thermonuclear reactions.

One of the primary features of BUCKY, which sets it apart from many other radiation-

hydrodynamics codes, is the ability to simulate the thermonuclear burn in a hot, dense

plasma. The fusion burn equations calculate the reaction rates for DT , DD, and D 3He

fusion reactions and deposit the fusion energy through a radial escape probability model

(for neutrons) or a time-, energy-, and species-dependent stopping power model (for

ions). An example of the integrated fusion burn calculation for a BUCKY modeled ICF

capsule is shown in §1.2. Thus, BUCKY can be used to not only design experiments

on present day laboratory-scale plasmas (as is done in this thesis), but also to design

baseline ignition and reactor scale ICF targets.
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4.2.1 Radiation Transport Issues in BUCKY

As inferred from the discussion above, there are number of different physical models

available in BUCKY, each of which has adjustable parameters or utilizes information

drawn from a variety of different data tables. This mostly includes models used for the

equation-of-state, opacity, and radiation transport. The effect of multiple variations in

the latter two were discussed in detail in describing the motive for this thesis in §3.1,

and it will be shown in Chapter 6 that the various equation-of-state models have very

little effect on the calculated results. However, before drawing any conclusions on the

differences in the calculations associated with different physical models, it is important

to verify that those models are properly implemented.

In the process of analyzing the experiments described in Chapter 6, it was discovered

that, in every case, flux-limited diffusion in BUCKY was predicting radiative trans-

fer speeds that were slower than indicated by the data. As an example of this, Fig-

ure 4.5(a) shows measurements of the temperature in tracers at two separate locations in

a 5mg/cc CH2 foam, and that calculated by flux-limited diffusion using the SUM limiter

in BUCKY. This difference was first attributed to inadequacies in the approximations

of the diffusion equation, and the ad-hoc nature of the flux-limiter. However, further

investigation into the BUCKY calculations suggested that there were instead some inad-

equacies in the implementation of the boundary conditions and flux-limiters.

To illustrate how this understanding came about, Figure 4.5(b)-(d) show comparisons

between BUCKY diffusion calculations and some analytic solutions derived by Su and

Olson (see §B.5). Figure 4.5(b) is a comparison of diffusion (no flux-limiter) to the

Marshak wave problem for a semi-infinite slab [98] at 3 different times. At each time, the

BUCKY solution predicts a slower radiation flow in comparison to the analytic solutions.
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Figure 4.5: Comparison between BUCKY calculations using the original implementa-
tion of flux-limited diffusion and; (a) experimental electron temperatures, (b) the analytic
Marshak wave solution, (c) the diffusion solution to the Su and Olson finite source prob-
lem, (d) the transport solution to the finite source problem. All analytic or experimental
data points are plotted as symbols.
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Figure 4.5(c) is a comparison of diffusion to the problem of a time-dependent finite source

in an infinite slab [99]. In this case, the BUCKY solutions accurately reproduce those for

analytic diffusion. The only functional difference between these two calculations is the

existence of the boundary in the Marshak wave problem. This suggested an inadequacy

in the implementation of the diffusion boundary conditions. In addition, Figure 4.5(d)

shows a comparison between flux-limited diffusion in BUCKY (SUM limiter) and an

analytic solution to true transport for the problem of a time-dependent finite source in

an infinite slab. In this case, the BUCKY flux-limited solution does not approximate

the transport solution very well, even though the diffusion solutions were quite similar.

This suggested that either flux-limited diffusion is not a good approximation under the

conditions in this problem, or there were inadequacies in the implementation of the flux-

limiter in BUCKY.

Appendix B describes a complete verification suite that was designed to test each

component of both the flux-limited diffusion and short-characteristics finite difference

equations as implemented in BUCKY. Through these tests, the diffusion equations in

BUCKY were re-implemented with a more careful treatment of the boundary conditions,

and a consistent implementation of the flux-limiter. Figure 4.6(a)-(d) show the same

comparisons as in Figure 4.5(a)-(d), only with the new implementation of flux-limited

diffusion. As evidenced in Figure 4.6(c), the new flux-limited diffusion solutions still

reproduce the Su and Olson result in an infinite medium, but Figure 4.6(b) shows that

it now also closely follows the solutions to the Marshak wave problem. In addition, Fig-

ure 4.6(d) illustrates the better comparison between the Su and Olson transport solution

in an infinite medium, and that calculated by the new implementation of flux-limited

diffusion in BUCKY (SUM limiter). Finally, Figure 4.6(a) shows how the combination of

these improvements leads to a much better agreement between the flux-limited diffusion
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Figure 4.6: Comparison between BUCKY calculations using the new implementation
of flux-limited diffusion and; (a) experimental electron temperatures, (b) the analytic
Marshak wave solution, (c) the diffusion solution to the Su and Olson finite source prob-
lem, (d) the transport solution to the finite source problem. All analytic or experimental
data points are plotted as symbols. In contrast to Figure 4.5(a)-(d), these figures show
the increased accuracy with the new implementation of flux-limited diffusion.
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solution in the rad-hydro simulation of the CH2 foam experiment than that shown in

Figure 4.5(a).

As described in detail in Appendix B, the new implementation of flux-limited diffu-

sion and short-characteristics in BUCKY were determined to be accurate, and therefore

provide a high level of confidence in the radiation transport portion of the BUCKY

simulations.

4.3 EOSOPA and PROPACEOS

When the details of the radiation transport are important, the radiation-hydrodynamics

models must include high-quality multi-group plasma opacity data across the entire range

of temperature and density conditions in the simulation. Depending on the conditions of

the plasma, as well as the atomic number of the elements or mixtures being simulated,

there are a number of different methods that can be applied to calculate the atomic

cross-section data and charge state population distributions that ultimately determine

the plasma opacities. For the simulations described in this thesis, these opacities are

calculated with either EOSOPA [91]a, a code developed at the University of Wisconsin

Fusion Technology Institute, or PROPACEOS [93], a code developed at Prism Compu-

tational Sciences. These codes determine, among other things, the opacity of a given

element or mixture based on the charge-state populations of the ions in the plasma.

That is, each solves the self-similar rate equation for the change in charge-state popula-

tion densities due to collisional and photo-absorption/emission processes of the form:

∂
−→
f (n, t)

∂T
=
←→
A
−→
f (n, t), (4.6)

a Because multiple versions of EOSOPA exist in the community, it is noted that the version discussed
in this thesis is that which is contained in JATBASE [100], a PC application which wraps together
EOSOPA, UTAOPA, and RSSUTA.
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where
−→
f (n, t) is the array of fractional charge-state populations (the population vector)

as a function of density and temperature, and
←→
A is the rate matrix as determined by

the particular plasma model applied.

The terms in Eq. 4.6 depend on the state of the plasma, the energy distribution of

the photon field in the plasma, and the atomic cross-sections as a function of photon

energy. The state of the plasma is divided into three regimes within EOSOPA and

PROPACEOS. For dense plasmas, where the electrons and ions have equivalent energy

distributions, the plasma is considered to be in local thermodynamic equilibrium (LTE),

and the charge-state populations, Nz, are given by the familiar Saha equation:

Nz+1

Nz

= 2

(
2πmekT

h2

)3=2

N−1
e

∑
m g

(z+1)
m exp −†m−†0

kT∑
m′ g

(z+1)
m′ exp

−†m′−†0
kT

e−'z=kT , (4.7)

where εm and gm are the energy and gaunt factor of level m, and Φz is the ionization

potential of charge state z. For very low density and optically thin plasmas, the plasma

is assumed to be in coronal equilibrium (CE) where the rate of ionization, Iz;z+1, is

approximately equal to the rate of recombination, Rz+1;z. In particular, the dominant

processes are assumed to be electron impact ionization and radiative recombination such

that, in CE, the charge-state populations are calculated by equating these two rates as

a function of density and temperature in the plasma in the form:

Nz+1

Nz

=
Iz;z+1(Te, ne)

Rz+1;z(Te, ne)
. (4.8)

At intermediate densities and optical depths, EOSOPA and PROPACEOS assume a colli-

sional radiative equilibrium (CRE) where the photon field is assumed to be approximately

black-body, the free electrons are assumed to have a Maxwellian distribution, and the

coupled system is assumed to be in a steady state. In this case, the charge-state popula-

tions are determined by equating the sum over the various atomic ionization/excitation

rate coefficients to their corresponding inverse processes (i.e. recombination).
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Once the charge-state populations (Nz) are known at each density and temperature,

then the total opacities are calculated from a weighted combination of the atomic cross-

sections for the various energy bins in the multi-group frequency structure. In this way,

not only are EOSOPA and PROPACEOS data dependent on the particular plasma model

applied in the calculation, but also on the atomic physics model applied to generate the

atomic cross-sections. These cross-sections are determined by ATBASE [95], a code also

developed at the University of Wisconsin Fusion Technology Institute.

ATBASE solves the different energy levels available to a given atom by determin-

ing the eigenfunctions and eigenvalues of the Schrödinger equation through either the

Hartree-Fock approximation, or the local potential approximation of the electron wave

functions. In the latter, ATBASE contains four possible functional forms for the local

potential; the Hartree (H) potential, the Hartree-Slater (HS) potential, the Hartree-Fock-

Slater (HFS) potential, and the Hartree-Plus-Statistical-Exchange (HX) potential. Once

the possible energy levels have been determined, the set of possible atomic transitions

and their associated oscillator strengths can be determined by either detailed term ac-

counting (DTA) or the unresolved transition array (UTA) method. Thus, there is great

flexibility in the methods by which to calculate the various atomic cross-sections. One

notable limitation in the current version of ATBASE is the inability to compute the

collisional and recombination rate coefficients under the UTA method. This limits the

UTA method to only the LTE approximation. Since this limitation does not exist under

the DTA method, the opacities calculated for non-LTE plasmas are done using detailed

term accounting.

To this point, EOSOPA and PROPACEOS have been described as containing the

same physics, and the primary equations in each code are essentially the same. There are,

however, a few important differences. First, the occupational probabilities in EOSOPA
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are calculated at LTE using the Boltzmann statistical partition function over all plasma

conditions. This can cause inaccuracies in the number of free electrons at low tempera-

tures and high densities (near cold solid conditions), which in turn can lead to inaccuracies

in the free-free opacities at low photon energies. In PROPACEOS, this has been ‘fixed’

by assuming the Hummer-Mihalas partition function [97], which contains some correc-

tions for long-range bonding forces that effectively reduce the number of free electrons.

Second, EOSOPA assumes a fit to the Hartree-Fock calculations around bound-free edges

in the opacity, which occasionally do not accurately reproduce the calculations. To avoid

this, PROPACEOS utilizes tabulated data points of the Hartree-Fock calculations that

are produced by ATBASE at photon energies within a factor of 100 times the threshold

energy. Third, EOSOPA uses a semi-empirical procedure to calculate the stark broaden-

ing of bound-bound transitions, while PROPACEOS uses a fit to quantum mechanical

calculations of the broadening for individual configurations.

In all, these differences are rather minor, but can have a noticeable effect on the

calculated opacity. As an example, Figure 4.7(a) shows EOSOPA and PROPACEOS

calculated 500 group Planck opacities of an aluminum plasma at 1.0g/cc and 1.0eV .

The K-edge (≈ 1500eV ) and L-edge opacities (≈ 300eV ) have very similar shapes, but

differ by a factor of ≈ 10 in amplitude. Additionally, the entire shape of the opacities at

energies < 50eV are noticeably different. However, this calculation is in the region where

all the differences listed above are most pronounced. Figure 4.7(b) shows EOSOPA and

PROPACEOS calculated Planck opacities of an aluminum plasma at 0.01g/cc and 50eV .

In this case, the calculations are almost identical.

In the end, EOSOPA and PROPACEOS generate: the mean charge-state of the

plasma, z; the Rosseland mean group opacity, σR; the Planck mean emission group

opacity, σp;e; and the Plank mean absorption group opacity, σp;a. These data are then read
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Figure 4.7: Planck absorption opacities in aluminum as calculated by EOSOPA (black)
and PROPACEOS (red) for (a) 1.0 eV and 1.0 g/cc (b) 50 eV and 0.01 g/cc.

into the BUCKY radiation-hydrodynamics code (see §4.2) and the SPECT3D collisional-

radiative post-processing code (see §4.4) as part of the equations for computing the

radiative transfer rates.

4.4 SPECT3D

Once a complete radiation-hydrodynamics calculation of a particular experiment has

been conducted, it is necessary to post-process the computational data for comparison

to the information provided by the experimental diagnostics. If the primary diagnostic

on the experiment is a spectrometer, then the temperature and density data from the

computation must be converted into emission or absorption spectra at the diagnostic

location. One computer code that can be applied to calculate this detailed spectra

is SPECT3D [94], a system of codes developed by Prism Computational Sciences to

simulate the spectral and radiative properties of multi-dimensional plasmas.

There are essentially two different components to a SPECT3D calculation. The first is
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a definition of the atomic model, which is compiled from data generated by the ATBASE

atomic data code (see §4.3). Contained in the ATBASE data files are the collisional

and radiative cross section data for the large number of energy levels needed to compute

the level populations and the associated detailed emission or absorption spectra. The

user can individually specify which atomic energy levels are considered in the model so

as to minimize the computation time while maintaining the spectral details of interest.

The second component in a SPECT3D calculation is the actual computation of the

absorption or emission spectra along the line-of-sight of the diagnostic. There are a

few different opacity models that can be used for this calculation. These are; (1) a

multi-group table look-up, (2) a local thermodynamic equilibrium (LTE) approximation,

and (3) a collisional-radiative (C-R) approximation including either no photo-processes,

photo-excitation with a local escape probability model, or photo-excitation and photo-

ionization calculated from non-local radiation.

Once these specifications have been defined, SPECT3D conducts a detailed configu-

ration analysis (DCA) of the sample plasma to determine the populations of the various

ionization-states and energy levels. This is then used to calculate the absorption of

the backlighter radiation in combination with the total radiation emission from the hot

plasma to produce a detailed spectrum emerging from the sample. In this way, SPECT3D

provides a means for post-processing BUCKY rad-hydro data that can be directly com-

pared to experimentally observed spectra.

—

As described above, there are various approximations available in SPECT3D for mod-

eling the detailed radiation-transport and ionization balance in the calculation of the

simulated absorption spectra. It is therefore necessary to determine which is most suited

to model the conditions in the tracer layers described in Chapter 3. To help investi-
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Figure 4.8: (a) SPECT3D calculated absorption spectrum for DCA populations cal-
culated assuming; LTE (black), C-R assuming only collisional processes (red), C-R as-
suming a local blackbody radiation spectrum with a radiation escape probability model
and no photo-ionization (green), and C-R assuming non-local radiation transported from
everywhere in the sample and the backlighter (blue). (b) Electron temperature (solid)
and ion density (dotted) profiles used for the calculations in (a). The sample consists of
a 1500Å layer of aluminum on a 5000Å CH substrate tamped on either side by 0.85mm
of 5mg/cc CH2 foam.

gate this, Figure 4.8(a) shows SPECT3D calculated absorption spectra in aluminum for

4 different combinations of approximations. These approximations are; LTE, C-R as-

suming only collisional processes, C-R assuming a local blackbody radiation spectrum

with a radiation escape probability model and no photo-ionization, and C-R assuming

non-local radiation transported from everywhere in the sample and the backlighter. The

electron temperature and ion density profiles that were used for the calculations are

shown in Figure 4.8(b)b. This sample consists of a 0.15µm aluminum tracer backed by

a 0.5µm CH layer that is tamped on either side by 0.83mm of 5mg/cc CH2 foam. As

seen in Figure 4.8(a), all approximations predict very similar absorption spectra. The

largest deviation from the average case is in the C-R modeled spectrum assuming only

bThe sample conditions in Figure 4.8(b) are typical of the conditions that may exist in a foam sample
as described in Chapter 6
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collisional processes. In this case, the calculation predicts the lowest average charge

state, which shows up as a decrease in the absorption of the carbon-like K-α feature.

This is not entirely surprising since this particular model does not include the effects of

photo-ionization, which would tend to increase the average ionization state. The most

complete model is the C-R calculation including photo-excitation and photo-ionization

from non-local radiation. The average ionization state and resulting absorption spectrum

from this calculation are very similar to the simple case assuming LTE. The largest dif-

ference between these two models is in the amount of time it takes the computer to do

the calculation. The LTE case takes a few minutes, the C-R case with non-local radiation

takes a few hours.

It is therefore concluded that, for sample conditions similar to that in Figure 4.8(b),

an LTE approximation is adequate and by far the most efficient.

4.5 SPECTROFIT

Without regard to any of the simulations discussed in §4.1-§4.4, once an experimental

spectrum has been corrected for the film and spectrometer response (see Appendix A),

it can be directly compared to atomic/plasma calculations of the spectral features. As

discussed in §3.2, the charge-state distribution in a plasma is a function of both the

temperature and density. Once an experimental spectrum has been properly processed,

it is a diagnostic of the possible temperature and density combinations that existed in

the plasma at the time the spectrum was observed.

SPECTROFIT is a code that was developed to directly compare experimental absorp-

tion spectra to atomic/plasma calculations. In order to provide a quantitative analysis,

the code calculates chi-squared values of the goodness-of-fit over a range of temperatures
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and densities. This calculation can then be processed to provide the best-fit and +1σ con-

tours across the chi-squared topography in order to identify the most likely combinations

of temperature and density in the plasma.

In SPECTROFIT, the model spectra are taken from tables of detailed frequency

dependent opacities, σ” , that are calculated by EOSOPA or SPECT3D. These opacities

are given in units of cm2/g, so that the absolute transmission, T ′
a, is calculated as:

T ′
a(ν) = e−¾νA, (4.9)

where A is the areal density of the plasma (in g/cm2). This must then be convoluted

with the spectral resolution, ∆ν, of the experimental data by the relation:

Ta(ν) = F−1
{F{T ′

a(ν)} × F{G(ν)}}, (4.10)

where F denotes the Fourier transform, and G(ν) is the Gaussian distribution function

given by:

G(ν) = exp[−4 ln(2)(ν/∆ν)2]. (4.11)

Thus, to do a chi-squared comparison between the data and the calculations, the user

must specify the areal density of the experimental plasma as well as the resolution of the

spectrometer.

Before one can make this comparison, the experimental and model spectra must each

be put on a common axis. As discussed in Appendix A, once the data has been corrected

for the film and spectrometer response, the spectral amplitudes are given in J/sr/A.

This is not very useful for comparing to the models because the plasma opacity calcula-

tions typically have no knowledge of the backlighter source intensity. If the backlighter

spectrum is measured on the experiment, then the experimental data can be divided by

the backlighter continuum to give an absolute transmission spectrum. This is the ideal
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form of the data for a quantitative analysis since the absolute transmission can be readily

determined from the calculated opacities. Unfortunately, experimentally obtaining both

backlighter and absorption spectra is not always feasible. In these cases, both the data

and the calculations need to be converted to relative transmission spectra. This conver-

sion is accomplished by removing the absorption features from the spectrum, filtering the

’continuum’, and dividing the spectrum by the result. However, obtaining the calculated

relative transmission spectra over a range of temperatures and densities can be rather

tricky. Since the charge-states change with the temperature and density, the location of

the absorption features also change. Therefore, a different continuum must be defined

for every combination of temperature and density. It is not practical for the user to do

this by hand across the entire range of the calculation. To account for this, the user

must specify wavelength ranges over which the chi-squared comparison will be done. At

each temperature and density in the SPECTROFIT grid, these ranges are removed from

the calculated spectrum, and the result is divided into the original spectrum assuming a

linear interpolation between points. This is equivalent to dividing by a continuum that

is linear across the features of interest, which is a good assumption for many calculated

K-α spectra.

Once the data and calculation are on the same axis, SPECTROFIT calculates the

reduced chi-squared of the fit for a selected range of temperature and density by the

equation:

χ2 =
s2

< σ2
” >

, (4.12)

where the average standard deviation is given by,

< σ2
” >=

[
1

N

N∑
i=0

1

σ2
”;i

]−1

, (4.13)
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and the variance is given by:

s2 =
1

N − 2

N∑
i=1

[
< σ2

” >

σ2
”;i

]
[Ta(νi)− Te(νi)]

2 , (4.14)

where Ta and Te are the calculated and experimental spectra, and the sums are taken

over the N points of interest in the spectra. The standard deviation of the data, σi, must

be specified by the user for each point in the experimental spectrum. In this way, the

data can be assumed to follow the statistics that is most appropriate for the spectrum

of interest (whether that be a Poisson distribution or some other measured statistical

deviation).

Once χ2 has been calculated at each assumed temperature and density, the results

can be displayed as a 3-D surface plot or a 2-D contour plot in increments of +1σ over

the minimum χ2. As an example, Figure 4.9(a) shows a simulated absolute transmission

spectrum constructed by adding random Poisson noise to the EOSOPA calculated trans-

mission of a 50eV aluminum plasma at an ion density of 6.77× 1020cm−3. Using SPEC-

TROFIT, this spectrum was compared to EOSOPA calculated spectra over a range of 60

different temperatures from 20− 80eV and 30 densities from 6.7× 1018− 6.7× 1022cm−3.

Figure 4.9(b) shows the 3-D surface plot of the SPECTROFIT calculated χ2 versus the

1800 combinations of temperatures and densities in the grid. The minimum value of χ2

in this grid is 1.0017 at a temperature of 50eV and an ion density of 6.77 × 1020cm−3.

This is precisely the value that was used to construct the simulated data, and a χ2 value

of ≈ 1 signifies that the fit is exactly within the uncertainty in the data. However, as is

usually the case with K-α distributions, there are a number of temperature and density

combinations that give a χ2 value that is very close to the minimum. To illustrate, Fig-

ure 4.10 shows a contour plot in temperature-density phase space, where each contour

represents an increase of 1 over the minimum χ2. Even in this idealized example, where
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(a) (b)

Figure 4.9: (a) Spectrum calculated by EOSOPA for an Al plasma at Te = 50eV and
ni = 6.77 × 1020cm−3 both with random Poisson noise (black) and without (red). The
weights in the SPECTROFIT calculation were across the K-α complex only (dotted).
(b) χ2 surface plot of the SPECTROFIT calculation. The minimum value is 1.0017 at
Te = 50eV and ni = 6.77× 1020cm−3.

Figure 4.10: Contour plot of the SPECTROFIT calculation in Figure 4.9. Each contour
represents an increment of 1σ over the minimum χ2 (represented by the symbol).
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the data spectrum is taken directly from one of the points in the calculation, there is a

wide range of densities and temperatures that are within 1σ of the minimum χ2. For

this reason, attempts are often made to place limits on the density of the plasma so that

the temperature can be more precisely determined. If the range of possible densities in

the experimental plasma are known, then a graph like this can be used to determine the

possible range of temperatures.

In the less ideal case of an experimental spectrum that contains a gradient in the tem-

perature and/or density, the error-bars from the chi-squared fitting results can be much

larger. Figure 4.11(a) shows an aluminum K-α absorption spectrum taken on Sandia’s Z

machine, and Figure 4.11(b) shows the surface plot from a SPECTROFIT calculation on

this data. In this case, there is believed to be a ≈ 5eV gradient in the electron tempera-

ture and a ≈ 3 × 1020cm−3 gradient in the ion density. Figure 4.12 shows 2-D contours

from the surface plot shown in Figure 4.11(b). The minimum χ2 for the fitting calculation

was 1.78 at a temperature of 64.4eV and an ion density of 4.17×1021cm−3. However, the

contour plot shows that each density in the grid has a corresponding temperature that

is within 1σ of the best fit. It is then necessary to specify a range of densities in order to

identify the corresponding range of temperatures that are most likely to reproduce the

experimental spectrum. As an example, radiation-hydrodynamics simulations predict

that the ion density of the aluminum plasma in Figure 4.11(a) is from 7− 10× 1019cm−3

around the time that the data was taken. According to the SPECTROFIT calculation

represented by Figure 4.12, that corresponds to an electron temperature of 38.4± 2.7eV .

The rad-hydro simulation suggests that the electron temperature is between 34 and 39eV .

This is in good agreement with the SPECTROFIT results and is therefore in good agree-

ment with the experimental data. In this way, experimental data can be easily compared

to rad-hydro calculations in an unbiased and quantitative way.



112

(a) (b)

Figure 4.11: (a) Aluminum K-α spectrum from an experiment on Sandia’s Z machine
(black), and that calculated by EOSOPA for an Al plasma at Te = 64.4eV and ni =
4.17 × 1021cm−3 (red). The weights in the SPECTROFIT calculation were across the
K-α complex only (dotted). (b) χ2 surface plot of the SPECTROFIT calculation. The
minimum value is 1.78 at Te = 64.4eV and ni = 4.17× 1021cm−3.

Figure 4.12: Contour plot of the SPECTROFIT calculation for the spectrum in Fig-
ure 4.11. Each contour represents an increment of 1σ over the minimum χ2 (represented
by the symbol).
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Chapter 5

Thin Foil Experiments - Verification of

the Experimental and Computational Methods

To recap the discussions of the last two chapters, the proposed experimental method is to

use radiation from the z-pinch on Sandia’s Z facility to drive and backlight a foam sample,

which contains thin tracer layer(s) of Al and/or MgF2. The conditions in the tracers are

measured by the distribution of ionization states as evidenced by the tracers’ absorption

spectra. The computational method is then to model both the z-pinch radiation that

drives the sample and the integrated radiation-hydrodynamics of the sample response.

The calculated conditions in the tracer layers are then compared to those derived from

the experimental data. Once the models can provide good agreement to the constraints

in the experiment, then the details of the radiative transfer process are derived from the

calculations.

These proposed methods are somewhat complex, and rely on multiple computations

to interpret the experimental data and draw conclusions about the radiative transfer. It

is therefore necessary to verify both the experimental approach and the computational

methods. The objective of this chapter is to describe the data and analysis from ex-
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periments on the Z facility intended to demonstrate an understanding of the heating

and atomic absorption features of both mixed and separated Al and MgF2 plasmas. As

discussed in §3.2, these are the candidate materials to act as tracer diagnostics in the

radiative transfer experiments that are the central focus of this thesis. It is therefore

necessary to validate the calculations of the temperature and density distributions in

these materials in order to gain confidence in the analysis procedures.

Section 5.1 describes two experiments that were fielded at the Z facility to measure

the K-α absorption spectra from radiatively heated Al and Mg; one where the Al and

MgF2 were mixed by multi-layer deposition, and one where the Al was deposited in front

of the MgF2 along one line-of-sight, and the MgF2 in front of the Al along a separate

line-of-sight. Section 5.2 presents the data from these two experiments, along with a

chi-squared comparison between the data and calculations of the K-α absorption over a

range of temperatures and densities. Section 5.3 describes the computational modeling

of the experiments including the calculation of the radiation drive spectra, the radiation-

hydrodynamics modeling of the sample response, and the DCA spectral post-processing

of the rad-hydro calculations. Finally, §5.4 summarizes the important conclusions from

these experiments, and discusses the impact they may have on the radiative transfer

experiments in CH2 foam.

5.1 Experiment Configuration

Figure 5.1 shows top- and side-view schematics of the ride-along geometry on the Z facility

as configured for these experiments. The primary geometric parameters of interest are

defined in this figure as the pinch height, hp, the initial pinch radius, rp, the primary

hohlraum radius, rc, the width of the LOS holes, ws, the distance from the pinch axis
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Figure 5.1: Schematic diagram of the sample placement and diagnostic LOS for the
ride-along experiment geometry.

to the experimental sample, d, the aperture width, wa, and the aperture height, ha.

Table 5.1 lists these quantities and the parameters of the z-pinch wire arrays as fielded

on Z shots z597 and z1031.

Figure 5.2 shows schematic drawings of the samples fielded on these shots. The

experimental sample on z597 consisted of 7 alternating layers of 200Å thick Al or MgF2,

creating a 2800Å thick Al + MgF2 foil tamped on either side by 1.2µm of CH. On

shot z1031, two different samples were fielded simultaneously on two separate LOS. One

sample, placed along a line-of-sight designated as LOS 13/14, consisted of a 1500A thickof Al
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Shot # rp (mm) hp (mm) Wire # Wire
Diam. ws (mm) d (mm) wa (mm) ha (mm)

z597 10 10 300 11.4µm 5.6 39.6 8.26 2.49

z1031
20 outer

10 inner
12

240 outer

120 inner
7.8µm 4.8 43.3 4 6

Table 5.1: Geometric parameters and z-pinch configurations for the experiments on
shots z597 and z1031. z597 was a single array tungsten z-pinch with no central target,
and z1031 was a nested array tungsten z-pinch with a 3mm radius, 14mg/cc CH2 axial
foam target.

by 1.0µm of CH. The other sample, on LOS 21/22, contained a 3100Å layer of MgF2

on the pinch facing side of a 1500Å layer of Al, and also tamped on either side by 1.0µm

of CH.

As indicated in Figure 5.1, absorption spectra from these samples were measured

along each sample’s LOS by a time-integrated convex crystal spectrometer (TIXTL).

The spectrometers were fielded with a source-to-crystal distance of 455cm, and a crystal-

to-film distance of 7.1cm. Each contained a potassium acid phlalate (KAP) crystal with

a 2d spacing of 26.62Å that was positioned to view a spectral range of ≈ 5− 11Å in first

order. These crystals were bent to a 101.6mm radius, which provided a spectral resolution

of λ/∆λ ≈ 750. To both protect the crystals and eliminate the softer components of the

x-ray spectrum, the TIXTLs were filtered between the source and crystal by 38.1µm of Be

on z597 and 8.5µm of Be on z1031. On shot z597, time-resolved absorption spectra were

also measured using a 6-strip micro-channel plate (MCP) assembled at the detection plane

of a convex crystal spectrometer with a 101.6mm radius KAP crystal. This spectrometer

had a source-to-crystal distance of 640cm, and a crystal-to-detector distance of 14.1cm.
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Figure 5.2: Schematic drawings of the samples used on shots (a) z597 and (b) z1031.

It was filtered between the source and crystal by 8.5µm of Be, and between the crystal

and MCP by 12.7µm of Be. The 40mm long MCP striplines provided a spectral range of

≈ 7.0− 10.2Å in first order, and were pulsed in an open circuit configuration by a 2.1ns

FWHM signal peaked at −294V (over a −100V DC bias), for a gain FWHM of ≈ 1.0ns.

The z-pinch performance on these shots was measured by a suite of diagnostics looking

through LOS other than those used by the experimental samples. The primary z-pinch

diagnostic that was utilized for these experiments was an array of filtered x-ray diodes

(XRDs), which provided the pinch power history when normalized by a bolometer viewing

from the same angle on the same line-of-sight.
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5.2 Experimental Data

Figure 5.3 shows the time-dependent z-pinch powers, temperatures, and radii from shots

z597 and z1031 on the Z facility. The time-axis in this figure, and throughout the

remainder of this chapter, has been shifted so that the peak of the x-ray emission power

occurs at 100ns. The powers are determined from kimfol filtered XRD measurements

that have been normalized by bolometer data [86, 87, 101]. According to this data, z597

produced 1140 ± 230kJ in a 6.6ns FWHM pulse peaked at 124 ± 25TW , and z1031

produced 870± 170kJ in a 3.7ns FWHM pulse peaked at 110± 22TW .

The z-pinch radii are determined from models of the implosion trajectory at times

< 93ns, and from experimental data on similar load geometries at time ≥ 93nsa. The

temperatures for both shots are then calculated from the pinch power and radius time

histories by assuming that the z-pinch is a uniform cylindrical surface emitter. This

method has been compared to transmission grating measurements of the z-pinch emission

spectra on other experiments, and was found to be in good agreement [90].

It is important to note that, around the time of peak z-pinch emission, calculations

suggest that the conditions in the experimental sample are relatively insensitive to the

absolute intensity and spectrum of the radiation drive at times < 70ns. Thus, it is not

necessary to have a very accurate knowledge of the z-pinch radius and emission power

during the foot-pulse. In addition, the view-factor sensitivity study discussed in §4.1

aData on multiple Z experiments suggests that the implosion trajectory depends on the initial ge-
ometry of the z-pinch [102]. For example, 2cm radius z-pinches follow a trajectory that is well modeled
by a 0-D model of the circuit inductance. Thus, the z-pinch trajectory on shot z1031 is taken from a
0-D calculation using Screamer [103] for times < 93ns. On the other hand, 1cm radius z-pinches have
a trajectory that supports a 2-D plasma pre-flll model that is signiflcantly delayed with respect to the
0-D calculations [104]. Thus, for times < 93ns, the z-pinch trajectory on shot z597 is taken from a
2-D pre-flll model that has been tuned to agree with the self-emission data of the z-pinch run-in [104].
At times ≥ 93ns, the z-pinch radii on z597 are taken from analysis of the z-pinch thermal spectra on
shots with a similar geometry, and on z1031 are taken from pinhole camera measurements published by
Sanford et. al. [105].
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Figure 5.3: Z-pinch power, temperature, and radius profiles for shot z597 (solid) and
z1031 (dotted) on Z. The power is measured by a kimfol filtered XRD normalized to
bolometer measurements of the total radiated energy. The radii are taken from calcu-
lations at times < 93ns, and from self-emission data on similar shots for times ≥ 93ns.
The temperature is calculated from the power and radius profiles assuming the z-pinch
is a uniform cylindrical surface emitter.
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revealed that the amplitude and spectra of the radiation drive at the sample surface

are only weakly sensitive to the absolute z-pinch emission spectrum. For these reasons,

the greatest emphasis has been put on understanding the z-pinch emission power on the

specific shots of interest, while assuming a radius history that is more generic to the

general class of z-pinch in each experiment. This procedure simplifies the data analysis

required to calculate the radiation drive on the sample surface, and reduces the number

of diagnostics that must be fielded in the primary experiment.

Figure 5.4(a) and (b) show the raw film data and associated spectral lineouts as

recorded by the time-integrated convex crystal spectrometers on shots z597 and z1031.

The lineouts have been processed by the EXRAY code (see Appendix A) to determine the

wavelength scale, and to apply the appropriate corrections for the film response, filter

transmission, crystal reflectivity (using the MDP reflectivity model), and the crystal

geometry. In addition, the x-ray background has been subtracted from the data, where

the background was determined by processing an unilluminated strip of the film in the

same manner as the data.

Likewise, Figure 5.5(a) and (b) show the raw film data and associated spectral lineouts

from the time-resolved convex crystal spectrometer on shot z597. Again, the lineouts have

been corrected by the EXRAY code, including a correction for the efficiency of the gold

MCP. This data is shown for the 4 frames that had a reasonable signal level, which span

times from 97.6± 0.5ns to 103.6± 0.5ns in 2ns intervals on the time-base of Figure 5.3.

As discussed in §4.5, the absorption spectra shown in Figures 5.4 and 5.5 can be used

to derive the possible combinations of temperature and density in the foils through an

automated χ2 comparison to calculated spectra. However, because the calculations have

no knowledge of the backlighter structure, the data in the figures must be converted to

either a relative or absolute transmission spectra. The latter requires a direct measure of



121

F
ig

u
re

5
.4

:
(a

)
R

aw
fi
lm

d
at

a
an

d
(b

)
n
or

m
al

iz
ed

sp
ec

tr
al

li
n
eo

u
ts

fr
om

th
e

T
IX

T
L
s

on
sh

ot
s

z5
97

an
d

z1
03

1.
T

h
e

li
n
eo

u
ts

h
av

e
b
ee

n
p
ro

ce
ss

ed
fo

r
th

e
fi
lm

re
sp

on
se

,
fi
lt

er
tr

an
sm

is
si

on
,
cr

y
st

al
re

fl
ec

ti
v
it
y,

an
d

th
e

cr
y
st

al
ge

om
et

ry
.



122

F
ig

u
re

5
.5

:
(a

)
R

aw
fi
lm

d
at

a
an

d
(b

)
n
or

m
al

iz
ed

sp
ec

tr
al

li
n
eo

u
ts

fr
om

th
e

ti
m

e-
re

so
lv

ed
sp

ec
tr

om
et

er
on

sh
ot

z5
97

.
T

h
e

li
n
eo

u
ts

ar
e

sh
ow

n
in

n
or

m
al

iz
ed

u
n
it

s,
an

d
h
av

e
b
ee

n
p
ro

ce
ss

ed
fo

r
th

e
fi
lm

re
sp

on
se

,
fi
lt

er
tr

an
sm

is
si

on
,

cr
y
st

al
re

fl
ec

ti
v
it
y,

an
d

th
e

cr
y
st

al
ge

om
et

ry
.



123

the backlighter spectra, which was not possible on these experiments. Thus, the spectra

in the figures must be converted to a relative transmission by the division of an assumed

continuum. For these spectra, that continuum was determined by removing the absorp-

tion features, and filtering the remaining signal by a 0.5Å boxcar filter. The resulting

continuum is overlaid on the data in Figures 5.4 and 5.5. The relative transmission is

then calculated by dividing the measured signal by this continuum, and is shown for

both the time-integrated and time-resolved data in Figure 5.6 and 5.7 respectively. This

is considered an acceptable procedure since the important information about the sample

conditions is contained in the relative intensities of the absorption features, which are

relatively unchanged by the division of the continuum.

The possible combinations of temperature and density in the plasmas can then be

determined by the SPECTROFIT code for each of the measured transmission spec-

tra. Using this code, the weighted χ2 between the unsmoothed transmission data and

SPECT3D calculations was computed for 1800 combinations of temperature and density

over the ranges 20 ≤ Te ≤ 80eV and 1 × 1019 ≤ ni ≤ 1 × 1023cm−3. The statistical

deviations in the intensity of each point in the data was determined from independent

calibration experiments described in Appendix C. Each comparison was restricted to the

spectral range of the K-α features, where the absolute depths of the measured absorp-

tion were allowed to uniformly vary by ±10%b. The resulting χ2 contour plots for the

time-integrated spectra are shown in Figure 5.8 for shot z597, and Figures 5.9 and 5.10

for LOS 13/14 and 21/22 on shot z1031. Each contour in these plots corresponds to

an increase of 1 over the minimum χ2. This implies that there is a ≈ 68.3% probability

that the plasmas that produced each spectra have a temperature and density that is

bThis is done to optimize the χ2 at each temperature and density point, in an efiort to account
for possible systematic errors induced in the data from the background subtraction (due to a lack of
knowledge about the energy of the background x-rays).
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Figure 5.6: Relative transmission spectra from the time-integrated convex crystal spec-
trometers on shots z597 and z1031.
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Figure 5.7: Relative transmission spectra from the time-resolved convex crystal spec-
trometer on shot z597.
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(a)

(b)

Figure 5.8: Contour plots from the SPECTROFIT χ2 comparisons between the data
and calculations of the K-α absorption features in (a) aluminum and (b) magnesium
on shot z597. Each contour represents an increment of 1 over the minimum χ2 in the
calculations. The shaded regions correspond to plasma conditions from BUCKY rad-
hydro calculations assuming z-pinch emission powers of 80−100% (blue) and 100−120%
(orange) of the measured value.
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(a)

(b)

Figure 5.9: Contour plots from the SPECTROFIT χ2 comparisons between the data
and calculations of the K-α absorption features in (a) aluminum and (b) magnesium
from LOS 13/14 on shot z1031. Each contour represents an increment of 1 over the
minimum χ2 in the calculations. The shaded regions correspond to plasma conditions
from BUCKY rad-hydro calculations assuming z-pinch emission powers of 80 − 100%
(blue) and 100− 120% (orange) of the measured value.
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(a)

(b)

Figure 5.10: Contour plots from the SPECTROFIT χ2 comparisons between the data
and calculations of the K-α absorption features in (a) aluminum and (b) magnesium
from LOS 21/22 on shot z1031. Each contour represents an increment of 1 over the
minimum χ2 in the calculations. The shaded regions correspond to plasma conditions
from BUCKY rad-hydro calculations assuming z-pinch emission powers of 80 − 100%
(blue) and 100− 120% (orange) of the measured value.
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within the +1σ contour. To illustrate the quality of fit between the data and calculation,

Figure 5.11 overlays the aluminum data from z597 with the calculated spectra at an ion

density of 1× 1020cm−3 and the temperatures corresponding to confidence levels of +0σ,

+1σ, and +2σ. It is visually clear from this figure that the spectrum calculated at the

minimum χ2 is a much better match to the data than that at each of the other confidence

levels. This is as it should be for a reasonable χ2 analysis, and provides a visual check

on the calculations.

The contour plots in Figure 5.8-5.10 contain a great deal of important information,

but are difficult to compare to each other. To help visualize the comparison of the

conditions in the various tracer materials, Figure 5.12(a) and (b) overlay only the +1σ

contours from shot z597 and z1031 respectively. The fit in Figure 5.12(a) was from the

absorption spectra in the sample that contained a mixed foil of Al and MgF2. As seen in

the figure, the possible combinations of temperature and density derived from the Al and

Mg absorption features are approximately equivalentc. This is what one would expect

from a mixed foil whose constituents are in thermodynamic equilibrium (ie. they should

be at the same temperature and density).

In contrast, Figure 5.12(b) shows the comparison in the Al and MgF2 foils on z1031

where they were positioned in sequence along the direction of the heating radiation. From

a cartoon picture of this experiment, one might expect that the material which is first in

the sequence would be hotter (and probably less dense) then the one behind it. However,

in looking at the figure, it is evident that the possible range of material conditions is

equivalent for both the Al and MgF2 in each sample. This does not necessarily mean

that each material is at the same temperature. They may (and probably do) have different

cThe larger error bars on the flt to the Mg data is a re°ection of the larger statistical °uctuations in
the fllm response at the intensity level of the Mg K-α wavelengths.



130

Figure 5.11: Comparison between the time-integrated aluminum K-α absorption spec-
trum taken on shot z597 and three calculated spectra in the SPECTROFIT χ2 computa-
tion. Each calculated spectra is from an Al/MgF2 plasma at an ion density of 1020cm−3.
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(a)

(b)

Figure 5.12: +1σ contours from the SPECTROFIT χ2 comparisons between the data
and calculations of the K-α absorption features from shots (a) z597 (b) z1031.
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densities. However, it implies that, if the material that is second in the sequence has a

lower temperature, then it must also have a lower density. This is somewhat surprising,

and is a good example of an experimental result that puts a tight constraint on the

computational models.

One other piece of information that can be drawn from the statistical fits in Fig-

ure 5.12(b) is the relative temperature at the foil location along each line-of-sight. It

is clear from the figure that the range of most probable conditions in the foils on LOS

13/14 is either ≈ 10% hotter, or ≈ 300% less dense. Since each foil was tamped by the

same amount of CH, and each was placed at the same distance from the z-pinch, it is

possible that the radiation power escaping from the z-pinch was different along each LOS.

However, there is a small overlap in the 1σ contours that makes it difficult to say with

a statistical certainty that this is indeed the case. Regardless, a calculation of the foil

response on each LOS can be used to identify what power variation may produce such a

difference in the plasma conditions. This will be addressed in §5.3.

In addition to the time-integrated data, The +1σ contours for each spectrum in the

time-resolved data on z597 are shown in Figure 5.13. These fits show that the plasma

heats up and/or expands up to t = 100ns, and then either cools and expands or remains

fairly stagnant at times later than that. Again, this information is drawn straight from

the experimental data, and should place a significant constraint on the models.

As a point of special importance, the data that has been heretofore referred to as

time-integrated is really a measure of the plasma conditions around the time of the peak

x-ray emission. To illustrate, Figure 5.14 shows the normalized signals from an XRD

that is filtered by 10.0µm of Be and 0.8µm of vanadium. The combination of the XRD

sensitivity and the filter transmission fraction makes this signal a diagnostic of the z-

pinch emission over the range 2.5Å < λ < 12.4Å. Thus, it is effectively a measure of
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Figure 5.13: +1σ contours from the SPECTROFIT χ2 comparisons between the time-
resolved data and calculations of the K-α absorption features on shot z597. The symbols
correspond to mass-averaged plasma conditions from BUCKY rad-hydro calculations
assuming z-pinch emission powers of 80% (cross), 100% (circle), and 120% (star) of the
measured value.

the backlighter time history. This is an important point because it constrains the time-

integrated data (and therefore the plasma conditions) to a certain window over the course

of the z-pinch emission. Specifically, it implies that the time-integrated data can then be

considered as the absorption spectra through the experimental samples corresponding to

a time of 100.5± 2.0ns on z597 and 100.5± 1.4ns on z1031.
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Figure 5.14: Normalized signals from an XRD filtered by 10µm of beryllium and 0.8µm
of vanadium on shots z597 (solid) and z1031 (dotted). This signal provides a time-history
for the backlighter pulse in the spectral range 2.5Å < λ < 12.4Å.

5.3 Experiment Modeling

Shots z597 and z1031 had very different z-pinch geometries, and the samples had very

different fields-of-view. Thus, determining the radiation drive on the surface of each

sample required that each experiment be modeled with a separate view-factor calculation.

An example of the VISRAD view-factor grid for each experiment geometry is shown in

Figure 5.15. In these models, the z-pinch radius and power histories from Figure 5.3

were input as the power source, and an albedo was prescribed for each surface element.

VISRAD was then used to calculate the time-dependent incident radiation spectrum at

each surface, which were input into BUCKY 1-D rad-hydro calculations of the surface

albedo. For this work, these albedos were calculated for three primary objects; the outer
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anode, z-pinch glideplanes, and the primary hohlraum (as labeled in Figure 5.15). Each

was calculated for a spectral drive history averaged over a few surface elements in the

object, and the resulting albedo was input back into the view-factor model for every

surface element in the object. As discussed in Chapter 4, this model was iterated until

the radiation power on the surface of the experimental sample changed by less than

1% between 2 subsequent iterations at every time-step in the calculation. This took 5

iterations for both experiment geometries, and the resulting albedos of the 3 primary

objects are shown in Figure 5.16.

The resulting radiation power on the surface of each sample as calculated by their

respective VISRAD view-factor model is shown in Figure 5.17(a). Each drive history in

this figure was calculated for the nominal (measured) z-pinch power, and reaches peak

radiation powers of 1.15TW/cm2 and 0.76TW/cm2 on shots z597 and z1031 respectively.

The calculated radiation spectra on the surface of each sample at the time of peak z-pinch

power (100ns) is shown in Figure 5.17(b). The peak energy of these spectra is 410eV for

shot z597 and 235eV for shot z1031. The lower peak energy of the drive from shot z1031

is a reflection of both the lower z-pinch power, and the greater amount of gold hardware

in the sample’s field-of-view. At the peak of the radiation drive, the z-pinch emission was

calculated to contribute 76% of the drive flux on shot z597, and 70% on shot z1031.

The drive histories from Figure 5.17(a) were applied as a time- and frequency-dependent

radiation boundary condition in radiation-hydrodynamics calculations of the sample re-

sponse. These simulations were done with the BUCKY 1-D lagrangian rad-hydro code

using multi-angle short-characteristics radiation transport for 100 log-spaced photon en-

ergy groups from 0.1 − 104eV . The opacities of each material were calculated from

PROPACEOS tables that contained 39 temperature points from 0.1 − 100eV , and 41

log-spaced density points from 1019 − 1023cm−3. The equation-of-state for the CH and
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(a)

(b)

Figure 5.15: View factor grids for shots (a) z597 and (b) z1031 at peak z-pinch power.
Each grid is shown from the same viewing distance revealing the much different geometries
in the two experiments.
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Figure 5.16: BUCKY calculated albedo histories used for the final view factor calcula-
tions of shots (a) z597 and (b) z1031. The albedos are shown for the pinch glideplanes
(solid), the primary hohlraum (dotted), and the outer anode (dashed).
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Figure 5.17: VISRAD modeled (a) radiation drive powers and (b) peak drive spectrum
(at t = 100ns) for shots z597(solid) and z1031(dotted).
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Al materials were taken from the SESAME EOS tables, and those for the MgF2 and

Al/MgF2 materials were taken from QEOS calculations [106]. The rad-hydro models

were begun at t = 0ns, and ended at a time of 110ns using a quiet-start vaporization

model set at a temperature of 0.4eV . These calculations (including the view-factor sim-

ulations) were then repeated for each sample assuming the z-pinch power was 20% lower

and then 20% higher than the measured value. This was done to account for the uncer-

tainty in the z-pinch power measurements, which were shown in §4.1 to be the dominant

uncertainty in the calculated radiation drive.

The mass-averaged temperature-density phase space of the calculated conditions in

the Al and MgF2 foils are shown on the χ2 contour plots in Figures 5.8-5.10 over the

times corresponding to the width of the backlighter time-history (100.5± 2.0ns on shot

z597, and 100.5 ± 1.5ns on shot z1031). These calculations are shown as a blue shaded

region corresponding to the calculated conditions assuming the pinch power ranged from

80 − 100% of the nominal value, and as an orange shaded region for the calculated

conditions assuming the power ranged from 100− 120% of the nominal value. The lines

in each shaded region correspond to the calculated mass-averaged conditions in the Al

and/or MgF2 over the backlighter time (time follows along each line). The calculations

are shown in this way because it provides a quick visual way to compare to the data. If

the calculated conditions are going to be a good approximation to those observed in the

experiment, then part of the shaded region must fall within the +1σ contours. This can

be further constrained by calculating the time-averaged conditions in the foils weighted

by the backlighter pulse histories shown in Figure 5.14. These points are over-plotted

on each contour plot as a large dot corresponding to assumed pinch powers of; 80%,

100%, and 120% of the nominal value. Since the data recorded on the time-integrated

spectrometers are truly a measure of the mass- and time-averaged conditions in the foils,
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then these points are the best diagnostic of the comparison between the data and the

rad-hydro models.

5.3.1 Calculations In Mixed Al and MgF2

First consider the calculations of shot z597 (with the mixed layers of Al and MgF2). It is

clear from Figure 5.8 that the calculated temperature and density of the Al/MgF2 layer

is well within the +1σ contours for pinch powers that range anywhere from 100−120% of

the nominal value. However, there is a great deal of the calculated phase-space at these

powers which lies outside the most probable values. This does not necessarily signify a

disagreement between the data and calculations. Remember that the backlighter time-

history was sharply peaked at a time of 100.5ns, and the data is a measure of the

time-averaged foil conditions.

This can be further investigated by a comparison to the time-resolved data on this

shot. The calculated conditions over each of the time-frames in the time-resolved data

are overlaid on the +1σ contour plots in Figure 5.13. The calculated points are mass-

and time-averaged (weighted by the backlighter and micro-channel-plate pulse histories)

over each time-frame, and are shown for pinch powers of; 80%, 100%, and 120% of the

nominal value. As seen in the figure, the calculated values again compare well to the

data for pinch powers that range anywhere from 100− 120% of the nominal value.

All these comparisons provide confidence that the view-factor calculations and rad-

hydro models together predict temperature and density conditions in the sample that

are consistent with the measured values. With these constraints in place, the models can

be used to investigate the dynamics happening in the sample. Figure 5.18(a)-(d) show

some details of the conditions calculated by the rad-hydro model assuming a pinch power

that is 10% higher than the measured values at all times. Figure 5.18(a) shows the time
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history of the average temperature and density in the Al/MgF2 layer (the electron and

ion temperatures are in very close equilibrium). The temperature peaks at about 47eV

at a time of 101ns, while the density decreases to a value of about 1.7 × 1020cm−3 and

remains approximately constant over times of 97ns ≤ t ≤ 103ns.

Figure 5.18(b) (c), and (d) show the temperature, density, and pressure profiles in the

sample at times of 97.6ns, 99.6ns, 101.6ns, and 103.6ns (corresponding to the frames in

the time-resolved data). At each time, the calculations predict an ≈ 5eV gradient in the

temperature of the Al/MgF2, and almost no gradient in the density. One point of interest

in these calculations is the noticeable jump in the conditions at the interface of the CH

tamper and the Al/MgF2. That is, the Al/MgF2 is hotter than the surrounding CH

at times < 99ns, and cooler at later times. This is strong evidence that the frequency-

dependent radiative heating and cooling dominate the sample dynamics.

To illustrate the important effects of the driving radiation spectra, Figure 5.19(a)

and (b) show the drive spectrum and some sample opacities at times of 85ns and 100ns

respectively. The opacities are shown for three representative positions in the sample;

the front of the CH tamper, the back of the CH tamper (just in front of the Al/MgF2),

and the front of the Al/MgF2. Due to the distribution of the drive spectra, the CH is

heated through different mechanisms at different times. Early in time (t < 92ns), the

CH is heated primarily through free-free absorption and carbon L-shell photo-ionization.

At photon energies of 100 − 300eV , this is a relatively inefficient means of absorption

and much of the CH remains relatively cold over the foot-pulse of the radiation drive.

Later in time (t > 92ns), the average energy of the drive spectrum increases to the point

that the CH is heated primarily through photo-ionization out of the carbon K-shell

(hν ≈ 350eV ). At all times, the Al/MgF2 portion of the sample is heated out of the

combined F , Mg, and Al L-shells (hν ≈ 100− 200eV ).
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Figure 5.18: (a) Mass averaged temperature (solid) and density (dotted) conditions in
the Al/MgF2 foil on shot z597 as calculated by BUCKY. (b) Temperature, (c) density,
and (d) pressure profiles in the experimental sample as calculated by BUCKY for times
of 97.6ns (solid), 99.6ns (dotted), 101.6ns (dashed), and 103.6ns (dot-dashed). The
driving radiation is incident from the left.

The discontinuities in the temperature and density profiles of the sample can be

explained by the opacities. At early times, the driving radiation at energies just below

the C K-shell pass through the tamper (largely unattenuated) and are readily absorbed

in the Al/MgF2. This creates a situation where there is a large gradient in the tamper,

and the Al/MgF2 is heated to temperatures above the surrounding CH. As an example,
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the spectrum in Figure 5.19 (a) is shown to have a peak intensity at a photon energy

of 126eV , which lies below the C K-shell and above the F L-shell. However, as the

carbon is ionized, the heating radiation at the C K-shell energies penetrates deeper into

the tamper, and the temperature gradient decreases. At late times, the drive spectra

are peaked around 400eV , which couples better to the CH tamper than during the foot

pulse. The CH is more efficiently heated and a lower fraction of the total drive spectra

reaches the Al/MgF2. At the same time, the high opacity of the Al/MgF2 at photon

energies around 150eV makes it a more efficient radiator at the blackbody temperature

of the plasma (≈ 45eV ), which causes it to more quickly cool. This all creates a situation

where the tamper eventually reaches a higher peak temperature than the Al/MgF2, and

results in a thermal distribution like that shown in Figure 5.18(b). The density of the

sample then adjusts to maintain a smooth pressure profile with no discontinuities (except

at positions of a shock front as seen at the back of the Al/MgF2 at 97.6ns).

As a final check on the comparison between the calculated and measured conditions in

the Al/MgF2 sample, Figures 5.20 and 5.21 show the time-integrated and time-resolved

absorption spectra on shot z597 overlaid by the spectra calculated from the radiation-

hydrodynamics model. The calculations are done with the SPECT3D spectral post-

processing code using a detailed configuration analysis (DCA) of the Al/MgF2 at the

temperatures and densities dictated by the rad-hydro calculation. Each spectrum is

calculated under an assumption of LTE, and is averaged over the times corresponding to

the data as weighted by the time-dependent intensity of the backlighter. As seen in the

figures, the comparison between the measured and calculated spectra is quite good. The

χ2 between the calculated and measured time-integrated spectra across the combination

of the Al and Mg absorption features was calculated to be 2.16. This is within 1σ of

the minimum χ2 found in the SPECTROFIT analysis of each K-α complex. The χ2



144

10 100 1000
Photon Energy (eV)

100

101

102

103

104

105

106

op
ac

ity
 (

cm
2 /g

)

0

2•107

4•107

6•107

8•107

D
riv

e 
S

pe
ct

ru
m

 (
W

/c
m

2 /e
V

)

(a)

10 100 1000
Photon Energy (eV)

100

101

102

103

104

105

106

op
ac

ity
 (

cm
2 /g

)

0

5.0•108

1.0•109

1.5•109

D
riv

e 
S

pe
ct

ru
m

 (
W

/c
m

2 /e
V

)

(b)

Figure 5.19: 100 group opacities at the front of the CH tamper (black), the back of the
CH tamper (just in front of the Al/MgF2) (red), and the front of the Al/MgF2 (blue)
at times of (a) 85ns and (b) 100ns in a BUCKY simulation of shot z597. Also shown is
the VISRAD modeled drive-spectrum on the front of the sample at each time (green).
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between the measured and calculated time-resolved spectra were also determined to be

within 1σ of the minimum found in the SPECTROFIT analysis. Qualitatively, the largest

deviations between these spectra are in the absorption features at either end of each K-α

series as seen in the time-integrated data (in which the data is of higher quality). The

calculated absorption of the Al Li- and N-like features are slightly deeper than those

in the data. The same is true for the calculated Mg He- and C-like features. This

may indicate a slightly larger gradient in the calculated conditions than existed in the

experiment. However, the χ2 between these spectra is within the statistical uncertainties

determined from the SPECTROFIT calculation, and therefore considered to be in good

agreement.

5.3.2 Calculations In Separated Al and MgF2

The calculated dynamics that occur in the separated Al and MgF2 layers on shot z1031

are very similar to those discussed above for the mixed foil from shot z597. As seen

in the contour plots of Figure 5.9 and 5.10, the calculated phase-space of the samples

on both lines-of-sight contain regions that are within 1σ of the experimental data. By

inspection of these plots, it appears that the calculations would compare best to the data

(fall the closest to the mid-way point between the 1σ contours) by assuming a pinch

power that is ≈ 10% higher than the measured value on LOS 13/14 and ≈ 10% lower on

LOS 21/22. The differing conditions between these foils was first noted in the overlay

of the +1σ contours from each LOS in Figure 5.12(b). According to these calculations,

that difference could correspond to an azimuthal z-pinch power variation of ≈ 20%.

In addition to the difference in the average conditions along each LOS, it is rather

interesting to note from Figure 5.12(b) that there are no statistically significant differences

in the T −ρ phase-space of the Al and MgF2 foils from either LOS. It is possible that the
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Figure 5.20: Comparison between the SPECT3D calculated relative transmission spec-
tra (red) and the data from the time-integrated spectrometer data on shots z597 and
z1031.
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Figure 5.21: Comparison between the SPECT3D calculated relative transmission spec-
tra (red) and the data from the time-resolved spectrometer data on shot z597.
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temperature in the forward material is higher, but that implies that the density is also

higher. Since the neighboring materials must maintain some sort of pressure balance, it

is somewhat illogical that this could be the case (P ∝ Tρ). The most likely situation is

that the two materials have very similar temperatures (and densities), even though each

may contain a gradients. This is more evidence that the frequency-dependent heating is

the dominant factor in the sample dynamics.

Figure 5.22(a) and (b) show the temperature profiles in the samples on LOS 13/14

and LOS 21/22 for times of 99ns, 100.6ns, and 102ns (corresponding to the peak and

half-max powers of the backlighter pulse). The calculations assume a pinch power that

is 10% higher than the measured value on LOS 13/14 and 10% lower on LOS 21/22. As

in the discussion from z597, there is a discontinuity in the temperature at the boundary

of the foils and the CH tamper. However, there is also a discontinuity at the boundary

between the Al and MgF2. That is, the temperature at the front of the rear foil is

higher than that at the back of the forward foil (irrespective of their orientation along

the LOS). Even though the Al and MgF2 each contain an ≈ 5eV gradient, their average

temperatures differ by less than 2eV at almost every time.

To demonstrate the frequency-dependent heating that causes this effect, Figure 5.23(a)

and (b) show the calculated net radiation heating as a function of photon energy at the

time of peak drive power for the Al and MgF2 foils on LOS13/14 and LOS 21/22 re-

spectively. In both cases, the Al is primarily heated in the range 200eV < hν < 300eV

corresponding to photo-ionization out of the L-shell. The MgF2 is primarily heated in

the range 900eV < hν < 1100eV corresponding to photo-ionization out of the F and

Mg K-shells, and has some contribution to the heating around 200eV corresponding to

absorption by the Mg L-shell.
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Figure 5.22: Temperature profiles in the experimental samples on (a) LOS 13/14 and
(b) LOS 21/22 as calculated by BUCKY for times of 99ns (solid), 100.6ns (dotted), and
102ns (dashed).
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Figure 5.23: Calculated net radiation heating at 100ns in the CH (black), Al (red), and
MgF2 (blue) layers in the samples on (a) LOS 13/14 and (b) LOS 21/22. (c) Example
opacities in the CH (black), Al (red), and MgF2 (blue) layers within the sample on
LOS 21/22. (d) Calculated radiation spectrum on LOS 21/22 at the front of the sample
(black), the interface between the CH and MgF2 (red), the interface between the MgF2

and Al(blue), and the interface between the Al and the rear CH tamper (green).
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To further demonstrate this characteristic, Figure 5.23(c) shows the drive spectrum

and representative opacities in the CH, MgF2, and Al at the time corresponding to the

plots in (a) and (b). In addition, Figure 5.23(d) shows the radiation spectrum at the

front of the sample, and at the interfaces between each layer in the sample on LOS21/22.

The CH plasma absorbs the bulk of the radiation in the range 350eV < hν < 450eV

(corresponding to the carbon K-shell). The MgF2 primarily absorbs radiation in the

ranges 200eV < hν < 350eV and hν > 800eV . The Al then absorbs most of the

radiation left that is passed below 350eV . Clearly, these dynamics can only be captured

by a multi-group treatment of the radiation transport.

As a final check on the comparison between the calculated and measured conditions

in the Al and MgF2 foils, Figure 5.20(a) shows the time-integrated absorption spectra

from each LOS on shot z1031 overlaid by the spectra calculated from the radiation-

hydrodynamics model. The calculations are done with the SPECT3D spectral post-

processing code using a detailed configuration analysis (DCA) of the Al or MgF2 at

the temperatures and densities dictated by the rad-hydro calculation. Each spectrum is

calculated under an assumption of LTE, and is averaged over the time-dependent intensity

of the backlighter. As seen in the figures, the comparison between the measured and

calculated spectra is quite good. The χ2 between the calculated and measured spectra

over the combined Al and Mg features were computed to be 2.98 on LOS13/14, and 1.36

on LOS 21/22. Each of these is within 1σ of the largest minimum χ2 found for each

element in the SPECTROFIT calculations.

In addition to the χ2 of the combined absorption features, the calculated and measured

spectra were compared over the K-α complex of each element. These were also found to

be within 1σ of the minimum SPECTROFIT value, with the exception of the Al complex

in the sample on LOS13/14 (in which the Al was deposited in front of the MgF2). In this



152

case, the χ2 was determined to be 2.34, an increase of about 1.3 over the SPECTROFIT

minimum. The primary culprit for this disagreement is the Li-like feature at 8.8− 8.9Å.

The calculation severely over-predicts the depth of this feature, which indicates that the

Al is over-ionized in the calculation (on average). Given that the N-like feature at the

long wavelength end of the K-α complex is in good agreement, it can be deduced that

the calculated ionization gradient in the Al layer is larger that that in the experiment.

Since the ionization distribution is much more sensitive to temperature than density, this

probably implies that the calculated peak temperatures in the Al sample are too high

either in time or space (or both). The correct fix to this calculation should result in a

lower average ionization state in the Al without significantly affecting either the Al B-like

through C-like ionization fractions or the ionization distribution in the MgF2. There are

a large number of permutations on the drive spectra or opacities that could cause such a

discrepancy. One explanation could be a spectrum at the front of the Al layer that has

too many photons at ≈ 300eV . A close look at the BUCKY calculations showed that

the heating in the energy bin at 320eV is a factor of 2 larger at the front of the Al than

the back, and contributes ≈ 10% of the total heating at the front of that layer. Thus,

the discrepancy between the data and calculations could be caused by a drive spectrum

that is slightly too cold, a CH opacity that is slightly too low, or an Al opacity that is

slightly too high at hν ≈ 320eV . This is just speculation.

Given all the assumptions that go into simulating the experiments, the overall compar-

ison is considered to be good, and the overlay of the T −ρ phase space on the χ2 contour

plots if Figures 5.9 and 5.10 indicate that the average calculated conditions are within

the uncertainties imposed by the spectral data and the measured z-pinch power.



153

5.4 Foil Experiment Summary

The understanding of the radiative heating and the associated K-α absorption features

in thin foils of Al and MgF2 on Sandia’s Z facility have been demonstrated. Given that

each experiment discussed in this chapter had very different z-pinch geometries and very

different emission power histories, these results provide confidence in both the methods

used to simulate the frequency-dependent driving radiation spectra, and in the physical

models that are applied to simulate the radiation-hydrodynamics processes.

A similar set of experiments and the associated computational analysis was recently

published by J.J. MacFarlane and J.E. Bailey et al. for Al foils directly attached to the

primary hohlraum on Z [107]. Their experiments utilized z-pinches with much different

power histories then those discussed in this chapter, and the samples had a much different

total field-of-view. They concluded that “the evolution of the Al ionization distribution

was successfully measured and modeled” in each experiment.

In the MacFarlane/Bailey experiments and in the ones presented in this chapter, the

calculations that successfully reproduce the experimental data indicate that frequency-

dependent radiative heating and cooling play the dominant role in determining the time-

dependent temperature and density conditions in the foils. This is an important result

because it places a restriction on the computational methods that must be used to model

the dynamics in similar samples heated by z-pinch radiation. In addition, the role of the

radiation field in determining the foil conditions supports the hypothesis made in §3.2

that the conditions of these materials can be used as a diagnostic of the magnitude and

distribution of the radiation field at the location of the foils. With these conclusions, the

experimental tools and computational methods are suitably well developed to investigate

the radiative transfer in low density CH2 foam.
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Chapter 6

Foam Experiments on Z

The radiative transfer in 5mg/cc CH2 foam was studied through three generations of

experiments. These ranged from the simple case of a single tracer on a single line-of-sight

to a much more complex experiment involving multiple tracers on multiple lines-of-sight.

The design of these experiments was driven by the need to progressively tighten the

constraints on the computational models, since these models are what eventually reveal

the characteristics of the radiative transfer.

The discussion of the foam experiments is broken up into three sections, each describ-

ing the experimental geometry and acquired spectra, as well as the computational models

that successfully reproduced the data. Section 6.1 discusses the first experiment, which

measured the time-dependent heating of a single Al tracer buried in a single foam sam-

ple. Section 6.2 discusses the second experiment, which measured the time-dependent

heating of Al and MgF2 tracers placed at different depths. Section 6.3 discusses the last

experiment, which measured the conditions in six MgF2 tracers buried at four different

depths within foam samples placed on three separate lines-of-sight. Finally, §6.4 summa-

rizes these experiments, discusses the effects of different models on the calculated results,
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Shot # rp (mm) hp (mm) Wire # Wire
Diam. ws (mm) d (mm) wa (mm) ha (mm)

z817 10 10 300 11.34µm 5.76 37.5 2.75 3.0

Table 6.1: Geometric parameters and z-pinch configurations for the foam transport
experiment on shot z817. z817 was a single array tungsten z-pinch with no central
target.

and puts the results in the perspective of the dynamic-hohlraum.

6.1 Time-Resolved Measurements of a Single Al

Tracer

6.1.1 Experiment Configuration

The first experiment on the radiative transfer in CH2 foam measured the time-dependent

absorption spectra of a single Al tracer fielded in the ride-along geometry on shot z817.

Table 6.1 lists the important parameters of the experiment configuration for the quantities

as defined in Figure 5.1, and Figure 6.1 shows a schematic of the foam sample. The

sample was composed of a 5mg/cc CH2 foam that was 10mm wide, 13mm tall, and

2mm thick. The tracer layer was buried at a depth of 1mm (halfway into the foam), and

was composed of a 1373Å thick Al layer on the pinch-facing side of a 5000Å thick CH

substrate. The thicknesses of the tracer foil were verified by a profilometer, which was

calibrated by a quartz gauge. A limiting aperture was placed between the spectrometer

and the sample to provide a 2.75mm wide by 3.0mm tall field-of-view about the center

of the foam. Figure 6.2 shows pictures of the pinch facing surface of the foam target, as

well as a backlit picture revealing the macroscopic structure of the foam and the location

of the apertured area with respect to the tracer foil. The depth of the tracer layer was
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Figure 6.1: Schematic diagram of the foam sample geometry for the ride-along experi-
ment on shot z817.

Figure 6.2: Photographs of the pinch facing surface of the foam on shot z817. The
white box corresponds to the apertured field-of-view of the spectrometer.
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controlled by a metal spacer that held the foil at 1.0 ± 0.01mm from the front surface

of the foam frame, which was then filled with the foam solution. After the foam gelled

and before it completely solidified, a flat scalpel was used to shear off the excess foam

material to provide a flat surface along the front edge.

Absorption spectra through the Al tracer layer were taken by a time-resolved elliptical

crystal spectrometer (TREX). In this spectrometer, an ammonium dihydrogen phosphate

(ADP) crystal with a 2d spacing of 10.64Å was bent to an elliptical curvature that had

a 4059.6mm focal length and an eccentricity of ε = 0.9778 (see Appendix A). A 3.0mm

wide crossover slit was placed at the elliptical crossover focus, and a 6 strip gold MCP

was assembled at a distance of 74mm from the crossover. The 40mm long MCP striplines

provided a spectral range of 7.23Å ≤ λ ≤ 8.98Å in first order, and were pulsed in an

open circuit configuration by a 2.1ns FWHM signal peaked at −344V (over a −300V DC

bias), for a gain FWHM of ≈ 1.1ns. The spectrometer was filtered between the source

and the crystal by 1.5µm of mylar, and between the crystal and MCP by 8.5µm of Be.

Defects in the crystal curvature limited the spectral resolution to λ/∆λ ≈ 600.

The z-pinch performance on these shots was measured by a suite of diagnostics looking

through LOS other than that used by the experimental sample. The primary z-pinch

diagnostic that was utilized for these experiments was an array of filtered x-ray diodes

(XRDs), which provided the pinch power history when normalized by a bolometer viewing

from the same angle on the same line-of-sight.

6.1.2 Experimental Data

Figure 6.3 shows the time-dependent z-pinch power, temperature, and radius from shot

z817 on the Z facility. The time-axis in this figure, and throughout the remainder of this

section, has been shifted so that the peak of the x-ray emission power occurs at 100ns.
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The powers are determined from filtered XRD measurements that have been normalized

by bolometer data. According to this data, z817 produced 1150 ± 230kJ in a 11.8ns

FWHM pulse peaked at 86± 17TW a. The z-pinch radii are determined from models of

the implosion trajectory at times < 93ns, and from experimental data on similar load

geometries at times ≥ 93ns [104] (see footnote (a) on pg. 117). The temperatures were

then determined from the pinch power and radius time histories by assuming that the

z-pinch is a uniform cylindrical surface emitter. The backlighter time-history in the x-ray

range 2.5Å < λ < 12.4Å is also shown in the figure. To illustrate the relative timing,

the peak of this curve has been normalized to the peak of the total x-ray power, and

indicates a backlighter time history of 100 +6:5
−2:3 ns.

Figure 6.4(a) and (b) show the raw film data and associated spectral lineouts as

recorded by the space-integrated time-resolved elliptical crystal spectrometer on shot

z817. The data correspond to frames that span times from 93.3±0.55ns to 103.3±0.55ns

in 2ns intervals on the time base in Figure 6.3. A step-wedge was used to convert the

raw film data from film density units to exposure, where the step-wedge was exposed on

TMAX P3200 film under the same green wavelength as the P43 phosphor used in the

experiment. The lineouts have been processed by the EXRAY code (see Appendix A)

to determine the wavelength scale, and to apply the appropriate corrections for the filter

transmission and the crystal geometry. No reflectivity curves for ADP crystals exist in

the literature, so the data has not been corrected for crystal reflectivity. However, since

the analysis of this data only requires the relative transmission in the spectral range

around the absorption features (7.9Å ≤ λ ≤ 8.4Å), then this correction should have

aFor unknown reasons, the power pulse from this z-pinch was double-peaked and much more extended
than others of a similar geometry. However, it produced a similar total x-ray yield. Since the ride-along
experiment is simply an observer of the output radiation, the reasons behind the z-pinch emission history
are not very important (as long as the emission is well measured).



159

40 50 60 70 80 90 100 110
Time (ns)

40 50 60 70 80 90 100 110
Time (ns)

40 50 60 70 80 90 100 110
Time (ns)

0

20

40

60

80

P
ow

er
 (

T
W

)

Figure 6.3: Z-pinch power, temperature, and radius profiles for shot z817 on Z. The
power is measured by a kimfol filtered XRD normalized to bolometer measurements of
the total radiated energy. The radii are taken from calculations at times < 93ns, and
from self-emission data on similar shots for times ≥ 93ns. The temperature is calculated
from the power and radius profiles assuming the z-pinch is a uniform cylindrical surface
emitter. Also shown in this figure is the time-history of the x-ray emission in the spectral
range 2.5Å < λ < 12.4Å as normalized to the peak of the total z-pinch power (dotted).
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Figure 6.4: (a) Raw film data and (b) normalized spectral lineouts from the TREX
on shot z817. The lineouts have been processed for the film response, filter transmission,
and the crystal geometry.
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little effect on the data analysis (ADP contains no materials that have an absorption

edge in this spectral range).

In order to compare to the calculations of the K-α absorption spectra, the data must

be converted to a relative transmission by the division of an assumed continuum. For

these spectra, that continuum was determined by removing the absorption features, and

filtering the remaining signal by a 0.3Å boxcar filter. The resulting continuum is overlaid

on the data in Figure 6.4. The relative transmission was then calculated by dividing the

measured signal by this continuum, and is shown for each of the time-frames in Figure 6.5.

This is considered an acceptable procedure since the important information about the

sample conditions is contained in the relative intensities of the absorption features, which

are relatively unchanged by the division of the continuum.

Through a statistical comparison between calculated Al absorption spectra and the

relative transmission spectra in Figure 6.5, the possible combinations of temperature and

density in the plasma at times corresponding to each data frame can be determined by

the SPECTROFIT code. Using this code, the weighted χ2 between the unsmoothed

transmission data and SPECT3D calculations was computed for 2627 combinations of

temperature and density over the ranges 10eV ≤ Te ≤ 80eV and 6 × 1018cm−3 ≤ ni ≤
6 × 1023cm−3. The statistical deviations in the intensity of each point in the data, σi,

were determined by assuming Poisson statistics through the relation:

σi = σ0

√
Ii

I0

, (6.1)

where I0 and σ0 are the average intensity and deviation in the range 8.6Å ≤ λ ≤ 8.8Å

and Ii is the intensity at point i. The range used to calculate the average deviation

was chosen because it contained no spectral features, and could be reasonably fit by a

first-order polynomial. Each χ2 comparison was then restricted to the spectral range of
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Figure 6.5: Relative transmission spectra of the Al K-α series from the time-resolved
elliptical crystal spectrometer on shot z817.

the K-α features, where the absolute depths of the measured absorption were allowed to

uniformly vary by ±10% (see footnote (b) on page 122). The resulting χ2 contour plots

for each time frame are shown in Figure 6.6(a)-(f).

As seen in the figures, the tracer temperature increases and/or the density decreases

in the first two frames, and then the contours remain fairly constant throughout the

remainder of the pulse. The χ2 contours in the first frame, t = 93.3 ± 0.55ns, are very

wide due to the low signal level and correspondingly high statistical fluctuations. In

contrast, the contours in the fifth frame, t = 101.3± 0.55ns, are narrow due to the high

signal level and correspondingly low statistical fluctuations.
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Figure 6.6: Contour plots from the SPECTROFIT χ2 comparisons between the data
from shot z817 and calculations of the Al K-α absorption features at times of (a) 93.3±
0.55ns, (b) 95.3 ± 0.55ns, (c) 97.3 ± 0.55ns, (d) 99.3 ± 0.55ns,(e) 101.3 ± 0.55ns,
and (f) 103.3± 0.55ns. The symbols correspond to simulated mass- and time-averaged
conditions in the tracer across each time frame assuming z-pinch emission powers of 80%
(cross), 100% (dot), and 120% (star) of the measured value. The orange shaded regions
correspond to the mass-averaged range of these simulations over each time-frame.
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Figure 6.7: Calculational grid for the VISRAD view-factor model of shot z817 at the
time of peak z-pinch power.

6.1.3 Experiment Modeling

The experiment described in §6.1.1-6.1.2 was modeled using the procedure described in

Chapter 4. As described in that chapter, the first step in simulating the dynamics of the

experiment requires a calculation of the time- and frequency-dependent radiation drive

on the sample surface. These calculations were done using the VISRAD view-factor code.

An example of the 3-D VISRAD grid for the geometry described in §6.1.1 is shown in

Figure 6.7. In this model, the z-pinch radius and power histories from Figure 6.3 were

input as the power source (shown in red on Figure 6.7), and an independent view-factor

calculation was conducted for 37 time-steps over the range 0ns ≤ t ≤ 110ns. It took 6

iterations on these view-factor calculations for the albedos to stabilize, and the resulting

drive power on the sample to converge within 1% on 2 successive iterations (as described

in §4.1).

The resulting albedos of the the outer anode, z-pinch glideplanes, and the primary
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hohlraum (as labeled in Figure 6.7) are shown in Figure 6.8(a), and the final drive power

on the sample surface is shown in Figure 6.8(b). This drive history was calculated for

the nominal (measured) z-pinch power, and reaches a peak radiation power of 0.82TW .

At the time of peak z-pinch emission (t = 100ns), the driving radiation spectrum peaks

at 290eV , and has an average energy of 542eV . At this time, the contributions to the

drive flux from each of the major objects in the view-factor grid were calculated to be;

70% from the z-pinch, 13% from the bottom glide-plane, 9% from the outer anode, and

8% from the primary hohlraum wall.

The drive history from Figure 6.8(b) was applied as a time- and frequency-dependent

radiation boundary condition in radiation-hydrodynamics calculations of the sample re-

sponse. These simulations were done with the BUCKY 1-D Lagrangian rad-hydro code

using multi-angle short-characteristics radiation transport for 500 log-spaced photon en-

ergy groups from 0.1 − 104eV . The opacities of each material were calculated from

PROPACEOS tables that contained 39 temperature points from 0.1 − 100eV , and 41

log-spaced density points from 1019 − 1023cm−3. The equation-of-state for each material

was taken from the SESAME EOS tables. The rad-hydro models were begun at t = 0ns,

and ended at a time of 110ns using a quiet-start vaporization model set at a temperature

of 0.4eV . These calculations (including the view-factor simulations) were then repeated

for each sample assuming the z-pinch power was 20% lower and then 20% higher than

the measured value. This was done to account for the uncertainty in the z-pinch power

measurements, which were shown in §4.1 to be the dominant uncertainty in the calculated

radiation drive.

The mass-averaged temperature-density phase space of the calculated conditions in

the Al foil are shown on the χ2 contour plots in Figures 6.6(a)-(f) over the times cor-

responding to each data frame. These calculations are shown as an orange shaded re-
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Figure 6.8: (a) BUCKY calculated albedo histories used for the final view factor calcu-
lations of shot z817. The albedos are shown for the pinch glideplanes (solid), the primary
hohlraum (dotted), and the outer anode (dashed). (b) VISRAD modeled radiation power
history on the surface of the foam sample on shot z817.
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gion corresponding to the calculated conditions assuming the pinch power ranged from

80− 120% of the nominal value. The calculations are shown in this way because it pro-

vides a quick visual way to compare to the data. If the calculated conditions are going

to be a good approximation to those observed in the experiment, then part of the shaded

region must fall within the +1σ contours. This can be further constrained by calculating

the conditions in the foils averaged over the time in the data frame as weighted by the

backlighter and micro-channel-plate pulse histories. These points are over-plotted on

each contour plot as a symbol corresponding to assumed pinch powers of; 80%, 100%,

and 120% of the nominal value. Since the data recorded on the spectrometers are truly

a measure of the mass- and time-averaged conditions over each time-frame, then these

points are the best diagnostic of the comparison between the data and the rad-hydro

models.

The phase-space plots in Figures 6.6(a)-(f) reveal an interesting feature of the calcu-

lated dynamics. Early in time, t < 99ns, the conditions in the tracer as derived from

the experimental data can only be fit by the calculations assuming a pinch power that is

higher than the nominal value. In particular, the contours at t = 95.3±0.55ns show that

the data can only be fit within 1σ by assuming a pinch power that is higher by 20% (the

full extent of the quoted error bar in the power measurement). At later times, however,

the data can be fit within +1σ by pinch powers anywhere within the uncertainties in the

power measurement. This is true even for the +1σ contour at t = 101.3± 0.55ns, which

is quite narrow. The reason for this difference in the graphical comparison between

the measured and calculated plasma conditions is in the orientation of the calculated

phase-space. In Figures 6.6(a)-(c) this phase-space is oriented almost directly along the

temperature axis. Physically, this implies that the Al has expanded to some equilib-

rium with the surrounding plasma, and any additional radiation goes into heating the
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Al without any rapid hydrodynamic motion. In Figures 6.6(d)-(f), the phase-space tilts

to almost align with the +1σ contour. The interesting thing about this tilting is that

the calculated conditions under the higher power radiation drive are actually at a higher

density. This implies the presence of an ablatively driven shock front. The higher the

driving radiation power on the surface of the foam, the stronger the shock front is, and

the quicker it reaches the position of the Al tracer.

Figure 6.9 shows the time history of the average temperatureb and density in the Al

layer as calculated by BUCKY assuming a pinch emission power that was 10% higher

than the nominal value at all times. The figure indicates that the temperature slowly

increases to about 15eV at t ≈ 94ns, and then rapidly increases up to a peak of about

38eV at a time of 102.5ns. Meanwhile, the density decreases to a minimum value of

about 7× 1019cm−3 at t ≈ 97ns and then the plasma re-compresses to a value of about

4× 1020cm−3 at t ≈ 106ns. This increase in density is due to the passage of the ablative

shock front as discussed above. Note, however, that the slope of the compression is not

very steep, indicating that the shock front is not very strong.

To further investigate the details of the calculated dynamics in the CH2 foam, Figures

6.10(a) and (b) show the spatial profiles of the electron temperature and ion density in

the sample at times of 93ns, 95ns, 97ns, 99ns, 101ns, and 103ns (corresponding to

the frames in the time-resolved data). Again, these calculations were done assuming a

pinch emission power that was 10% higher than the nominal value at all times. Early in

time, the calculations predict a large gradient in the temperature and density of the Al

(≈ 8eV and ≈ 6× 1019cm−3). At later times the temperature gradients drop to < 2eV ,

and almost no gradient in the density. In addition, the ion density in the CH2 shows the

presence of multiple shocks; a weak ablatively driven shock coming from the left side of

bThe electron and ion temperatures were calculated to be in close equilibrium.
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Figure 6.9: Mass averaged temperature (solid) and density (dotted) conditions in the
Al tracer on shot z817 as calculated by BUCKY.

the figure, and two stronger shocks diverging from the Al tracer. The latter two are due

to a compression of the CH2 as the Al expands. As seen in the temperature profiles,

the Al tracer is at a higher temperature than the surrounding foam for each of the time

frames in the figure. As discussed in detail in Chapter 5, this is due to the frequency-

dependent radiation heating of the Al layer. As this layer heats up, its internal pressure

increases causing it to expand at a faster rate than the surrounding materials.

To better visualize these important hydrodynamics, Figure 6.11 shows the time-

dependent mass contours calculated by BUCKY for the entire foam sample. As the

Al is heated, it first expands into the lower density CH2 foam in front of it before build-

ing enough pressure against the CH substrate to cause it to move. When the CH finally

does release, it launches a shock into the rear portion of the foam sample, which quickly

dissipates. Later in time, t ≈ 98ns, the ablatively driven shock reaches the tracer layer,

compresses it by about a factor of 5, and sweeps it toward the back of the sample.
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These dynamics are rather complex, but the phase-space plots indicate that the resulting

conditions in the Al tracer are in good agreement with the recorded data.

As alluded to above, all these dynamics are driven by the frequency-dependent heating

of the CH2 foam and the Al tracer. The dominant mechanism for radiation heating in the

Al layer is photo-ionization out of the L-shell (hν ≈ 200− 300eV ), which lies just below

the carbon K-edge (hν ≈ 300 − 400eV ). To illustrate, Figure 6.12 shows the radiation

spectrum at the boundary between the foam and the tracer overlaid with the opacities of

the CH2 and Al on either side of the boundary. These plots are shown for a simulation

time of 98.0ns. As seen in the figure, the radiation spectrum is sharply peaked in the

range 220eV ≤ hν ≤ 300eV . This is due to a filtering of the drive spectrum by the carbon

K-shell. By the time the radiation field has penetrated the 0.5mg/cm2 thickness of the

CH2 foam, those frequencies that are easily absorbed by the carbon have already been

filtered out, and the resulting spectrum propagates through the deeper portions of the

foam without much interaction. However, this filtered spectrum is sharply peaked at the

location of the Al L-shell, which has a high photo-ionization cross-section. This results

in a situation where the Al has a much higher reaction rate with the radiation spectrum

than the adjacent CH2, and the tracer is therefore heated to a higher temperature than

the surrounding foam.

As a final check on the comparison between the calculated Al conditions and those

recorded in the experiment, Figure 6.13 shows the time-resolved absorption spectra on

shot z817 overlaid by the spectra calculated from the radiation-hydrodynamics model

assuming a 10% increase in the z-pinch emission powers over the nominal values. The

calculations are done with the SPECT3D spectral post-processing code using a detailed

configuration analysis (DCA) of the Al at the temperatures and densities dictated by the

rad-hydro calculation. Each spectrum is calculated under an assumption of LTE, and is
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Figure 6.10: (a) Electron temperature and (b) ion density profiles in the experimental
sample on shot z817 as calculated by BUCKY for times of 93ns (black), 95ns (red), 97ns
(green), 99ns (blue), 101ns (purple), and 103ns (orange).
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Figure 6.12: BUCKY calculated radiation spectrum (black) at the boundary between
the CH2 foam and Al tracer at a simulation time of 98.0ns. Also shown are the multi-
group opacities of the CH2 (red) and Al (blue) on either side of the boundary.

averaged over the times corresponding to the data as weighted by the time-dependent

intensity of the backlighter and the micro-channel-plate pulse history. As seen in the

figures, the measured and calculated spectra are in fair agreement. Frames 3-6 are

calculated to be within 1σ of the minimum χ2 found in the SPECTROFIT analysis.

Frames 1 and 2 were calculated to have a χ2 of 2.04 and 2.57, where the minimum χ2 in

the SPECTROFIT analysis was found to be 0.79 and 1.31 respectively. That places the

statistical fit of these two frames just outside the 1σ probability.

There are a few possible reasons for this minor discrepancy. First, the 1σ level only

contains ≈ 68.3% of the probability of a given measurement. Thus, there is a ≈ 31.7%

probability that the actual charge states in the plasma are indicative of a spectrum that is

outside the 1σ level (but less than a 5% probability it is outside 2σ). Second, the first and
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Figure 6.13: Comparison between the SPECT3D calculated relative transmission spec-
tra (red) and the time-resolved data from shot z817.

second frames in the data show an unusually wide (and noisy) dip in the intensity around

the C-like K-α feature. The origin of this ‘defect’ is not known, but it is responsible for

putting the goodness-of-fit outside the 1σ level. Finally, it is possible that the assumed

z-pinch power is too low early in time. This is the most difficult domain in which to

unfold the true z-pinch power from the XRD data. The spectra from the z-pinch is much

different 6ns before peak emission than it is at the peak, and the XRD unfolds rely on

a normalization with integrated energy measurements recorded by a set of bolometers.

Since the XRD filtering makes their response sensitive to the incident spectrum, and the

normalizations are optimized for the response at peak z-pinch emission, it is very possible
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that the relative difference between the early and late z-pinch powers are not precisely

represented by the XRDs.

Regardless, given the uncertainties in the data and the calculations, the temperature-

density phase-space plots overlaid on the χ2 contours in Figure 6.6 demonstrate that the

experimental data from shot z817 can be adequately reproduced by the computational

methods and associated data tables as applied in this section.

6.2 Time-Resolved Measurements of Separated Al

and MgF2 Tracers

6.2.1 Experiment Configuration

The second experiment on the radiative transfer in CH2 foam measured the time-dependent

absorption spectra of both Al and MgF2 tracers fielded in the ride-along geometry on

shot z874. Table 6.2 lists the important parameters of the experiment configuration for

the quantities as defined in Figure 5.1, and Figure 6.14 shows a schematic of the foam

sample. The sample was composed of 5mg/cc CH2 foam that was 8.76mm wide, 8.76mm

tall, and 1.676mm thick. An Al tracer layer was placed at a depth of 0.838mm (halfway

into the foam), and a MgF2 tracer layer was placed at a depth of 1.676mm (the back

of the sample). The Al tracer was composed of a 1508Å layer of Al on a 4754Å CH

substrate, and the MgF2 tracer was composed of a 2932Å layer of MgF2 on a 9700Å CH

substrate. The thicknesses of the tracer foils were verified by a profilometer, which was

calibrated by a quartz gauge. A limiting aperture was placed between the spectrometer

and the sample to provide a 5.0mm wide by 4.0mm tall field-of-view about the center

of the foam. The sample was constructed of two separate sections of CH2 foam that
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Shot # rp (mm) hp (mm) Wire # Wire
Diam. ws (mm) d (mm) wa (mm) ha (mm)

z874 10 10 90 20.69µm 5.6 32.0 5.0 4.0

Table 6.2: Geometric parameters and z-pinch configurations for the foam transport
experiment on shot z874. z874 was a single array tungsten z-pinch with no central
target.

Figure 6.14: Schematic diagram of the foam sample geometry for the ride-along exper-
iment on shot z874.

were cast into steel frames with a 0.838mm thickness. The tracer layers were attached

to the back of each frame (with the metal foil facing inside), and the CH2 foam was

cast inside the frames. After the foam gelled and before it completely solidified, a flat

scalpel was used to shear off the excess foam material to provide a flat surface along the

front edges. After the foam was solidified, the frames were attached together to create

the total 1.676mm thick sample with an Al tracer halfway in and a MgF2 tracer at the

back. Figure 6.15 shows pictures of the pinch-facing surface of each foam frame before

they were assembled together.

Absorption spectra through the Al and MgF2 tracer layers were taken by a time-
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Figure 6.15: Photographs of the pinch facing surface of the (a) front and (b) back
sections of the foam target on shot z874.

resolved elliptical crystal spectrometer (TREX). In this spectrometer, a Mica crystal

with a 2d spacing of 19.84Å was bent to an elliptical curvature that had a 4100.0mm

focal length and an eccentricity of ε = 0.9927 (see Appendix A). A 3.0mm wide crossover

slit was placed at the elliptical crossover focus, and a 6 strip gold MCP was assembled

at a distance of 76.3mm from the crossover. The 40mm long MCP striplines provided

a spectral range of 6.1Å ≤ λ ≤ 10.0Å in first order, and were pulsed in an open circuit

configuration by a 2.1ns FWHM signal peaked at −325V (over a −200V DC bias), for

a gain FWHM of ≈ 1.1ns. The spectrometer was filtered between the source and the

crystal by 1.5µm of mylar, and between the crystal and MCP by 8.5µm of Be. Defects

in the crystal curvature limited the spectral resolution to λ/∆λ ≈ 600.

The z-pinch performance on these shots was measured by a suite of diagnostics looking

through LOS other than that used by the experimental sample. The primary z-pinch

diagnostic that was utilized for these experiments was an array of filtered x-ray diodes

(XRDs), which provided the pinch power history when normalized by a bolometer viewing
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from the same angle on the same line-of-sight.

6.2.2 Experimental Data

Figure 6.16 shows the time-dependent z-pinch power, temperature, and radius from shot

z874 on the Z facility. The time-axis in this figure, and throughout the remainder of

this section, has been shifted so that the peak of the x-ray emission power occurs at

100ns. The powers are determined from kimfol filtered XRD measurements that have

been normalized by bolometer data. According to this data, z874 produced 810± 162kJ

in a 8.7ns FWHM pulse peaked at 67 ± 13TW . The power pulse from this z-pinch is

extended because of the low number of wires in the array, which is known to cause a

wider and lower power x-ray output than an array with ≈ 300 wires. The z-pinch radii

are determined from models of the implosion trajectory for low wire-number z-pinches at

times < 93ns, and from experimental data on similar load geometries for times ≥ 93ns.

The temperatures were then determined from the pinch power and radius time histories

by assuming that the z-pinch is a uniform cylindrical surface emitter. The backlighter

time-history in the x-ray range 2.5Å < λ < 12.4Å is also shown in the figure. To illustrate

the relative timing, the peak of this curve has been normalized to the peak of the total

x-ray power, and indicates a backlighter time history of 100 +3:0
−2:2 ns.

Figure 6.17(a) and (b) show the raw film data and associated spectral lineouts as

recorded by the space-integrated time-resolved elliptical crystal spectrometer on shot

z817. The data correspond to frames that span times from 92.0±0.55ns to 102.0±0.55ns

in 2ns intervals on the time base in Figure 6.3. A step-wedge was used to convert the

raw film data from film density units to exposure, where the step-wedge was exposed

on TMAX P3200 film under the same green wavelength as the P43 phosphor used in

the experiment. The lineouts in the figure have been processed by the EXRAY code (see
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Figure 6.16: Z-pinch power, temperature, and radius profiles for shot z874 on Z. The
power is measured by a kimfol filtered XRD normalized to bolometer measurements of
the total radiated energy. The radii are taken from calculations at times < 93ns, and
from self-emission on similar shots for times ≥ 93ns. The temperature is calculated
from the power and radius profiles assuming the z-pinch is a uniform cylindrical surface
emitter. Also shown in this figure is the time-history of the x-ray emission in the spectral
range 2.5Å < λ < 12.4Å as normalized to the peak of the total z-pinch power (dotted).
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Figure 6.17: (a) Raw film data and (b) normalized spectral lineouts from the TREX
on shot z874. The lineouts have been processed for the film response, filter transmission,
crystal reflectivity, and the crystal geometry.
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Appendix A) to determine the wavelength scale, and to apply the appropriate corrections

for the filter transmission, crystal reflectivity, and the crystal geometry.

One area of complication experienced in the data reduction process was in applying

the appropriate crystal reflectivity corrections. As seen in Figure 6.17(a), there is an

absorption edge in the Mica crystal at λ ≈ 7.8Å corresponding to the Al constituent

in Mica (≈ 14% by number). This edge is not well defined by published models of

the reflectivity [7], but occurs in a critical spectral location for understanding the Al

absorption features. To account for this edge, a three curve fit was applied to the data

continuum in frame 1 (t = 92ns) over the range 7.85Å ≤ λ ≤ 8.45Å. This frame

was used because the absorption features are the farthest away from the edge, and are

relatively weak. The data (processed only by the filter and crystal geometry corrections)

and resulting curve fit are shown in Figure 6.18. The fit was done by assuming a third

order polynomial in the range 7.85Å ≤ λ ≤ 7.9Å, a first order polynomial in the range

7.9Å ≤ λ ≤ 7.934Å, and a third order polynomial in the range 7.964Å ≤ λ ≤ 8.45Å. For

each time frame, this fit was scaled by the average intensity of the data over the range of

fit, and then divided into the data to remove the structure. The remainder of the data

was then scaled by a constant to make a smooth transition at 7.85Å and 8.45Å.

In order to compare to the calculations of the K-α absorption spectra, the data must

be converted to a relative transmission by the division of an assumed continuum. For

these spectra, that continuum was determined by removing the absorption features, and

filtering the remaining signal by a 0.3Å boxcar filter. The resulting continuum is overlayed

on the data in Figure 6.17. The relative transmission was then calculated by dividing

the measured signal by this continuum, and is shown for each of the time-frames in

Figure 6.19. This is considered an acceptable procedure since the important information

about the sample conditions is contained in the relative intensities of the absorption
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Figure 6.18: Data lineout from frame 1 in Figure 6.17(a) processed for filter transmission
and crystal geometry (solid), and a 3 curve fit to the Al absorption edge in Mica (dashed).

features, which are relatively unchanged by the division of the continuum.

One interesting note regarding the continuum shown in Figure 6.17(b) is the emis-

sion/absorption feature at 9.0Å. This feature is at too short of a wavelength to be an

absorption edge in Mg or F , and too long of a wavelength to be from Al. In addition,

there are no known absorption edges in the Mica crystal at this wavelength. Thus, the

origin of this spectral feature is unknown. The most likely origin is a macroscopic defect

on the surface of the crystal, which limits the amount of radiation that hits the crystal

in the range just under the ‘edge’. Again, since the important information about the

sample conditions is contained in the relative intensities of the absorption features that

are far from the location of this feature, it should have little effect on the data analysis.

Through a statistical comparison between calculated Al and MgF2 absorption spec-

tra and the relative transmission spectra in Figure 6.19, the possible combinations of

temperature and density in the plasma at times corresponding to each data frame and
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Figure 6.19: Relative transmission spectra of the (a) Al and (b) Mg K-α series from
the time-resolved elliptical crystal spectrometer on shot z874.
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each tracer layer can be determined by the SPECTROFIT code. Using this code,

the weighted χ2 between the unsmoothed transmission data and SPECT3D calcula-

tions was computed for 2627 combinations of temperature and density over the ranges

10eV ≤ Te ≤ 80eV and 6 × 1018cm−3 ≤ ni ≤ 6 × 1023cm−3 for the Al calculations, and

2220 combinations of temperature and density over the ranges 1eV ≤ Te ≤ 60eV and

6 × 1018cm−3 ≤ ni ≤ 6 × 1023cm−3 for the MgF2 calculations. The statistical devia-

tions in the intensity of each point in the data were determined by assuming Poisson

statistics through the relation given in Eq. 6.1, where σ0 was calculated over the range

9.1Å ≤ λ ≤ 9.3Å. Each χ2 comparison was then restricted to the spectral range of

the Al or Mg K-α features, where the absolute depths of the measured absorption were

allowed to uniformly vary by ±10% (see footnote (b) on page 122). The resulting χ2

contour plots for each time frame are shown in Figure 6.20(a)-(f) for the Al spectra and

Figure 6.21(a)-(f) for the Mg spectra.

As seen in Figure 6.20, the Al tracer temperature increases and/or the density de-

creases up to t = 100ns, and then the contours remain fairly constant. In contrast,

Figure 6.21 shows that the MgF2 tracer remains cold up to t = 98ns and then increases

in temperature and/or expands up through t = 102ns. For the Mg absorption data, the

data in frame 1 (t = 92± 0.55ns) was too weak and erratic for a meaningfull χ2 calcula-

tion. The data in frames 2 and 3 could be fit to calculated Mg absorption features even

though no K-α features are observable in the data (since the lack of absorption is also a

usefull diagnosticc). The data in frame 4 showed a strange dip around the F-like Mg K-α

line, which the χ2 fitting took to fit better in the presence of the calculated F-like K-α

line. SPECTROFIT therefore found a closed +1σ contour around Te ≈ 6− 10eV . This

cnote that the minimum χ2 for these comparisons is very close to 1, which provides confldence in the
calculated standard deviations in the data.
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Figure 6.20: Contour plots from the SPECTROFIT χ2 comparisons between the Al
data from shot z874 and calculations of the Al K-α absorption features at times of (a)
92.0±0.55ns, (b) 94.0±0.55ns, (c) 96.0±0.55ns, (d) 98.0±0.55ns,(e) 100.0±0.55ns,
and (f) 102.0± 0.55ns. The symbols correspond to simulated mass- and time-averaged
conditions in the tracer across each time frame assuming z-pinch emission powers of 80%
(cross), 100% (dot), and 120% (star) of the measured value. The orange shaded regions
correspond to the mass-averaged range of these simulations over each time-frame.
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Figure 6.21: Contour plots from the SPECTROFIT χ2 comparisons between the MgF2

data from shot z874 and calculations of the Mg K-α absorption features in a MgF2 plasma
at times of (a) 92.0± 0.55ns, (b) 94.0± 0.55ns, (c) 96.0± 0.55ns, (d) 98.0± 0.55ns,(e)
100.0± 0.55ns, and (f) 102.0± 0.55ns. The symbols correspond to simulated mass- and
time-averaged conditions in the tracer across each time frame assuming z-pinch emission
powers of 80% (cross), 100% (dot), and 120% (star) of the measured value. The blue
shaded regions correspond to the mass-averaged range of these simulations over each
time-frame.
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may simply be an artifact in the data, and should not be given a great deal of weight.

To better relate the Al conditions to those in the MgF2, the +1σ contour for each

tracer are plotted together for each time frame in Figure 6.22(a)-(f). As one might expect,

the MgF2 tracer, which is 0.838mm deeper into the CH2 foam, remains colder than the

Al tracer at all times, and it takes longer to heat-up.

6.2.3 Experiment Modeling

The experiment described in §6.2.1-6.2.2 was modeled using the procedure described in

Chapter 4. As described in that chapter, the first step in simulating the dynamics of the

experiment requires a calculation of the time- and frequency-dependent radiation drive

on the sample surface. These calculations were done using the VISRAD view-factor code.

An example of the 3-D VISRAD grid for the geometry described in §6.2.1 is shown in

Figure 6.23. In this model, the z-pinch radius and power histories from Figure 6.16 were

input as the power source (shown in red on Figure 6.23), and an independent view-factor

calculation was conducted for 31 time-steps over the range 0ns ≤ t ≤ 110ns. It took 5

iterations on these view-factor calculations for the albedos to stabilize, and the resulting

drive power on the sample to converge within 1% on 2 successive iterations (as described

in §4.1).

The resulting albedos of the the outer anode, z-pinch glideplanes, and the primary

hohlraum (as labeled in Figure 6.23) are shown in Figure 6.24(a), and the final drive power

on the sample surface is shown in Figure 6.24(b). This drive history was calculated for

the nominal (measured) z-pinch power, and reaches a peak radiation power of 0.97TW .

At the time of peak z-pinch emission (t = 100ns), the driving radiation spectrum peaks

at 310eV , and has an average energy of 537eV . At this time, the contributions to the

drive flux from each of the major objects in the view-factor grid were calculated to be;
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Figure 6.22: +1σ contours from the SPECTROFIT χ2 comparisons between the Al
(black) and MgF2 (red) data from shot z874 and calculations of the K-α absorption
features at times of (a) 92.0± 0.55ns, (b) 94.0± 0.55ns, (c) 96.0± 0.55ns, (d) 98.0±
0.55ns,(e) 100.0± 0.55ns, and (f) 102.0± 0.55ns. The points correspond to mass- and
time-averaged plasma conditions from BUCKY rad-hydro calculations assuming z-pinch
emission powers of 80% (cross), 100% (dot), and 120% (star) of the measured value.
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Figure 6.23: Calculational grid for the VISRAD view-factor model of shot z874 at the
time of peak z-pinch power.

74% from the z-pinch, 12% from the bottom glide-plane, 8% from the outer anode, and

6% from the primary hohlraum wall.

The drive history from Figure 6.24(b) was applied as a time- and frequency-dependent

radiation boundary condition in radiation-hydrodynamics calculations of the sample re-

sponse. These simulations were done with the BUCKY 1-D Lagrangian rad-hydro code

using multi-angle short-characteristics radiation transport for 500 log-spaced photon en-

ergy groups from 0.1 − 104eV . The opacities of each material were calculated from

PROPACEOS tables that contained 39 temperature points from 0.1 − 100eV , and 41

log-spaced density points from 1019−1023cm−3. The equation-of-state for the CH2, CH,

and Al materials were taken from the SESAME EOS tables and those for the MgF2

were taken from QEOS calculations. The rad-hydro models were begun at t = 0ns, and

ended at a time of 110ns using a quiet-start vaporization model set at a temperature of

0.4eV . These calculations (including the view-factor simulations) were then repeated for
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Figure 6.24: (a) BUCKY calculated albedo histories used for the final view factor
calculations of shot z874. The albedos are shown for the pinch glideplanes (solid), the
primary hohlraum (dotted), and the outer anode (dashed). (b) VISRAD modeled radi-
ation power history on the surface of the foam sample on shot z874.
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each sample assuming the z-pinch power was 20% lower and then 20% higher than the

measured value. This was done to account for the uncertainty in the z-pinch power mea-

surements, which were shown in §4.1 to be the dominant uncertainty in the calculated

radiation drive.

The mass-averaged temperature-density phase space of the calculated conditions in

the Al foil are shown on the χ2 contour plots in Figures 6.20(a)-(f) over the times cor-

responding to each data frame. Likewise, The mass-averaged temperature-density phase

space of the calculated conditions in the MgF2 foil are shown on the χ2 contour plots

in Figures 6.21(a)-(f). These calculations are shown as a shaded region corresponding

to the calculated conditions assuming the pinch power ranged from 80 − 120% of the

nominal value. The calculations are shown in this way because it provides a quick visual

way to compare to the data. If the calculated conditions are going to be a good approx-

imation to those observed in the experiment, then part of the shaded region must fall

within the +1σ contours. This can be further constrained by calculating the conditions

in the foils averaged over the time in the data frame as weighted by the backlighter and

micro-channel-plate pulse histories. These points are over-plotted on each contour plot

and the +1σ contour plots in Figures 6.22(a)-(f) as a symbol corresponding to assumed

pinch powers of; 80%, 100%, and 120% of the nominal value. Since the data recorded

on the spectrometers are truly a measure of the mass- and time-averaged conditions over

each time-frame, then these points are the best diagnostic of the comparison between the

data and the rad-hydro models.

The plots in Figures 6.22(a)-(f) represent a significant improvement in the experimen-

tal constraints over those from the experiment on shot z817. Namely, if the calculations

are going to be a good representation of the experimental conditions, they must simulta-

neously reproduce the spectral features in two different tracers at two separate locations
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within the experimental sample. In addition, there are six time-frames over the z-pinch

pulse that this comparison can be made, five of which contain useful data in both the

Al and MgF2. As seen in Figure 6.22, the data from each of these time-frames and each

of these tracers can be represented within 1σ by the rad-hydro calculations for z-pinch

powers that range somewhere between 100− 120% of the nominal values.

With these constraints in place, the models can be used to investigate the dynamics

happening in the sample. Figure 6.25 shows the time history of the average temperatured

and density in the Al and MgF2 layers as calculated by BUCKY assuming a pinch

emission power that was 10% higher than the nominal value at all times. The figure

indicates that the Al slowly heats to a temperature of about 12eV at t ≈ 90ns, and then

increases during the main drive pulse up to a peak of about 41eV at a time of 103ns. The

MgF2 stays at a very low temperature (< 3eV ) up to a time of 96ns, and then increases

to a peak of about 33eV at t ≈ 107ns with approximately the same slope as the heating

in the Al layer. Meanwhile, the density in the Al decreases to a minimum value of about

1 × 1020cm−3 at t ≈ 85 − 90ns and then the plasma re-compresses to a value of about

4 × 1020cm−3 at t ≈ 98ns. The density in the MgF2 decreases to a minimum of about

2 × 1020cm−3, and then rapidly re-compresses to a peak density of about 4 × 1020cm−3

at t ≈ 109ns. This re-compression of the two tracer layers is due to the passage of an

ablative shock front as discussed in §6.1.3.

To further investigate the details of the calculated dynamics in the CH2 foam and each

of the tracers, Figures 6.26(a) and (b) show the spatial profiles of the electron temperature

and ion density in the sample at times of 92ns, 94ns, 96ns, 98ns, 100ns, and 102ns

(corresponding to the frames in the time-resolved data). Again, these calculations were

done assuming a pinch emission power that was 10% higher than the nominal value at all

dThe electron and ion temperatures were calculated to be close equilibrium.
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Figure 6.25: Mass averaged temperature (solid) and density (dotted) conditions in the
Al (black) and MgF2 (red) tracers on shot z874 as calculated by BUCKY.

times. The dynamics of the Al tracer are very similar to those discussed in §6.1.3. Early

in time, the calculations predict a large gradient in the temperature and density of the Al

(≈ 8eV and ≈ 2× 1020cm−3). At later times the temperature gradients drop to < 2eV ,

and almost no gradient in the density. As the tracer heats up above the temperature

of the surrounding CH and CH2, it launches a shock wave into each material, which

propagate away from the Al.

The MgF2 layer shows a much more complicated set of features. The temperature

profile is fairly flat and cold early in time, and then heats up to an average temperature

of about 20eV with a ≈ 10eV gradient at t = 102ns. The density of the MgF2 shows a

strong discontinuity early in time as the tracer tries to expand against the cold CH2 foam

in front of it and the CH substrate behind it. This expansion launches a shock wave in

each material, which propagates away from the MgF2 tracer. As in the case of the Al

tracer both in this experiment and on shot z817, the MgF2 heats to higher temperatures
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than the CH2 foam directly in front of it.

To better visualize the important hydrodynamics, Figure 6.27 shows the time-dependent

mass contours calculated by BUCKY for the experiment on shot z874. The Al layer ex-

pands primarily into the lower density CH2 foam in front of it, and is seen to have

already started expanding by t = 70ns. This expansion launches a small shock into the

CH2 foam, and pushes the CH substrate toward the back of the sample. In contrast,

the MgF2 layer does not begin to move until about 88ns, at which time it also expands

primarily into the CH2 foam in front of it. In doing so, however, the pressure in the

colder CH2 foam and CH substrate resist, which launches a shock in the MgF2 layer

(that was seen in the density discontinuity in Figure 6.26(b)). At a time of about 87ns,

the ablatively driven shock coming from the front surface of the sample reaches the Al

tracer layer, compresses it by about a factor of 4, and sweeps it toward the back of the

sample. This shock front then propagates deeper into the sample, and reaches the MgF2

layer at a time of about 106ns. The MgF2 is compressed by about a factor of 2, and

then is also swept toward the back.

Even though the dynamics of the CH2 sample and the embedded tracers are rather

complex, the phase-space plots in Figure 6.22 indicate that the resulting conditions calcu-

lated in the Al and MgF2 tracers are in good agreement with the recorded data. As has

been discussed and demonstrated throughout this thesis, these dynamics are influenced

primarily by the driving radiation and the associated transfer of that radiation through

the sample. To illustrate some details of the radiative transfer process, Figure 6.28(a)-(c)

show calculations of the frequency dependent spectra, opacities, and net radiation heat-

ing at a few different places throughout the sample at the time of peak z-pinch power

(t = 100ns). Figure 6.28(a) shows the radiation spectrum at the front boundary of the Al

tracer, the back boundary of the Al tracer, and the front boundary of the MgF2 tracer.
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Figure 6.26: (a) Electron temperature and (b) ion density profiles in the experimental
sample on shot z874 as calculated by BUCKY for times of 92ns (black), 94ns (red), 96ns
(green), 98ns (blue), 100ns (purple), and 102ns (orange).
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Figure 6.28(b) shows the opacity of the CH2 just in front of the Al and just in front of

the MgF2, as well as the Al and MgF2 opacities at the front of each tracer. Finally,

Figure 6.28(c) shows the frequency-dependent net radiation heating at the front of the

Al and MgF2 tracers.

As seen in Figure 6.28(a), the spectrum at the front boundary of the Al tracer is

strongly peaked in the range 200eV < hν < 300eV . As discussed in §6.1.3, these are the

energies just below the carbon K-edge. The spectrum at the back of the Al
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Figure 6.28: Frequency-dependent features of the BUCKY rad-hydro model of the
experiment on shot z874 at a time of 100ns. (a) Multi-group radiation energy density
at the front boundary of the Al tracer (black), the back boundary of the Al tracer (red),
and the front boundary of the MgF2 tracer (blue). (b) Multi-group CH2 opacity just in
front of the Al (black) and just in front of the MgF2 (green) along with the Al (red) and
MgF2 (blue) opacities at the front of each tracer. (c) Multi-group net radiation heating
at the front of the Al (black) and MgF2 (red) tracers.
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As a final check on the comparison between the calculated Al and MgF2 conditions

and those recorded in the experiment, Figure 6.29 shows the time-resolved absorption

spectra on shot z874 overlaid by the spectra calculated from the radiation-hydrodynamics

model assuming a 10% increase in the z-pinch emission powers over the nominal values.

The calculations are done with the SPECT3D spectral post-processing code using a

detailed configuration analysis (DCA) of the Al and MgF2 at the temperatures and

densities dictated by the rad-hydro calculation. Each spectrum is calculated under an

assumption of LTE, and is averaged over the times corresponding to the data as weighted

by the time-dependent intensity of the backlighter and the micro-channel-plate pulse

history.

First consider the Al K-α spectra. As seen in the figures, the measured and calculated

spectra are in fair agreement. With the exception of frame 1, each spectrum is calculated

to be within 1σ of the minimum χ2 found in the SPECTROFIT analysis. Moreover,

frames 2, 3, and 4 were found to have a χ2 value that was less than the minimum. This

is due to temperature and density gradients in the tracers that are accounted for in the

rad-hydro model, but not in the SPECTROFIT analysis. The χ2 between the calculated

and measured spectra in frame 1 was found to be 2.18 compared to the minimum of 1.08.

This is just outside the 1σ level, but is considered a reasonable fit given the low signal

level and erratic ‘absorption’ features in that frame.

The comparison between the calculated and measured Mg K-α spectra is also quite

good. The χ2 between the spectra in each frame was calculated to be within 1σ of the

minimum found in the SPECTROFIT analysis. In this case, both frames 5 and 6 were

found to have a χ2 that was less than the minimum. Again, this is due to gradients

in the temperature and density in the MgF2 tracer that are not accounted for in the

SPECTROFIT analysis.
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Figure 6.29: Comparison between the SPECT3D calculated relative transmission spec-
tra (red) and the time-resolved data from shot z874 in the (a) Al and (b) MgF2 tracers.
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Therefore, given the uncertainties in the data and the calculations, the comparisons

in Figures 6.22 and 6.13 demonstrate that the experimental data from shot z874 in both

the Al and MgF2 can be adequately reproduced by the computational methods and

associated data tables as applied in this section.
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6.3 Measurements of Multiple MgF2 Tracers

6.3.1 Experiment Configuration

The third experiment on the radiative transfer in CH2 foam measured the time-dependent

absorption spectra of MgF2 tracers at four different depths within three separate samples

on shot z1122. Table 6.3 lists the important parameters of the experiment configuration

for the quantities as defined in Figure 5.1, and Figure 6.30 shows a schematic of the foam

samples. The three samples were composed of 5mg/cc CH2 foam that were stepped

with two different thicknesses. The steps were 8mm wide, 3mm tall, and separated by

an optically thick steel bar that was 2mm tall. Each sample had one step that was

0.5mm thick (ρx = 0.25mg/cm2), and a second step that was different for each sample.

This second step was 1.0mm thick (ρx = 0.5mg/cm2) on LOS 13/14, 1.5mm thick

(ρx = 0.75mg/cm2) on LOS 21/22, and 2.0mm thick (ρx = 1.0mg/cm2) on LOS 1/2.

MgF2 tracer foils were placed on the back side of each step, and were composed of a

1010Å MgF2 layer on the foam facing side of a 1.015µm CH substrate. The thicknesses

of the tracer foils were verified by a profilometer, which was calibrated by a quartz gauge.

An aperture was placed between the spectrometer and the sample to provide a 7.0mm

wide by 10.0mm tall field-of-view about the center of the foam. In this case, the 4.5mm

width of the REH in the primary hohlraum acted as the limiting aperture width.

The samples were constructed by mounting the MgF2 tracers on a steel frame that

was, 0.5mm, 1.0mm, or 1.5mm thick, and had two windows each 8mm wide and 3mm

tall. The tracers were placed on the front of the bottom window and the back of the

top window, each with the MgF2 layer facing the front of the frame. A diamond-turned

steel platform that was 0.5mm thick was used to space the foil frame from the front of a

larger foam frame, and the foil frame was epoxied into place. The foam frame was then
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Shot # rp (mm) hp (mm) Wire # Wire
Diam. ws (mm) d (mm) wa (mm) ha (mm)

z1122
20 outer

10 inner
12

240 outer

120 inner
7.8µm 4.8 48.0 7.0 10.0

Table 6.3: Geometric parameters and z-pinch configuration for the foam transport
experiment on shot z1122. z1122 was a nested array tungsten z-pinch with a 2.5mm
radius, 14mg/cc CH2 foam central target.

filled from the front with the 5mg/cc CH2 foam solution, which formed a stepped sample

that had a differential thickness equal to the thickness of the steel foil frame. After the

foam gelled and before it completely solidified, a flat scalpel was used to shear off the

excess foam material to provide a flat surface along the front edge. Figure 6.31(a)-(c)

show front- and back-lit pictures of the pinch facing surface of the foam sample from

each LOS.

Absorption spectra through the MgF2 tracer layers were taken by a space-resolved

time-integrated convex crystal spectrometer (TIXTL) on each LOS. The spectrometers

were fielded with a source-to-crystal distance of 455cm, and a crystal-to-film distance of

7.1cm. Each contained a potassium acid phlalate (KAP) crystal with a 2d spacing of

26.62Å, which were rotated to center the spectral range on a wavelength of 9.1Å. The

crystals were bent to a 101.6mm radius on LOS 13/14 and LOS 21/22, and a 50.8mm

radius on LOS 1/2, which provided a spectral resolution of ≈ 700 on LOS 1/2 and ≈ 850

on the other two LOS. Each was filtered between the crystal and film by 8.5µm of Be.

In addition, each spectrometer had 300µm and 500µm space-resolving slits that were

oriented for vertical resolution in order to provide distinct spectra from each step in the

samples.

The z-pinch performance on these shots was measured by a suite of diagnostics looking

through LOS other than that used by the experimental sample. The primary z-pinch
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Figure 6.30: Schematic diagram of the foam sample geometry for the ride-along exper-
iment on shot z1122.

diagnostic that was utilized for these experiments was an array of filtered x-ray diodes

(XRDs), which provided the pinch power history when normalized by a bolometer viewing

from the same angle on the same line-of-sight.

6.3.2 Experimental Data

Figure 6.32 shows the time-dependent z-pinch power, temperature, and radius from shot

z1122 on the Z facility. The time-axis in this figure, and throughout the remainder of

this section, has been shifted so that the peak of the x-ray emission power occurs at

100ns. The powers are determined from filtered XRD measurements that have been

normalized by bolometer data. According to this data, z1122 produced 745 ± 149kJ in
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(a)

(b)

(c)

Figure 6.31: Front- and back-lit photographs of the pinch facing surface of the foams
from shot z1122 on (a) LOS 13/14 (0.5mm step), (b) LOS 21/22 (1.0mm step), and (c)
LOS 1/2 (1.5mm step).
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a 3.9ns FWHM pulse peaked at 108 ± 22TW . This power pulse is very similar to that

from shot z1031 discussed in Chapter 5, and the z-pinches had identical geometries and

compositions. As in the case of shot z1031, the z-pinch radii from z1122 are determined

from Screamer models of the implosion trajectory for times < 93ns, and from experi-

mental data published by Sanford et al. [105] for similar z-pinches at times ≥ 92ns. The

temperatures were then determined from the pinch power and radius time histories by

assuming that the z-pinch is a uniform cylindrical surface emitter. The backlighter time-

history in the x-ray range 2.5Å < λ < 12.4Å is also shown in the figure. To illustrate

the relative timing, the peak of this curve has been normalized to the peak of the total

x-ray power, and indicates a backlighter time history of 100± 1.5ns.

Figure 6.33(a) and (b) show the raw film data and associated spectral lineouts as

recorded by the space-resolved time-integrated convex crystal spectrometers (TIXTLs)

on shot z1122. The data correspond to the foam samples on each of the three lines-

of-sight. The lineouts have been processed by the EXRAY code (see Appendix A) to

determine the wavelength scale, and to apply the appropriate corrections for the film

response, filter transmission, crystal reflectivity (using the MDP reflectivity model), and

the crystal geometry. In addition, the x-ray background has been subtracted from the

data, where the background was determined by processing an unilluminated strip of the

film in the same manner as the data.

As discussed above, each of the samples in this experiment contained a section that

had 0.25mg/cm2 of 5mg/cc CH2 foam on the z-pinch facing side of the MgF2 tracer.

These served as a check on the relative radiation drive at each sample. If the samples

are well manufactured and well positioned, and if the z-pinch emission power is az-

imuthally symmetric, then the absorption spectrum from each of these sections on each

LOS should be statistically identical. The overlaid spectra from these sections of each
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Figure 6.32: Z-pinch power, temperature, and radius profiles for shot z1122 on Z.
The power is measured by a filtered XRD normalized to bolometer measurements of the
total radiated energy. The radii are taken from calculations at times < 93ns, and from
published data on similar z-pinches for times ≥ 93ns. The temperature is calculated
from the power and radius profiles assuming the z-pinch is a uniform cylindrical surface
emitter. Also shown in this figure is the time-history of the x-ray emission in the spectral
range 2.5Å < λ < 12.4Å as normalized to the peak of the total z-pinch power (dotted).
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Figure 6.33: (a) Raw film data and (b) normalized spectral lineouts from the TIXTLs
on shot z1122. The lineouts have been processed for the film response, filter transmission,
crystal reflectivity, and the crystal geometry.
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Figure 6.34: Comparison between the recorded Mg absorption spectra from LOS 13/14
(black), LOS 21/22 (red), and LOS 1/2 (blue) for the section of each foam sample that
was 0.25mg/cm2 thick.

sample are shown in Figure 6.34. Using the calibration data of the statistical uncertainty

for RAR2497 film (as discussed in Appendix C), the maximum chi-squared value between

these three spectra was determined to be 1.07. This indicates that, within the uncertain-

ties imposed by the fluctuations in the data, these three spectra are indeed statistically

identical, and the radiation drive on each sample can be assumed to be the same.

In order to compare to the calculations of the K-α absorption spectra, the data must

be converted to a relative transmission by the division of an assumed continuum. For

these spectra, that continuum was determined by removing the absorption features, and

filtering the remaining signal by a 0.3Å boxcar filter. The resulting continuum is overlaid

on the data in Figure 6.33. The relative transmission was then calculated by dividing the

measured signal by this continuum, and is shown for each of the different foam thicknesses

in Figure 6.35 (the data from the 0.25mg/cm2 thick sample was taken from LOS 13/14).

This is considered an acceptable procedure since the important information about the
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sample conditions is contained in the relative intensities of the absorption features, which

are relatively unchanged by the division of the continuum.

Through a statistical comparison between calculated Mg absorption spectra (in a

MgF2 plasma) and the relative transmission spectra in Figure 6.35, the possible com-

binations of temperature and density in the plasma at each depth of the foam can be

determined by the SPECTROFIT code. Using this code, the weighted χ2 between the

unsmoothed transmission data and SPECT3D calculations was computed for 2220 combi-

nations of temperature and density over the ranges 1eV ≤ Te ≤ 60eV and 6×1018cm−3 ≤
ni ≤ 6 × 1023cm−3. The statistical deviations in the intensity of each point in the data

were determined from independent calibration experiments described in Appendix C.

Each comparison was restricted to the spectral range of the K-α features and the Ne-like

(MgIII) and F-like (MgIV ) K-β linese. During the χ2 fitting procedure, the absolute

depths of the measured absorption were allowed to uniformly vary by ±10% (see footnote

(b) on page 122). The resulting χ2 contour plots for each of the spectra in Figure 6.35 are

shown in Figure 6.36(a)-(d), and the +1σ contours from each are overlaid in Figure 6.37.

As one might expect, these contour plots show that the temperature of the MgF2

tracer decreases as the amount of CH2 foam between the tracer and the z-pinch increases.

It is up to the computational models to describe how the conditions change as a function

of depth.

eThis is believed to be the flrst time the F-like and Ne-like K-β lines have been used as a diagnostic
of the conditions in a Mg plasma.
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Figure 6.35: Relative transmission spectra of the Mg K-α and partial K-β series from
the time-integrated convex crystal spectrometer data on shot z1122. This data is shown
for foam thicknesses of ρx = 0.25mg/cm2, 0.5mg/cm2, 0.75mg/cm2, and 1.0mg/cm2.
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Figure 6.36: Contour plots from the SPECTROFIT χ2 comparisons between the
data from shot z1122 and calculations of the Mg K-α absorption features in a MgF2

plasma behind a 5mg/cc CH2 foam of thickness (a) 0.25mg/cm2, (b) 0.5mg/cm2, (c)
0.75mg/cm2, and (d) 1.0mg/cm2. The shaded regions correspond to plasma conditions
from BUCKY rad-hydro calculations assuming z-pinch emission powers of 80 − 100%
(blue) and 100−120% (orange) of the measured value. The symbols correspond to simu-
lated mass- and time-averaged conditions in the tracer assuming z-pinch emission powers
of 80% (cross), 100% (dot), and 120% (star) of the measured value.
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Figure 6.37: +1σ contours from the SPECTROFIT χ2 comparisons between the
data from shot z1122 and calculations of the Mg K-α absorption features in a MgF2

plasma behind a 5mg/cc CH2 foam of thickness 0.25mg/cm2 (black), 0.5mg/cm2 (red),
0.75mg/cm2 (green), and 1.0mg/cm2 (blue). The points correspond to mass- and time-
averaged plasma conditions from BUCKY rad-hydro calculations assuming z-pinch emis-
sion powers of 80% (cross), 100% (dot), and 120% (star) of the measured value.

6.3.3 Experiment Modeling

The experiment described in §6.3.1-6.3.2 was modeled using the procedure described in

Chapter 4. As described in that chapter, the first step in simulating the dynamics of the

experiment requires a calculation of the time- and frequency-dependent radiation drive

on the sample surface. These calculations were done using the VISRAD view-factor code.

An example of the 3-D VISRAD grid for the geometry described in §6.3.1 is shown in

Figure 6.38. Note that there are two different samples in this grid corresponding to the

two sections of each foam as described in Figure 6.30. In this model, the z-pinch radius
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Figure 6.38: Calculational grid for the VISRAD view-factor model of shot z1122 at the
time of peak z-pinch power.

and power histories from Figure 6.32 were input as the power source (shown in red on

Figure 6.38), and an independent view-factor calculation was conducted for 69 time-steps

over the range 0ns ≤ t ≤ 110ns. It took 5 iterations on these view-factor calculations for

the albedos to stabilize, and the resulting drive power on the two samples to converge

within 1% on 2 successive iterations (as described in §4.1).

The resulting albedos of the the outer anode, z-pinch glideplanes, and the primary

hohlraum (as labeled in Figure 6.38) are shown in Figure 6.39(a), and the final drive power

on each sample surface is shown in Figure 6.39(b). This drive history was calculated for

the nominal (measured) z-pinch power, and reaches a peak radiation power of 0.57TW

on the lower sample and 0.55TW on the upper sample. At the time of peak z-pinch

emission (t = 100ns), the driving radiation spectrum on each sample peaks at 290eV ,

and has an average energy of 662eV on the lower sample and 660eV on the upper sample.

At this time, the contributions to the drive flux on the lower sample from each of the
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major objects in the view-factor grid were calculated to be; 68% from the z-pinch, 17%

from the bottom glide-plane, 10% from the primary hohlraum wall, and 5% from the

outer anode. The upper sample sees about 1% less from the z-pinch, and about 1% more

from the lower glideplane. These calculated drive histories are assumed to be the same

for each of the three foam assemblies fielded on shot z1122 (as justified in §6.3.2).

The drive histories from Figure 6.39(b) were applied as a time- and frequency-

dependent radiation boundary condition in radiation-hydrodynamics calculations of the

sample response. The higher drive pulse was applied to the sample that had a foam

thickness of 0.25mg/cm2, and the lower drive pulse was applied to the samples that had

thicknesses of 0.5mg/cm2, 0.75mg/cm2 and 1.0mg/cm2. These different drive pulses were

used to account for the small gradient that the view-factor model calculated to exist be-

tween the top and bottom sections of each foam assembly (the foam of variable thickness

was in the top section of each assembly). These simulations were done with the BUCKY

1-D Lagrangian rad-hydro code using multi-angle short-characteristics radiation trans-

port for 500 log-spaced photon energy groups from 0.1 − 104eV . The opacities of each

material were calculated from PROPACEOS tables that contained 39 temperature points

from 0.1−100eV , and 41 log-spaced density points from 1019−1023cm−3. The equation-

of-state for the CH2 and CH materials were taken from the SESAME EOS tables and

those for the MgF2 were taken from QEOS calculations. The rad-hydro models were

begun at t = 0ns, and ended at a time of 110ns using a quiet-start vaporization model

set at a temperature of 0.4eV . These calculations (including the view-factor simulations)

were then repeated for each sample assuming the z-pinch power was 20% lower and then

20% higher than the measured value. This was done to account for the uncertainty in the

z-pinch power measurements, which were shown in §4.1 to be the dominant uncertainty

in the calculated radiation drive.
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Figure 6.39: (a) BUCKY calculated albedo histories used for the final view factor
calculations of shot z1122. The albedos are shown for the pinch glideplanes (solid),
the primary hohlraum (dotted), and the outer anode (dashed). (b) VISRAD modeled
radiation power history on the surface of the lower (black) and upper (red) foam samples
on shot z1122.
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The mass-averaged temperature-density phase space of the calculated conditions in

the MgF2 foils are shown on the χ2 contour plots in Figures 6.36(a)-(d) over the times

corresponding to the width of the backlighter time-history (100.5 ± 1.5ns). These cal-

culations are shown as a blue shaded region corresponding to the calculated conditions

assuming the pinch power ranged from 80−100% of the nominal value, and as an orange

shaded region for the calculated conditions assuming the power ranged from 100− 120%

of the nominal value. The lines in each shaded region correspond to the calculated mass-

averaged conditions in the MgF2 over the backlighter time (time follows along each line).

The calculations are shown in this way because it provides a quick visual way to compare

to the data. If the calculated conditions are going to be a good approximation to those

observed in the experiment, then part of the shaded region must fall within the +1σ

contours. This can be further constrained by calculating the time-averaged conditions in

the foils weighted by the backlighter pulse history shown in Figure 6.32. These points are

over-plotted on each contour plot in Figure 6.36 and on the +1σ contours in Figure 6.37

as a large symbol corresponding to assumed pinch powers of; 80%, 100%, and 120% of

the nominal value. Since the data recorded on the time-integrated spectrometers are

truly a measure of the mass- and time-averaged conditions in the foils, then these points

are the best diagnostic of the comparison between the data and the rad-hydro models.

As seen in Figure 6.37, the calculated conditions in the MgF2 tracers are in excellent

agreement with the experimental data for each of the different foam thicknesses. At the

nominal z-pinch power, the calculated conditions are all within 1σ of the experimental

data. This implies that, over the peak of the main drive pulse at t = 100.5±1.5ns, the rad-

hydro calculations can reproduce the conditions in the MgF2 tracers at 4 different depths

throughout the CH2 foam. These constraints provide confidence in the calculations,

which can then be used to investigate the dynamics in the sample.
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Figure 6.40(a) and (b) show the time history of the average temperaturef and density

in the MgF2 layers as calculated by BUCKY assuming the nominal pinch emission power

at all times. As one might expect, the temperature of the tracer at any given time

decreases as the depth into the foam increases. Early in time (t < 90ns) the density

of each tracer also decreases as a function of depth. At a time of 100ns, the average

temperature in each tracer is calculated to be about 30, 20, 12, and 8eV as a function

of increasing depth. The density of each tracer at this time is calculated to be about

2, 1.2, 1.4, and 1.8 × 1020cm−3. The ‘bump’ at t ≈ 102 − 104ns on the temperature

history of the tracer at a depth of 0.5mg/cm2 is due to shock heating from the ablatively

driven shock. This shock is also evident in the density histories, and shows up as a

slow re-compression of the first tracer at t ≈ 93ns, and a quick re-compression of the

second tracer at t ≈ 102ns. The compression of the second tracer is much quicker and

stronger because it more closely coincides with the peak of the radiation pulse, which

drives the shock. The third tracer shows a small influence from this shock very late in

time (t ≈ 108ns), and the fourth tracer shows no interaction with the shock up to the

end of the simulation history (t = 110ns).

The hydrodynamics in each sample are better visualized through a plot of the mass

contours as a function of time. These are shown for each sample in Figures 6.41(a)-(d).

Each tracer is seen to expand forward into the lower density CH2 foam during the foot

pulse of the driving radiation (t < 95ns). The tracer at ρx = 0.25mg/cm2 interacts with

the ablatively driven shock front early in time, and is significantly displaced by the time

the data has been taken. The tracer at 0.5mg/cm2 is impacted by the shock front at the

end of the data frame, but otherwise remains relatively stagnant. The other two tracers

remain at a fairly constant density throughout the data frame, and only are impacted by

fThe electron and ion temperatures were calculated to be close equilibrium.
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Figure 6.40: BUCKY calculated mass averaged (a) temperature and (b) density con-
ditions on shot z1122 in the MgF2 tracers at depths in CH2 foam of ρx = 0.25mg/cm2

(black), 0.5mg/cm2 (red), 0.75mg/cm2 (green), and 1.0mg/cm2 (blue).

the shock late in time.

To further investigate the details of the calculated dynamics in the CH2 foam and

each of the tracers, Figures 6.42(a) and (b) show the spatial profiles of the electron

temperature and ion density in each sample. These curves are averaged over time as

weighted by the backlighter pulse. As expected, the temperatures and densities in each

sample are approximately the same near the front of the CH2 (ρx ≤ 0.15mg/cm2).

However, the conditions of the CH2 are altered near the tracers. Namely, the density

and temperature of the CH2 are higher near the tracer than in the equivalent position

with the tracer further back. This is due to the propagation of a shock wave that is

launched in the CH2 by the expansion of the MgF2 tracer, which is radiatively heated

to a higher temperature than the surrounding materials. The one exception to this is in

the density of the CH2 near the first tracer. The ablatively driven shock from the front

of the sample has already passed through this tracer, which has expanded out the back
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Figure 6.41: Mass contours (Lagrangian zone positions) for the CH2 foam (black), the
MgF2 tracers (red), and the CH substrates (green) as a function of time for BUCKY
calculations of the foam experiments on shot z1122. The figures are shown for total foam
thicknesses of ρx = 0.25mg/cm2 (a), 0.5mg/cm2 (b), 0.75mg/cm2 (c), and 1.0mg/cm2

(d). The dotted lines correspond to the positions of the half-width-at-half-max of the
backlighter pulse at t = 100± 1.5ns.
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of the sample.

As in each of the experiments analyzed in this thesis, the frequency-dependent heating

of the materials play a dominant role in determining the time-dependent temperature

and density of the conditions in both the CH2 foam and the MgF2 tracers. However,

the details are slightly different in this experiment than those described in §6.1 and

§6.2. The VISRAD calculations of the radiation drive on this experiment (shot z1122)

determined an average spectral energy at peak emission of about 660eV , roughly 120eV

higher than that calculated for shots z817 and z874. This puts quite a bit more energy

in the photon range above the carbon K-edge. To illustrate, Figure 6.43(a) shows the

radiation spectrum at peak z-pinch emission calculated by BUCKY at the front of each

tracer. The figure demonstrates how there is a significant amount of energy in the spectral

range 700eV < hν < 2000eV at each of the locations. In addition, the fraction of the

total energy contained in this range increases with increasing depth into the foam. Not

surprisingly, the details of these spectra have an effect on the heating in each of the MgF2

tracer layers. Figure 6.43(b) shows the frequency-dependent net radiation heating in each

of the tracers. As one might expect, the percentage of the total radiation heating that

occurs in the range 700eV < hν < 2000eV increases with increasing depth. However,

with the exception of the tracer at ρr = 1.0mg/cm2, the majority of the heating still

occurs in the range below the carbon K-edge at energies of 100eV < hν < 300eV . In the

last tracer, there is a comparable amount of heating above and below the carbon K-edge

even though the radiation spectrum is strongly weighted in the range above. This is due

to the very high photo-ionization cross-section of the Mg L-shell.

Figures 6.44(a) and (b) show the opacities of the CH2 and MgF2 plasmas for the

conditions calculated by BUCKY at t = 100ns on either side of the front boundary of

each tracer. The CH2 opacities at each position are equivalent in the range hν > 400eV ,
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Figure 6.42: BUCKY calculated (a) temperature and (b) density profiles in the foam
samples on shot z1122 for the MgF2 tracers at a depth of ρx = 0.25mg/cm2 (black),
0.5mg/cm2 (red), 0.75mg/cm2 (green), and 1.0mg/cm2 (blue). The curves are averaged
over the backlighter time-history, and the dotted lines mark the front and back positions
of each MgF2 tracer.
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Figure 6.43: BUCKY calculated (a) radiation energy density and (b) net radiation-
heating in the MgF2 at a depth into the CH2 foam samples of ρx = 0.25mg/cm2 (black),
0.5mg/cm2 (red), 0.75mg/cm2 (green), and 1.0mg/cm2 (blue). Each curve is shown at
a time of 100ns for the simulations of the foam samples on shot z1122.
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but are very different at energies below that. These differences are due to the ionization

states of the carbon. Near the front of the CH2, the plasma is at a higher temperature

and a correspondingly higher ionization state than that near the back. As the ionization

state increases, there are fewer electrons in the n = 2 state, which leads to a lower photo-

ionization cross-section in the range 20eV < hν < 300eV . However, none of the CH2

plasma is at a high enough temperature for the carbon to be completely ionized out of

the n = 1 state, and the photo-ionization cross-sections in the range hν > 400eV are

approximately equivalent. It is easy to see how this opacity structure can lead to the

radiation spectra shown in Figure 6.43(a).

The opacity of the MgF2 shows a very similar dynamic (although there is more

structure because the mixture has multiple elements at a higher atomic number than

carbon). In every case, however, the opacity of the MgF2 plasma is higher in the range

below the carbon K-edge (hν < 300eV ) than that above 400eV . Therefore, the radiation

in the range < 300eV couples better to the MgF2. This leads to the radiation heating

profiles that were seen in Figure 6.43(b). The interesting thing about these dynamics

is that, because the resulting temperature and density in the MgF2 tracers are all in

good agreement with the experimental data, then the opacities of each material and the

driving radiation spectra must be well modeled.

As a final check on the comparison between the calculated MgF2 conditions and those

recorded in the experiment, Figure 6.45 shows the Mg absorption spectra on shot z1122

overlaid by the spectra calculated from the radiation-hydrodynamics model assuming

the nominal z-pinch emission powers. The calculations are done with the SPECT3D

spectral post-processing code using a detailed configuration analysis (DCA) of the MgF2

at the temperatures and densities dictated by the rad-hydro calculation. Each spectrum is

calculated under an assumption of LTE, and is averaged over the time-dependent intensity
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Figure 6.44: Opacities of the (a) CH2 and (b) MgF2 on either side of the front
boundary of the tracers at ρx = 0.25mg/cm2 (black), 0.5mg/cm2 (red), 0.75mg/cm2

(green), and 1.0mg/cm2 (blue). Each curve is shown at a time of 100ns for the BUCKY
simulated conditions of the foam samples on shot z1122.
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of the backlighter pulse. As seen in the figures, the measured and calculated spectra are

in fair agreement. Each spectrum is calculated to be within 1σ of the minimum χ2 found

in the SPECTROFIT analysis. Moreover, the spectrum at ρx = 0.75mg/cm2 was found

to have a χ2 value that was less than the minimum. This is due to temperature and

density gradients in the tracers that are accounted for in the rad-hydro model, but not in

the SPECTROFIT analysis. The χ2 of the tracers at ρx = 0.5mg/cm2 and 1.0mg/cm2

were calculated to be very close to (but inside) the 1σ level. In the former, this is due

to a slightly higher distribution of ionization states in the calculation than the data. In

the latter, it is due primarily to the difference in the measured and calculated F-like K-β

lines, which are seen to be slightly overestimated in the calculations. However, the χ2

analysis suggests that each of these calculations are statistically equivalent to the data.

Therefore, given the uncertainties in the data and the calculations, the comparisons

in Figures 6.37 and 6.45 demonstrate that the experimental data of the conditions inside

each of the MgF2 tracers on shot z1122 can be adequately reproduced by the computa-

tional methods and associated data tables as applied in this section.



227

Figure 6.45: Comparison between the SPECT3D calculated relative transmission spec-
tra (red) and the spectral data from shot z1122 in the MgF2 tracers.
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6.4 Summary and Discussion of the Radiative

Transfer in CH2 Foam

The experiments discussed in §6.1-§6.3 were each shown to be well modeled by the calcu-

lational methods defined in Chapter 4. Each of these calculations used a very specific set

of computational models and data tables. Namely, these simulations were conducted with

the BUCKY 1-D Lagrangian rad-hydro code using multi-angle short-characteristics radi-

ation transport for 500 log-spaced photon energy groups from 0.1−104eV . The opacities

of each material were calculated from PROPACEOS tables that contained 39 tempera-

ture points from 0.1 − 100eV , and 41 log-spaced density points from 1019 − 1023cm−3.

The equation-of-state for the CH2, CH, and Al materials were taken from the SESAME

EOS tables and those for the MgF2 were taken from QEOS calculationsg. The ability to

reproduce the spectral data from each of these experiments using this same set of models

provides confidence in their accuracy. The different amplitudes and distributions of the

radiation drives utilized in these experiments further support this claim.

To illustrate the differences in the radiation drives, Figures 6.46(a) and (b) show the

VISRAD calculated drive power and average spectral energy on the surface of the foam

samples from shots z817, z874, and z1122. The powers from shots z817 and z874 are seen

to be very similar up to about 96ns, at which time the drive on z874 increases to a peak

that is roughly 20% higher. The average energy of the drive spectrum on shot z817 is

about 50eV higher than that on z874 for 90ns < t < 96ns, but approximately equivalent

at the peak.

The drive power from shot z1122 has a drastically different shape and amplitude than

both z817 and z874. The peak power on shot z1122 is a factor of 2 less than that from

gThe SESAME tables were not used for the MgF2 because no tables exist for that material.
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shot z874, and about 80% less than that on z817. However, the average spectral energy

at the peak drive on shot z1122 is over 100eV higher than that on both z817 and z874.

Given these differences in the characteristics of the radiation drive, the ability to model

the conditions in the tracers on each of these experiments provides another degree of

confidence in the calculational models.

With this confidence, the experiments described in this chapter can be used to investi-

gate the validity of other models. This is an important study because the models applied

in §6.1-§6.3 are very detailed, and not always practical for large multi-dimensional sim-

ulations. In other words, it is important to determine ‘what we can get away with’ in

order to maintain an approximately correct solution with the minimum amount of com-

putational work. From a more academic standpoint, it is also important to determine the

differences in the calculational models in order to reveal places where those models may

have deficiencies. If such deficiencies can be addressed, than the model can be considered

a better representation of reality.

As discussed at length in §3.1, the important factors that need to be considered for

the types of simulations discussed in this thesis are; incident radiation spectra, radiation

group structure, plasma opacity, radiation transport, and equation of state. In the fol-

lowing sections, different models of each factor are compared to the data from shot z1122,

and each are contrasted to the ‘baseline’ models that were used in §6.3.3 to simulate that

experiment. The experiment from shot z1122 was selected for this comparison for a few

reasons. First, the spectral data acquired on that shot was of very high quality. Second,

the intensity-dependent statistical fluctuations in the x-ray film exposure have been in-

dependently measured near the wavelengths of the Mg K-α lines. These measurements

provide a degree of confidence in the statistical weights required for an accurate χ2 anal-

ysis between the calculated and measured absorption spectra. This translates to a high
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Figure 6.46: VISRAD calculated (a) radiation power and (b) average spectral energy
on the surface of the foam samples on shots z1122 (solid), z874 (dotted), and z817
(dashed).
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degree of confidence in the 1σ contours of the temperature and density conditions in each

tracer. Third, of the three foam experiments described in this thesis, the experiment of

shot z1122 holds the tightest constraints on the computational models. This experiment

simultaneously measured the conditions of a MgF2 tracer at 4 different depths through-

out the foam sample. These conditions can only be reproduced by models that provide

an adequate representation of the foam conditions and associated opacities over the full

range of conditions on that experiment.

6.4.1 Incident Spectra

In §3.1, it was shown that the incident drive spectra can have a significant impact on the

characteristics of the penetrating radiation field. In each of the experiments described

in this thesis, the incident radiation spectra that successfully reproduced the data were

calculated by the VISRAD view-factor code in the specific geometry of the experiment.

It was shown in §4.1 that, in these view-factor calculations, uncertainties in the z-pinch

power dominate the uncertainties in both the amplitude and average energy of the drive

spectra. Thus, the uncertainty in the z-pinch power was included in the analysis of each

foam experiment. However, it was also shown in §4.1 that a 20% difference in the z-pinch

radii can lead to a 5% difference in the average energy of the drive spectra. This is not

very much, but if the assumed radii were off by a factor of 2, then the average drive energy

could be off by 25%. In addition, it was shown in §3.3 that the spectral distribution from

a tungsten z-pinch has a high-energy, non-thermal tail at hν > 2000eV . This non-

thermal component to the z-pinch spectra was not considered in any of the view-factor

calculations. Since each of the power measurements used in this thesis were based on

normalizations of XRD traces to energy-integrated bolometer data, the assumed thermal

z-pinch power could be too high by the fraction of the total energy that exists in the non-
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thermal tail. This extra energy would still reach the sample, but it would be distributed

at much higher photon energies than the average energy of the VISRAD calculated drive

spectra.

To explore the effects of changes in the distribution of the drive spectra, Figure 6.47

shows the 1σ contours of the tracer conditions on shot z1122 overlaid by BUCKY cal-

culations of the tracer conditions assuming four variations on the drive spectra. In each

calculation, every other parameter was held the same as in the baseline calculationh with

the exception of the assumed z-pinch power. The pinch power was varied to put the

calculated conditions of the first tracer within 1σ of the experimental data. The first

case is the baseline calculation assuming the VISRAD drive spectra (shown at 100% of

the measured z-pinch power). The second case is the VISRAD calculated drive power

with a blackbody distribution at the temperature of the z-pinch (shown at 120% of the

measured z-pinch power). The third case is the VISRAD calculated drive power with a

blackbody distribution at the flux-equivalent radiation temperature of the drive power

(shown at 80% of the measured z-pinch power). The final case is the VISRAD cal-

culated drive spectra with an additional 10% of the drive energy added in the range

2000eV ≤ hν ≤ 3100eV (shown at 90% of the measured z-pinch power). This last drive

spectra was constructed assuming that there is 10% of the calculated drive power in a

non-thermal tail corresponding to the range of the tungsten M-shell UTAs, which were

shown in §3.3 to be in emission.

As can be seen in the figure, the only case that does not agree with the experimental

data in every tracer is the one that assumes a blackbody distribution at the flux-equivalent

radiation temperature of the drive power. At 80% of the measured z-pinch power, the

hThe ‘baseline calculation’ here and throughout the rest of this chapter refers to the simulations of
z1122 as described in §6.3.
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Figure 6.47: Effect of radiation drive spectra on the calculated tracer conditions. The
+1σ contours are as described in Figure 6.37. The symbols correspond to mass- and
time-averaged plasma conditions in each tracer from BUCKY rad-hydro calculations
assuming the following drive spectra; VISRAD spectra from the baseline calculation
(dots), VISRAD drive power with a blackbody distribution at the temperature of the
z-pinch (stars), VISRAD drive power with a blackbody distribution at the flux-equivalent
radiation temperature of the drive power (triangles), and VISRAD drive spectra with an
additional 10% of the drive energy in tungsten M-shell emission (crosses).

calculated conditions in this case are still just above the 1σ contour in the first tracer and

below the 1σ contour in the last tracer. This implies that the distribution of radiation

under the flux-equivalent blackbody spectra is at too steep of a gradient to reproduce the

data. That is, lowering the drive power to put the calculations in better agreement with

the first tracer would put the calculations in worse agreement with last tracer (and visa

versa). This is not that surprising given the discussion of the tracer heating dynamics
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in §6.3. As the depth of the tracer increases, the photon energies above 700eV become

more important in the radiative heating. For this case, the low drive flux correlates to

a low blackbody temperature, which is deficient in the high photon energies required to

heat the last tracer.

One would not expect that the spectra of the radiation drive would be anything like

the flux-equivalent blackbody. The dominant fraction of the total drive flux comes from

the z-pinch (≈ 70% on this shot). Figure 6.47 shows that, even if the spectrum is modeled

as a diluted blackbody distributed as the temperature of the z-pinch, the calculations

can reproduce the conditions in each of the tracers. However, achieving this agreement

requires assuming 120% of the measured z-pinch power because the carbon K-shell filters

out more of the radiation at the resulting spectral energies.

The most interesting information in Figure 6.47 is the comparison between the base-

line calculation and that assuming a 10% contribution from the tungsten M-shell. As

seen in the figure, these two calculations are very similar, and each is driven by the same

total energy. That is, the calculation assuming the M-shell contribution agrees with the

data in each of the tracers assuming 90% of the measured z-pinch power. With the ad-

ditional 10% of the energy from M-shell emission, this calculation has about the same

total drive energy as the baseline calculation. Since this case is the most likely possible

deviation from that assumed in the baseline calculation, it provides more confidence in

the validity of the baseline models.

6.4.2 Radiation Group Structure

One fundamental issue that must always be addressed in calculating the dynamics of a

radiatively heated sample is the treatment of the radiation field. Typically, that means

choosing the number and distribution of frequency bins that are going to be included
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in the calculation. If the plasma is expected to have a very high opacity across the

entire spectrum at all times, or if the radiation field always has a planckian distribution

at the temperature of the plasma, then a single-group (or Gray) approximation can be

quite valid. However, for the experiments discussed in this thesis, it is clear that some

frequency structure must be included in order to capture the penetrating radiation that

heats the tracer layers. The question is how much detail is required.

Figure 6.48 shows the 1σ contours of the tracer conditions on shot z1122 overlaid by

BUCKY simulations of the tracer conditions assuming five variations on the radiation

group structure. In each simulation, every other parameter was held the same as in the

baseline calculation, including the assumed z-pinch power. The simulations are shown for

500, 100, 40, and 20 photon energy groups, each evenly log spaced in the range 0.1eV ≤
hν ≤ 104eV . The fifth simulation is shown for 40 unevenly spaced groups, which had 10

groups in the range 0.1eV ≤ hν < 200eV , 20 groups in the range 200eV ≤ hν < 400eV ,

and 10 groups in the range 400eV ≤ hν ≤ 104eV .

As seen in the figure, only the 500 group and 40 unevenly grouped calculations lie

entirely within the 1σ contours of each tracer. However, the 100 group calculation is only

slightly below the contour of the last tracer. Given the uncertainties in the drive spectra

analyzed above, the 100 group calculation is considered to be acceptable. The evenly

spaced 40 group calculation shows marginal agreement, and the 20 group calculation is

completely incorrect.

To demonstrate the differences in the resulting conditions of the CH2 foam as a

function of the radiation group structure, Figure 6.49 shows the temperature profile

through the 1.0mg/cm2 thick foam sample for each of the group structures in Figure 6.48.

This figure shows how, in the first 0.5mg/cm2, the calculated temperature gradient in

the sample decreases as the number of groups decreases. The unevenly spaced 40 group
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Figure 6.48: Effect of radiation group structure on the calculated tracer conditions.
The +1σ contours are as described in Figure 6.37. The symbols correspond to mass-
and time-averaged plasma conditions in each tracer from BUCKY rad-hydro calculations
using the following radiation group structures; 500 group (dots), 100 group (stars), 40
group (triangles), and 20 group (crosses) each evenly log spaced in the range 0.1eV ≤
hν ≤ 104eV . Also shown is an unevenly spaced 40 group calculation (diamonds) with 10
groups in the range 0.1eV ≤ hν < 200eV , 20 groups in the range 200eV ≤ hν < 400eV ,
and 10 groups in the range 400eV ≤ hν ≤ 104eV .

calculation is an exception. In this case, 20 frequency groups were devoted to resolving

the carbon K-edge in the range 200eV ≤ hν < 400eV , and the resulting temperature

profile tracks almost exactly along the 500 group calculation. This is an important result

because the 40 group calculations take over a factor of 10 less time to compute than the

500 group. Clearly, choosing a group structure that resolves the carbon K-edge in some

detail is paramount in properly computing the conditions in a CH2 foam.
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Figure 6.49: BUCKY calculated temperature profiles in the 1.0mg/cm2 thick foam
sample on shot z1122. The curves are averaged over the backlighter time history, and are
shown for different BUCKY rad-hydro calculations using the following radiation group
structure; 500 group (black), 100 group (green), 40 group (blue), and 20 group (purple)
each evenly log spaced in the range 0.1eV ≤ hν ≤ 104eV . Also shown is an unevenly
spaced 40 group calculation with 10 groups in the range 0.1eV ≤ hν < 200eV , 20 groups
in the range 200eV ≤ hν < 400eV , and 10 groups in the range 400eV ≤ hν ≤ 104eV
(red dashed).

6.4.3 CH2 Opacity

The changes in the calculated foam conditions as a function of the radiation group struc-

ture are due to the associated approximations that are made to the plasma opacities.

That is, decreasing the number of energy groups requires making a more coarse ap-

proximation to the true material opacity. It stands to reason that, given a fixed group

structure, different approximations in the calculations of the plasma opacities can also

lead to differences in the calculated foam conditions.

Up to this point, the model that has been used to simulate the CH2 plasma opacities is

among the most complex and detailed models available. In particular, the PROPACEOS
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opacities used in each of the simulations in this chapter were computed using Detailed

Term Accounting (DTA) through multi-configuration Hartree-Fock calculations of the

energy levels and atomic cross-sections. This model requires the calculation of the inter-

action between the many wave-functions (hundreds) associated with each atomic config-

uration. Even if these configurations and cross-sections are tabulated, statistical calcu-

lations of the configuration populations of the many available energy states are too slow

to compute in-line with the radiation-hydrodynamics. For example, the PROPACEOS

CH2 opacities used in this thesis were calculated at LTE from DTA atomic data tables of

all the available configurations for each ionization state. Such a calculation takes roughly

20 seconds on a 2.4GHz Pentium-4 to calculate the 500 group opacity of a plasma at

T = 30eV and ni = 1.× 1020cm−3. If a rad-hydro calculation has 1000 zones, each with

a different temperature and density, doing this calculation in-line would take over 5.5

hours to complete a single time-step. This can be sped up considerably by ignoring some

configurations or collapsing the fine structure into ‘super configurations’, but that means

a loss of accuracy.

The usual approach taken with DTA opacity calculations is to build a table of opacities

as a function of temperature, density, and radiation group energy. There are two problems

with this approach. First, calculating the opacities in the absence of the rad-hydro results

requires making an assumption on the distribution of the radiation field. Under some

plasma conditions, the radiation field can have a significant effect on the ionization states

and configuration populations through bound-free and bound-bound photo-absorption.

Second, the size of the tabular opacity files can become quite large. For the opacity

tables used in this thesis, a 39 by 41 by 500 point table takes up about 24Mb of memory.

However, this table only covers a range from 0.1−100eV in temperature and 0.1−104eV

in photon energy. For simulations of experiments that cover a much larger range of
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temperatures and photon energies, the size of these tables can grow by a factor of 10 -

100. Historically, these issues have been avoided by using a much simpler ‘average atom’

atomic model to calculate opacities in-line with the hydrodynamics.

To explore the effects of different opacity models on the radiative transfer, Figure 6.50

shows the 1σ contours of the tracer conditions on shot z1122 overlaid by BUCKY simu-

lations of the tracer conditions assuming four different tabular opacities for the CH2. In

each calculation, every other parameter was held the same as in the baseline calculation

with the exception of the assumed z-pinch power. The pinch power was varied to put

the calculated conditions of the first tracer within 1σ of the experimental data. The

first table was generated by the PROPACEOS DTA model from the baseline calculation

(shown at 100% of the measured z-pinch power). The second table was generated by

an XSN average atom model [108] (shown at 70% of the measured z-pinch power). The

third table was generated by an EOSOPA DTA model (shown at 90% of the measured

z-pinch power). The final table was generated by an EOSOPA UTA model (shown at

100% of the measured z-pinch power).

As seen in the figure, the calculations produce a different distribution of conditions

in the MgF2 tracers for each of the opacity tables. The XSN average atom model is seen

to be much to ‘transparent’. That is, the assumed z-pinch power had to be reduced by

70% to bring the calculated conditions within the 1σ error bar of the first tracer. Even

at this low drive power the calculated temperatures in each of the other tracers are still

much higher than indicated by the data. The EOSOPA DTA opacities suffer from a

similar problem. The calculations using these opacities compare very well to the data

in the first tracer, are marginal in the second and third tracer, and predict too high of

a temperature in the fourth tracer. The EOSOPA UTA model is the only other model

(besides the PROPACEOS DTA model used in the baseline calculation) that predicts
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Figure 6.50: Effect of CH2 opacity model on the calculated tracer conditions. The +1σ
contours are as described in Figure 6.37. The symbols correspond to mass- and time-
averaged plasma conditions in each tracer from BUCKY rad-hydro calculations using
tabular opacities from the following atomic models; PROPACEOS DTA (dots), XSN
average-atom (stars), EOSOPA DTA (triangles), and EOSOPA UTA (crosses).

conditions that are close to being within 1σ of each tracer. This is somewhat surprising

since the EOSOPA DTA model is expected to be much more complete and accurate than

the UTA model.

To illustrate the differences in each of these opacities, Figure 6.51 shows the 500 group

opacity of CH2 at 6eV and 5mg/cc (corresponding to the conditions in the baseline

calculation as shown in Figure 6.42 at ρx = 0.6mg/cm2) as calculated by each atomic

model. These opacities are shown in the range 100eV ≤ hν ≤ 1000eV because this was
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Figure 6.51: CH2 opacities at Te = 6eV and ρ = 5mg/cc as calculated by PROPACEOS
DTA (black), XSN average-atom (red), EOSOPA DTA (blue), and EOSOPA UTA
(green).

shown throughout this chapter to be the most important region for the transport of the

penetrating radiation. Each model is seen to compute a different opacity throughout this

range.

The XSN average atom model calculates a bound-free opacity below the carbon K-

edge (ionization out of the L-shell) that is much lower than that computed by each of

the other models. This represents a serious deficiency in the average atom approach. In

this model, only a single average ionization state is considered to exist, with a fractional

number of electrons in each level. No fine structure is included, and the energy levels are

computed from the analytic hydrogenic formulas by assuming a screening potential. The

lack of detail in the average atom approach produces opacities that are much too low to

provide the correct radiative transfer characteristics at the conditions of the CH2 foams

studied in this thesis.
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The EOSOPA DTA model also calculates bound-free opacities that are seemingly too

low. As discussed in §4.3, there are two important differences between the DTA models in

EOSOPA and PROPACEOS. First, PROPACEOS uses the Hummer-Mihalas partition

function to compute occupation probabilities. EOSOPA uses the boltzmann partition

function. Second, PROPACEOS uses tabulated Hartree-Fock cross-sections to compute

the bound-free opacities. EOSOPA uses fits to these cross-sections. Each of these have

been shown to cause differences in the calculated opacities at low temperatures [109]. The

formulism in PROPACEOS is more consistent with the data presented in this thesis.

Finally, the EOSOPA UTA model calculates opacities that are very similar to those

in PROPACEOS. The largest difference is in the area directly at the K-edge, where

the details of the atomic structure and associated occupations are the most important

for computing the photo-ionization rates. The resulting CH2 opacity in this region is

critical for properly computing the magnitude and distribution of the the radiation that

penetrates deep into a CH2 foam.

Based on each of these comparisons, it is concluded that the calculated opacity us-

ing the PROPACEOS DTA atomic model is the most consistent with the experimental

data. The XSN average atom model is completely incorrect, and should be avoided

wherever possible. The differences between the PROPACEOS and EOSOPA DTA mod-

els are enough to invalidate the EOSOPA model at low temperatures, but is likely to be

satisfactory for foam conditions at temperatures greater than about 30eV . Finally, the

EOSOPA UTA model is not as good as the PROPACEOS DTA model, but satisfactory

across the range of conditions studied in this thesis.
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6.4.4 Radiation Transport Model

As was discussed in detail in §1.4, there are a number of different approximations to the

radiation transport equation that are commonly used in radiation-hydrodynamics codes.

Each of the simulations in this chapter were conducted with short-characteristics. This

approximation was used because, as demonstrated in Appendix B, it provides very accu-

rate solutions in plasmas where scattering can be neglected and the radiation field can be

considered as steady-state (dE/dt is very small). However, these statements are only true

in 1-D. Multi-angle methods like short-characteristics and discrete ordinates are known

to have problems in multiple dimensions (ex. ray effects). In addition, these methods

typically require much more computation time than a simple model like diffusion. For

these reasons, simulations in multi-dimensional plasmas most often use flux-limited dif-

fusion, which was shown in Appendix B to be inaccurate for many types of problems.

The question that needs to be answered is whether or not flux-limited diffusion is an

adequate approximation for the radiation fields in the CH2 foams studied in this thesis.

Figure 6.52 shows the 1σ contours of the tracer conditions on shot z1122 overlaid

by BUCKY simulations of the tracer conditions assuming five approximations to the

radiation transport equation. In each simulation, every other parameter was held the

same as in the baseline calculation, including the assumed z-pinch power. The first

approximation is multi-angle short-characteristics as used in the baseline calculation. The

second approximation is diffusion with no flux-limiter. The third approximation is flux-

limited diffusion using the Larsen (n=6) flux-limiter. The fourth and fifth approximations

are time-dependent and time-independent flux-limited diffusion using the Levermore-

Pomraning flux-limiter.

As seen in the figure, the simulated conditions assuming non-limited diffusion and
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Figure 6.52: Effect of radiation transport model on the calculated tracer conditions.
The +1σ contours are as described in Figure 6.37. The symbols correspond to mass- and
time-averaged plasma conditions in each tracer from BUCKY rad-hydro calculations us-
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Figure 6.53: Radiation flux distribution in the 1.0mg/cm2 foam sample on shot z1122
as calculated by BUCKY using short-characteristics (solid) and flux-limited diffusion
with the Larsen (n=6) limiter (dotted) and the Levermore-Pomraning limiter (dashed).
The profiles are shown at simulation times of 96ns (black) and 100ns (red).

flux-limiters predict two significantly different solutions, flux-limited diffusion in general is

suspect. Figure 6.52 suggests that the less restrictive Larsen (n=6) flux-limiter provides a

better solution throughout the sample than the Levermore-Pomraning limiter. However,

this may only be true for this particular set of conditions. To illustrate, Figure 6.53

shows the radiation flux distribution throughout the 1.0mg/cm2 thick sample calculated

by short-characteristics and flux-limited diffusion for both the Larsen and Levermore-

Pomraning limiters. These profiles are shown at times of 96ns and 100ns. At 96ns, the

Larsen result follows very close to the short-characteristics result, and the Levermore-

Pomraning result is too restrictive. In contrast, at 100ns the Levermore-Pomraning

result follows very close to the short-characteristics result, and the Larsen result is not

restrictive enough. The fact that the tracer conditions assuming the Larsen limiter are

the most consistent with the data only implies that the time-integrated radiation field
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at the location of each tracer is best modeled by the Larsen (n=6) limiter. This result

could be different if the conditions of the radiation field and the CH2 plasma were like

that at t = 100ns for a longer period of time.

It is of particular interest that the time-independent solution using the Levermore-

Pomraning limiter agrees almost exactly with the time-dependent one. This implies

that, over any given time-step, the radiation field is nearly steady-state. There is no

real guarantee that this is true for any other transport approximation. However, it is

reasonable to assume that, because the calculated conditions are similar between flux-

limited diffusion and short-characteristics, the radiation field can be considered as steady-

state for the short-characteristics solution as well. This is an important result. As

demonstrated in Appendix B, short-characteristics predicts solutions that are very close

to the true solution of the transport equation when the radiation field is steady-state

and there is no scattering. This provides another degree of confidence in the baseline

calculation, and justifies the use of short-characteristics as the standard against which to

compare the diffusion solutions.

To further investigate the differences between the various transport approximations,

Figure 6.54(a) shows the time-dependent radiation temperature at a depth of 1.0mg/cm2

(the front boundary of the last tracer) and the average electron temperature in the last

tracer as calculated by short-characteristics and flux-limited diffusion. In addition, Fig-

ure 6.54(b) shows the percent difference (in temperature) between these approximations.

The radiation temperature calculated using the Larsen limiter is within about 5% of

the short-characteristics solution at all times, but the electron temperature differs by as

much as 40%. The Levermore-Pomraning limiter differs from the short-characteristics

solution by as much as about 15% in radiation temperature and 60% in electron temper-
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Figure 6.54: (a) Radiation temperature (black) at the front boundary of the tracer
at ρx = 1.0mg/cm2 on z1122 and the average electron temperature in that tracer (red)
as calculated by BUCKY. These calculations are shown assuming short-characteristics
(solid) and flux-limited diffusion with the Larsen (n=6) (dotted) or Levermore-Pomraning
limiters (dashed). (b) Percent deviation between the short-characteristics and flux-
limited diffusion results in (a).

aturei. Based off this comparison, it is clear that flux-limited diffusion does have some

shortfalls. However, the calculation at this depth is probably a worst case scenario. As

the radiation field penetrates deeper into the foam, the transport becomes more direc-

tional (the Eddington factor approaches 1). This is evidenced by the non-equilibrium

between the radiation and electron temperatures throughout the rising edge of the heat-

ing pulse. Toward the front of the foam samples, the radiation field is more isotropic

and the flux-limited diffusion solutions are much better. The radiation field and the

electron temperature in the first tracer (at ρx = 0.25mg/cm2) as calculated by short-

characteristics and each diffusion approximation agree within a few percent at all times.

It is therefore recommended that, for radiation distributions similar to those studied

in this thesis, flux-limited diffusion only be used to determine the rough scaling of the

iThe large variations in the temperature of the tracer demonstrates the sensitivity of the experimental
method to the strength and distribution of the radiation fleld.
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radiation conditions inside a 5mg/cc CH2 foam that is thicker than about 0.25mg/cm2.

If the radiation field needs to be known to better than about 5% in temperature (20% in

flux), then a more accurate non-diffusive solution must be employed.

6.4.5 Equation of State

The final physical model that needs to be considered in a calculation of the CH2 foam

dynamics is the equation-of-state (EOS). All of the calculations presented in this thesis

used the SESAME tabulated EOS for CH2 (table 7171). The SESAME tables tend to be

the standard that most radiation-hydrodynamics codes use for the EOS. However, these

tables only exist for a few select materials and are composed of a blending of different

models. There is very little information available about which models were used for

which materials and in which regimes. An obvious question to ask is how do different

EOS models change the dynamics of the calculations.

Figure 6.55 shows the 1σ contours of the tracer conditions on shot z1122 overlaid by

BUCKY simulations of the tracer conditions assuming four different EOS tables for the

CH2. In each simulation, every other parameter was held the same as in the baseline

calculation, including the assumed z-pinch power. The first table was taken from the

SESAME library as used in the baseline calculation. The second table was calculated

with QEOS [106]. The third table was calculated with PROPACEOS [91]. The final

table was calculated assuming an ideal-gas EOS at all temperatures and densities.

As seen in the figure, the calculations using the ideal gas EOS table are the only ones

that do not fall completely within 1σ of the tracer conditions at every depth. The other

three tables all provide very similar solutions. The only place that these calculations

differ by any significant amount is in the tracer at a depth of 0.5mg/cm2. As was shown

in §6.3.3, this tracer is heavily influenced by the ablatively driven shock at the time the
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Figure 6.55: Effect of EOS model on the calculated tracer conditions. The +1σ contours
are as described in Figure 6.37. The symbols correspond to mass- and time-averaged
plasma conditions in each tracer from BUCKY rad-hydro calculations using tabulated
EOS data from the following sources; SESAME (dots), QEOS (stars), PROPACEOS
(triangles), and Ideal-Gas (crosses).

data was taken. The location of a shock front is the place where differences in the EOS

are most pronounced. In addition, this is the only tracer for which the calculations using

the ideal gas EOS do not predict conditions within 1σ of the data. It is not surprising

that the characteristics of a shock front calculated in an ideal gas are different from those

calculated in a more physical model.

Given these comparisons, it is concluded that the calculations presented in this thesis

are not sensitive to the EOS. This is an important conclusion for two reasons. First, the
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insensitivity to the EOS places more importance on the other models in the calculation.

Since the goals of this thesis are to study the radiative transfer properties in CH2 foam,

it is beneficial that the EOS is of little consequence. Second, it is unknown how the

structure of the CH2 foam affects the hydrodynamics. Since each EOS model provides a

solution that is consistent with the data, there is evidence that, after the long foot pulse

and during the main radiation drive, the CH2 can be treated as a uniform vapor.



251

in the data (ie. the standard deviation). Since the data from each of these shots was

taken using a micro-channel plate intensifier for which the statistical fluctuations are not

well understood, the data was assumed to follow Poisson statistics as calibrated by a

region of each spectra with no known features. Defects in the film, micro-channel plate,

or crystal reflectivity across these regions could affect this analysis. The resulting best-fit

in the χ2 analysis is not likely to be affected, but the 1σ confidence level could be.

The experiment on shot z1122 is therefore the best one for studying the differences

in computational models within the CH2 foam. With the experimental and computa-

tional methods developed in this thesis, the conclusions drawn above could be greatly

strengthened by repeating this experiment for different z-pinch configurations with cor-

respondingly different pulse-shapes.

This is not to say that the experiment on z1122 could not be improved. As seen

throughout this thesis, the degeneracy of the ionization states for different combinations

of temperature and density leaves a very wide phase-space in the χ2 analysis where the

conditions of the tracer are within 1σ of the best-fit spectra. If the density of the tracer

could be measured, then this phase-space could be limited to the error bars of the density

measurement. Attempts were made in the course of this thesis to measure the density

through Stark broadening of high-n transitions in sodium (Na). However, the mean free

path of the CH2 samples was too short at the ≈ 11Å wavelength of the Na transitions

for a sufficient signal-to-noise in the spectra. The calculations of the tracer conditions

suggest that, at the time data is taken, the density is too low for the shorter wavelength

lines of a higher Z element to be broadened beyond the current spectral resolution of the

spectrometers at the Z facility. More work needs to be done to verify that this is true,

and/or improve the spectral resolution on these experiments.

Another common method for measuring the density of a planar sample is to image
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the expansion. Assuming a constant ρx, the extent of the plasma dictates its density. In

the experimental configuration presented in this thesis, measuring the tracer expansion

would require a diagnostic utilizing a separate backlighter with sufficient strength to

see through ≈ 1cm of CH2 foam at a spatial resolution of ≈ 10µm. This capability

has recently become available on the Z facility using spherical crystal imaging and the

Beamlet laser backlighter system [110]. This measurement should be made in order

to verify the hydrodynamic calculations of the tracer response and put an additional

constraint on the models.

One interesting possibility for the extension of this work is in the measurement of

the plasma conditions within the foam itself. The method applied in this thesis was to

measure the conditions in tracers, which were shown to be significantly out of thermal

equilibrium with the CH2. This was done as a measure of the radiation field propagated

to the tracer location. However, the penetrating radiation only really depends on the

spatially integrated conditions of the foam, and does not provide detailed information on

the location of the thermal wave front in the CH2. It would be interesting to measure

the propagation of the thermal wave front in the foam samples by imaging the self-

emission from a direction perpendicular to the propagation of the driving radiation.

If this was done in conjunction with the backlit tracer spectroscopy, then one would

have information on both the radiation that penetrates into the foam and that which is

absorbed and propagated in the CH2. This information could be crucial to understanding

the integrated radiative transfer in the dynamic-hohlraum driven ICF program.

However, making this measurement in the geometry employed throughout this the-

sis would be difficult. A useful side-on measurement of the foam self-emission requires

that the emission propagated from the edge of the plasma be a good representation of

the temperature on the interior. At the tens of eV temperatures of the foams in the
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present geometry, the optical depth of the CH2 would require that the foam samples

be very narrow in the direction perpendicular to the propagating radiation. If left un-

constrained, the foams would expand in this perpendicular direction and the experiment

could no longer by well modeled in 1-D. This negates a very important advantage of

the present ride-along geometry. Thus, experiments that make this measurement would

require constrained samples, which may require a great deal of development work to be

successful.

Finally, consideration needs to be made on the applicability of the results in this thesis

to the dynamic-hohlraum system on Z. As shown through the sensitivity studies in §6.4,

these experiments primarily probe the opacity of CH2 and the details of the radiation

transport (group structure and transport approximation). Furthermore, the experiments

are sensitive to these models for electron temperatures from ≈ 2 − 60eV , and radiation

energies from ≈ 100− 2000eV . The question is how does this relate to the conditions in

the dynamic-hohlraum.

Figure 6.56 shows LASNEX simulated electron and radiation temperature histories

at the center of a 5mg/cc CH2 foam in the dynamic-hohlraum geometry defined in

Figure 1.15. Also shown in this figure is the measured radiation temperature exiting the

top of the foam cylinder. The time axis on this figure is shifted so that the peak of the

capsule implosion occurs at ≈ 0ns. Up to a time of t ≈ −8ns, the electron temperature

is in the range of the experiments studied in this thesis. Over the entire duration of

this time period, the calculated radiation temperature is out of equilibrium with the

electrons. This implies that radiation is propagated to the center of the foam that does

not interact well with the CH2 opacity. These photons are primarily in the low-opacity

range below the carbon K-edge. Again, this is precisely the region where the experiments

in this thesis were focused. The actual spectra that drive the foam is likely to be different
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Figure 6.56: LASNEX simulated radiation (red) and electron (blue) temperature his-
tories at the center of a 5mg/cc CH2 foam in the dynamic-hohlraum geometry shown in
Figure 1.15. Also shown is the measured radiation temperature escaping out the top of
the dynamic-hohlraum foam (black) [46].

from that used in this thesis, but the opacity and radiation-transport issues are the same.

Therefore, the conclusions in this thesis are relevant to the dynamic-hohlraum system up

to ≈ 8− 10ns before the peak of the capsule implosion. This is the so called ‘foot’ of the

radiation drive.

The experiments in this thesis have no relevance to the main drive-pulse. As seen in

the figure, the foam temperature sharply increases to > 100eV over about 1ns between

−8 and −7ns. During this phase, the carbon in the CH2 becomes fully stripped, the

opacity of the foam rapidly drops, and the transport characteristics will be very different.
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Experiments should be conducted that measure the radiative transfer in CH2 under

these conditions. However, these can not be done in the ride-along geometry employed

throughout this thesis. To reach temperatures similar to that in the main drive-pulse will

require dedicated experiments that use the radiation escaping from the top of dynamic-

hohlraum during that phase. These should be done as an integral part of the dynamic-

hohlraum driven ICF program plan.
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Chapter 7

Conclusions

The first detailed experiments on the radiative transfer in 5mg/cc CH2 foam have been

presented. Each of the experiments was conducted in a ride-along mode on Sandia Na-

tional Laboratories Z facility, and used radiation emission from various z-pinch plasmas

to drive the foam samples. These experiments measured the K-α absorption spectra

from tracer layers buried in the foam, which serve as a diagnostic of the possible temper-

ature and density conditions in the tracers. Calculations show that these conditions are

sensitive to the amplitude and distribution of the penetrating radiation that propagates

through the foam. A thorough χ2 analysis between the measured absorption spectra

and thousands of point calculations of the simulated K-α absorption features provided

a statistical phase-space where the temperature and density of the tracer plasma are

consistent with the observed spectra. This type of quantitative analysis is rarely done.

While the application of spectroscopy to determine the conditions of a plasma is a well

established diagnostic method, no examples of a full phase-space search of the plasma

conditions corresponding to K-α absorption data could be found in the literature. This

analysis was done with the SPECTROFIT χ2 fitting code, which was developed for this
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thesis.

In each of the foam experiments, the phase-space of possible temperature and density

conditions in the tracer layers was used as a constraint on simulations of the foam dynam-

ics. These simulations included a 3-D view-factor calculation of the radiation drive on

the sample surface and a 1-D radiation-hydrodynamics calculation of the sample response

and resulting tracer conditions. In each simulation, the tracer conditions were compared

directly to the experimental phase-space and post-processed to determine the ionization

states and associated spectral features. The synthetic spectra were then compared to the

original experimental spectra to verify the consistency of the calculated results. Using a

specific set of computational models, the simulations were shown to compare well with

the experimental data.

Under the constraints of the experiments, these models provide insight into the ra-

diative transfer process in 5mg/cc CH2 foam and lead to the following conclusions:

• For the plasma temperatures and z-pinch drive spectra as studied in this thesis, the

opacity around the carbon K-edge in the spectral range 100eV < hν < 400eV is the

most important factor that determines the amplitude and distribution of radiation

that penetrates deep into a CH2 plasma. The opacity of CH2 in this spectral range

was shown to have a very strong dependence on the temperature of the plasma. In

the analysis of the foam experiment on shot z1122 in §6.3, this opacity was shown

to drop by over a factor of 30 as the temperature increased from ≈ 2eV to 22eV .

Properly computing the radiative transfer in CH2 foam under these conditions

requires resolving the carbon K-edge with a suitable number of radiation groups.

The best comparison to the experimental data was found using 500 logarithmically

spaced energy groups in the range 0.1eV ≤ hν ≤ 104eV . These calculations are

well approximated by 40 unevenly spaced groups distributed with 10 groups in the
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range 0.1eV ≤ hν < 200eV , 20 groups in the range 200eV ≤ hν < 400eV , and 10

groups in the range 400eV ≤ hν ≤ 104eV .

• The comparison of the tracer conditions to the experimental data is very sensitive

to the CH2 opacity model. The PROPACEOS DTA atomic model and associated

tabular LTE opacity data for CH2 were shown to provide solutions that are the

most consistent with the experimental data. The EOSOPA DTA model was shown

to be inconsistent with the experimental data at low temperatures. The primary

differences between these models are in the assumed form of the statistical par-

tition function and the handling of bound-free cross-section data. PROPACEOS

assumes the Hummer-Mihalas partition function to compute the occupation prob-

abilities and interpolates on tabulated Hartree-Fock cross-sections to compute the

bound-free opacities. EOSOPA assumes the Boltzmann partition function and uses

analytic fits to the bound-free cross-sections. The PROPACEOS model appears to

be more correct.

• Throughout the range of temperatures and densities studied in this thesis, the

XSN average-atom model predicts CH2 opacities that are much too low in the

range 100eV < hν < 300eV . This model should be avoided wherever possible.

• Flux-limited diffusion is only an adequate transport approximation for making

rough calculations of the radiation propagation into a CH2 foam. For the con-

ditions of the plasma and drive spectra in these experiments, the Larsen (n=6)

flux-limiter agrees better with the data than the Levermore-Pomraning limiter.

However, this may not be true for any other set of conditions. No conclusions can

be drawn about which limiter is better in general. In addition, the simulations

of the foam experiment on shot z1122 show as much as a 15% discrepency in the
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calculated radiation temperature between flux-limited diffusion and the more ac-

curate short-characteristics approximation. For the very stringent requirements of

the radiation timing in ICF, one can not expect flux-limited diffusion to adequately

predict the radiation transport.

• It has been speculated that, in a z-pinch driven system, high energy photons early

in time may preheat a low-density low-Z foam ahead of the main radiation drive.

This pre-heating would vaporize the solid strands and cause the foam material to

homogenize so that it can be well modeled as an initially uniform density vapor. The

data and calculations presented in this thesis are consistent with that speculation.

However, no conclusion can be drawn as to whether this is true in the absence of the

long radiation foot-pulse that preceded the main drive pulse in these experiments.

• The calculations of the CH2 foam dynamics were found to be insensitive to the

equation-of-state model. The SESAME, QEOS, and PROPACEOS equation-of-

state models all predict conditions that are consistent with the data.

• The experiments presented in this thesis are relevant to the foot pulse of the

dynamic-hohlraum ICF radiation drive in 5mg/cc CH2 foam converters (up to

≈ 10ns before the peak of the capsule implosion). The stringent timing require-

ments of the radiation drive for successful ICF require that this phase of the

dynamic-hohlraum be very well modeled. Using the experimental and compu-

tational methods presented in this thesis, more experiments should be done with

differing radiation pulse shapes to further strengthen the conclusions drawn above.

In addition, dedicated experiments on the Z facility should be conducted to extend

the range of this work to temperatures > 200eV , which will be required to study

the transfer dynamics during the main-pulse of the radiation drive.
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Appendix A

EXRAY

Before the calculations described in Chapter 4 can be compared to the experimental data,

this data must be reduced from the raw form in which it is generated to a form that is

synergistic with the calculated values. In the case of a film-based spectrometer, the raw

data is in the form of a spatially variant film exposure. This may be x-ray or optical film,

but in either case the raw data must be corrected for film efficiency, converted from spacial

to wavelength coordinates, and then corrected for the efficiency of the crystal reflectivity

and geometry. Finally, the data must be adjusted by the transmission of any filters in the

spectrometer and the quantum efficiency of the micro-channel plate intensifier (if one was

used). For the purpose of increasing the consistency and accuracy of this data reduction

process, a code called EXRAY was developed to quickly and consistently apply each of

the corrections listed above. This code is specialized to the spectrometer configurations

on Sandia’s Z machine (see §1.3), and therefore contains ray-tracing capabilities for both

elliptical and convex geometries.
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Figure A.1: Geometry of the elliptically curved crystal spectrometer.

A.1 Elliptical Ray-Tracing

The geometry of an elliptically bent crystal spectrometer is defined in Figure A.1 for an

elliptical surface of eccentricity, ε, defined by:

ε =
√

1 + (h/R0)2 − h/R0, (A.1)

where h is the distance from a focus to the ellipse surface along a path perpendicular to

the elliptical axis, and R0 is the separation between the two ellipse focii (referred to as

the spectrometer focal length). In the elliptical coordinate system defined by Figure A.1,

the surface of the ellipse can be described by:

(
x +

R0

2

)2 (
1− ε2

)
+ y2 − h2

1− ε2
= 0, (A.2)
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so that the tangent vector to the ellipse surface, ~T = x̂ + dy
dx

ŷ, is derived as:

~T = x̂−
(
x + R0

2

)
(1− ε2)

y
ŷ. (A.3)

The intersection angle between the tangent vector and a ray originating from source point

(a, b), ~R = (x− a)x̂ + (y− b)ŷ, can be derived by the dot-product, ~R · ~T = |R||T | cos θ =

RxTx + RyTy, to give:

[
(x− a)2 + (y − b)2

]1=2


1 +

(
− (

x + R0

2

)
(1− ε2)

y

)2



1=2

cos θ

= (x− a) + (y − b)

[
− (

x + R0

2

)
(1− ε2)

y

]
.

(A.4)

Assuming that θ is the Bragg angle defined by:

nλ = 2d sin θ, (A.5)

for n the diffraction order and d the crystal lattice spacing, then Eq. A.4 defines which

wavelength will diffract off the elliptical crystal at point (x, y).

For practicality, EXRAY uses the polar β coordinate rather than the Cartesian co-

ordinates listed above. These coordinate systems are related in terms of the ellipse

eccentricity as:

x =
−h cos β

1− ε cos β

y =
h sin β

1− ε cos β
,

so that Eq. A.4 can be recast into the polar coordinate system as:

[
1 +

(
ε− cos β

sin β

)2
]1=2 [( −h cos β

1− ε cos β
− a

)2

+

(
h sin β

1− ε cos β
− b

)2
]1=2

cos θ

=

( −h cos β

1− ε cos β
− a

)
−

(
h sin β

1− ε cos β
− b

)
ε− cos β

sin β
.

(A.6)
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This equation is highly non-linear in β, and must therefore be solved numerically for

any given value of λ (i.e. a given θ) a. In EXRAY, this equation is solved by a secant

iterative solver [1, 2] for a user defined grid of x-ray wavelengths. Note that, because

of the general definition of the source point at (a, b), Eq. A.6 places no restrictions on

the source location and will therefore provide the position and direction of the diffracted

ray for a source located anywhere in space. Furthermore, in the case that the source is

located at the ellipse focus, (R0, 0), then it can be shown that Eq. A.6 reduces to:

β = θ + cos−1

(
cos θ

ε

)
, (A.7)

which is the form given by Henke et al. [3].

Once the diffraction vector has been determined, then the x-ray wavelength can be

related to a position on the film by determining the point where the diffracted ray inter-

sects the film plane. The equation for the vertical position of the diffracted ray, yr(x),

can be written as:

yr(x) = yc − (x− xc) tan γ, (A.8)

where (xc, yc) are the coordinates (along the crystal surface) from which the diffracted

ray originates and γ is the angle between the diffracted ray and the elliptical axis
(
γ = 2θ = tan−1

[
yc−b
xc−a

])
. In addition, the equation for the vertical position of the film

plane, yf (x), can be written as:

yf (x) = rf sin φ− (x + rf cos φ) tan µ, (A.9)

where rf and φ define the polar coordinates of the film center and µ defines the pitch

angle of the film plane. Therefore, equating Eq. A.8 and A.9 provides the coordinates of

aOn the other hand, the equation is linear in θ, and can be easily solved directly for a given value of
β.
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the intersection, (x‚, y‚), as:

x‚ =
(rf sin φ− yc) + rf cos φ tan µ− xc tan γ

tan µ− tan γ

y‚ = yr(x) = yc − (x− xc) tan γ.

(A.10)

These coordinates can then be transformed into the reference frame of the film plane by

the equation:

l‚ =
rf sin φ + L

2
sin µ− y‚

sin µ
, (A.11)

where L is the film length and l‚ is measured from the short-wavelength side of the film.

Once this term has been calculated for a distribution of wavelengths, then the identifica-

tion of a single line in the experimental spectrum indexes the real film positioning to the

calculation, and the film position coordinates can be transformed into x-ray wavelength.

A.2 Convex Ray-Tracing

The geometry of a convex crystal spectrometer is shown in Figure A.2 for a crystal of

radius rc, and a linear film plane of length L placed a distance rf from the intersection

of the crystal surface and the ŷ axis. By inspection of the angular geometry, it can be

derived that the polar angle of diffraction, β, can be expressed as:

β = π + tan−1

(
b

|a|
)
− 2θ − ω, (A.12)

where θ is again given by Eq. A.5 and the angle ω is given by:

ω = sin−1

(
rc sin

(
…
2
− θ

)
√

a2 + b2

)
. (A.13)

In contrast to the elliptical diffraction angle given by Eq. A.6, Eq. A.12 can be solved

directly for a given value of λ (θ). However, the equation is non-linear in θ, and must

therefore be solved numerically for any given value of β.
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Figure A.2: Geometry of the convex curved crystal spectrometer.

As done in §A.1, the coordinates of the intersection point between the diffracted ray

and the film plane can be derived from the equations for the ray, yr, and the film, yf ,

given by:

yr = (xc − x) tan β + yc (A.14)

yf = (rf cos Ω− x) tan µ + rf sin Ω + rc, (A.15)

where the diffraction coordinates (xc, yc) can be expressed as:

xc = −rc cos

(
π

2
− θ − ω + tan−1

(
b

|a|
))

yc = rc sin

(
π

2
− θ − ω + tan−1

(
b

|a|
))

.
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Equating Eq. A.14 and A.15 then gives the intersection coordinates as:

x‚ =
xc tan β − rf cos Ω tan µ + yc − rf sin Ω− rc

tan β − tan µ
(A.16)

y‚ = rf sin Ω + (rf cos Ω− x‚) tan µ, (A.17)

which can be transformed into film coordinates to give:

l‚ =
y‚ + L

2
sin µ− rf sin Ω− rc

sin µ
. (A.18)

If the film plane is instead curved to a constant radius, rf , then the equation for the film

is given by:

yf =
√

r2
f − x2 + rc, (A.19)

and the equation for the intersection point in film coordinates is given by:

l‚ = rf tan−1

(
y‚ − rc

x‚

)
, (A.20)

where the point (x‚, y‚) must be determined by equating Eq. A.14 and A.19.

The coordinate axes in Figure A.2 are given in the crystal reference frame. In the

convex spectrometer geometry, the spectral range is selected by rotating this reference

frame by an angle ψ with respect to the spectrometer line-of-sight. Typically this rotation

angle is chosen as the bragg angle of the median wavelength in the desired range. If the

film plane is then placed at an angle of Ω = 2ψ, then the median wavelength will diffract

off the crystal at (0, rc), and intersect the film at a distance of l‚ = L/2. In EXRAY,

the coordinates of the source and the location of the film plane are specified in the

spectrometer reference frame. Therefore, they must be transformed into the reference

frame of the crystal to be applicable to the equations derived above. These coordinate

transformations are given by:

a =
√

a′2 + (rc − b′)2 sin

[
tan−1

(
a′

rc − b′

)
+ ψ

]
(A.21)
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b = −
√

a′2 + (rc − b′)2 cos

[
tan−1

(
a′

rc − b′

)
+ ψ

]
+ rc (A.22)

Ω = Ω′ − ψ, (A.23)

where (a′, b′) and Ω′ are the source coordinates and film angle in the line-of-sight reference

frame.
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coefficients α and β in Eq. A.24 are related to the path length of the x-rays in the emulsion

layer, and can be expressed as:

α = µ′/ sin η (A.26)

β =
(
1− e−„1dg

)
e−„0t= sin ·, (A.27)

for η the angle between the incident radiation and the film plane. In contrast to RAR

film types, the DEF film has a second emulsion on the back of the film which must be

included in the film intensity conversion. In this case, Henke et.al. derive the relation

between the film density and intensity to be:

D =
a

α
ln

[(
1 + bβI

1 + bβIe−„′T= sin ·

)(
1 + bβIe(−„btb−„′T )= sin ·

1 + bβIe(−„btb−2„′T )= sin ·

)]
, (A.28)

where µb and tb are the linear absorption coefficient and thickness of the polyester film

base.

Given that the absorption coefficients are a function of the x-ray wavelength, then

Eq. A.24 and A.28 must be solved for each value of λ in the experimental spectrum. In

EXRAY, a cubic spline is fit to the tabulated absorption data for µ0, µ1, and µb, with

the option of using a linear fit across photo-ionization edges. So, depending on the film

type used in the experiment, Eq. A.24 or A.28 can be applied in EXRAY to convert the

film density data to incident photon intensity.

A.3.2 Spectrometer Geometry Corrections

In the authoritative paper on pulsed plasma spectroscopy [3], Henke et al. derive a

general equation for the diffraction efficiency of a curved crystal spectrometer as:

dN

dA
=

S0

rfLr

(
dχ

dθ

)(
dθ

dβ

)(
dE

dθ

)
R, (A.29)
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where S0 is the source intensity (in photons/steradian/s/eV ), Lr is the total path length

of the ray, R is the (energy dependent) crystal reflectivity, and χ is the angle between

the incident ray and the x̂ axis (see Figure A.1). Solving this for the source intensity and

converting to units of J/sr/A gives:

S0 =


(1.602× 10−19)rfLr(hc) tan θ

− (
d´
dµ

) (
dµ
dfl

)
λ2R


 dN

dA
. (A.30)

After correcting for the film response, the experimental data is directly proportional

to dN
dA

(in units of photons/cm2), so that Eq. A.30 provides a general expression for the

correction of the diffraction efficiency of any crystal geometry. In EXRAY, the differential

terms d´
dµ

and dµ
dfl

are easily calculated in the elliptical geometry when the source is located

near the focal length of the crystal (a ≈ R0), and Eq. A.30 can be directly applied to

experimental data acquired on an elliptical crystal spectrometer.

In Henke’s derivation, the film radius, rf , and the polar diffraction angle, β, are given

with respect to the ellipse focus. This is convenient for the elliptical geometry because

the focus is a real crossover point, and fixed for x-rays of all wavelengths. However, there

is no real crossover in the convex geometry, so that β and rf are functions of the x-ray

wavelength as they appear in Eq. A.29. Brown and Fatemi [11] analyzed the efficiency

of the convex geometry, where they derived the differential diffraction relation:

dχ

dθ
= −

[
1−

(
1 +

a2

r2
c sin2 θ

)−1=2
]

rc

s
sin θ, (A.31)

for s the distance from the crystal axis to the source location (s =
√

a2 + b2). Then,

realizing that dµ
dfl

= dE
dlλ

dµ
dE

dlλ
dfl

and that dl‚ ≈ rfdβ, Eq. A.30 can be written as:

S0 =




(1.602× 10−19)Lrs(hc)[
1−

(
1 + a2

r2
c sin2 µ

)−1=2
]

rcλR sin θ

(
dl‚
dλ

)



dN

dA
, (A.32)
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where dlλ
d‚

is the dispersion on the film plane. This is essentially the same form as derived

by Brown and Fatemi, and is the equation used in EXRAY for correcting data acquired

on a convex crystal spectrometer.

The crystal reflectivity, R, is the primary source of error in the crystal efficiency

corrections. There are a few different models for the absorption and scattering coefficients

in the crystals, but the data is fairly sparse. In EXRAY, the crystal reflectivity values

are linearly interpolated from tables of calculations [7] that contain both the modified

Darwin-Prins (MDP) [8], and mosaic models for multilayer reflection. It is up to the user

decide which model should be applied for a particular crystal and diffraction order.

A.3.3 Filter and Photocathode Corrections

The final set of corrections that needs to be considered is the transmission fraction of

any filter materials in the spectrometer, and the quantum efficiency of the photocathode

(if one was used). In EXRAY, the correction for the transmission through a combination

of N filters is calculated by:

I0 = Ie
∑N

i=0 „i¢ti , (A.33)

where µi is the linear absorption coefficient of the ith filter material (taken from the

Biggs and Lighthill cold opacity tables [9]), I0 and I are the incident and transmitted

photon intensities, and ∆ti is the thickness of the ith filter. Finally, the correction for

the photocathode quantum efficiency can be written as:

I0 = I/Q, (A.34)

where Q is a wavelength dependent quantum efficiency term (0 ≤ Q ≤ 1). The only

photocathodes considered in EXRAY are cesium-iodide and gold, where the quantum

efficiencies are taken from tabulated data and calculations by Henke et al. [10].
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Appendix B

Verification and Analysis of

Radiation Transport in BUCKY

In order to verify the implementation of the radiation transport approximations in

BUCKY, it was necessary to design a verification test suite that assures the accuracy

of the finite difference equations as they appear in the code. This verification is accom-

plished in essentially three parts: First, a few simple test problems are solved analytically

by both time-independent transport and diffusion, and are compared to BUCKY calcu-

lations using both flux-limited diffusion and short-characteristics. Second, some analytic

problems specific to the flux-limited diffusion equations are compared to BUCKY calcula-

tions to verify each of the terms specific to flux-limited diffusion (such as the flux-limiter).

Third, two time-dependent benchmark problems, which are intended to verify both the

radiation transport and the associated coupling between the radiation energy and the

plasma energy, are compared to both flux-limited diffusion and short-characteristics.

Most of these problems are only applicable to planar geometries, and therefore the

majority of the discussion takes place in Cartesian coordinates. However, because the
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flux-limited diffusion equations are also implemented for cylindrical and spherical ge-

ometries, a few problems that are specific to diffusion are also tested in these coordinate

systems.

After completion of this test suite, one can have confidence that the finite difference

equations in each transport approximation are properly implemented to solve the equa-

tions for which they are intended. One should note, however, that this says nothing of

the applicability of each transport approximation to a particular problem. This is a much

more complicated issue, and must usually be addressed on a case-by-case basis.

B.1 Flux-Limited Diffusion in BUCKY

The diffusion approximation as given in Eq. 1.40, can be rewritten as:

∂E

∂t
−∇cD∇E = −cσaE + 4πσeB” + 4πS, (B.1)

where E = 1
c
I0 is the radiation energy density in units of J/cm3, S is an external source

term in units of J/cm3/s, and the diffusion coefficient, D, can be limited by any of

the flux-limiters disscused in §1.4.1. This is the form of flux-limited diffusion as it is

implemented in BUCKY.

B.1.1 Diffusion Boundary Conditions

Obtaining a solution to Eq. B.1 requires a definition of E on each boundary. The bound-

ary conditions for diffusion can be defined through the incoming and outgoing partial

flux (~F = (Fin + Fout)r̂)as:

Fin = −
∫ 0

−1

µIdµ (B.2)

Fout =

∫ 1

0

µIdµ. (B.3)
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Boundary Condition A B C
Dirichlet 1 0 E0

Vacuum −1/2 1 0

Source −1/2 1 −21
c
Fin = −2…

c
B”(Tsource)

Reflection 0 1 0

Albedo 1
2
(α− 1)/(α + 1) 1 0

Table B.1: Coe–cients for the difiusion boundary conditions [2]. α is the fraction of radiation
re°ected by the albedo boundary.

These can be solved by applying the approximation [1]:

I(r, µ, t) =
1

2
I0 +

3

2
µI1, (B.4)

including the evaluation of I1 from Eq. 1.37 to give:

1

c
Fin =

1

4
E − (~̂n · ~̂r)1

2
D

∂E

∂r
(B.5)

1

c
Fout =

1

4
E + (~̂n · ~̂r)1

2
D

∂E

∂r
, (B.6)

for ~̂n the unit vector outward normal to the boundary surface.

There are many types of boundary conditions that are of interest in diffusion calcu-

lations. All can be prescribed by some combination of Eq. B.5 and Eq. B.6. To simplify

this prescription, these equations can be generalized into a single expression that is valid

for any boundary condition [2]:

AE − (~̂n · ~̂r)BD
∂E

∂r
= C. (B.7)

Table B.1 lists the factorsA, B, and C for Dirichlet, source, vacuum, and albedo boundary

conditions.

B.1.2 Diffusion Finite Difference Equations

In order to solve Eq. B.1 in BUCKY, it must be converted to Lagrangian coordinates

and written in finite-difference form. Lagrangian coordinates are, by definition, in the
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reference frame of the fluid particle and must therefore automatically conserve mass.

Thus, the conversion from Eulerian (observer) to Lagrangian (particle) coordinates can

be written as:

dm = ρ(r)r–−1dr, (B.8)

where ρ is the fluid density and δ is a geometry-dependent factor which is 1 for planar

geometry, 2 for cylindrical geometry, and 3 for spherical geometry.

Applying this conversion to Eq. B.1 and re-arranging terms gives:

V
∂E

∂t
=

∂

∂m

(
r–−1V c

1

3σt

∂E

∂r

)
− cσaE + 4πσeB” + V 4πS, (B.9)

where σt, σa, and σe have been converted to units of cm2

g
, and V is the specific volume

given by:

V =
1

ρ
. (B.10)

This description is precise for static fluids, but requires a correction to account for a time-

dependent zone thickness in a Lagrangian description where no particles are allowed to

cross a zone boundary. This correction is derived from the first law of thermodynamics

in the particle reference frame [3]:

∂eTD[(ρ)]TJ 7.233msJ/F9 77 TD[(∂)]TJ ET 0.95Tf 17447Tf 409.TJ 3 17447Tf 409.02 l S BT/F5 11.1985 Tf-458.5236.34 TD[(∂)-54(t)]TJ/F2 11.97 m 2 7.23 8.9 TD[(+)]TJ/F5 11.95 Tf 11.76 PeTD[(ρ)]TJ -41 8.76 1.r TD[(4)]TJ/F5 11.95Tf 9 Tf 36.34 TD[(V TD[(1)]TJ ET 0.41 7.23447Tf 409.15  17447Tf 409.02 0.435 Tf-458.5236.34 TD[(∂)-54(t)]TJ/F2 11.9.9 7 18.14 8.2 TD[.97 w 231 -34 8._ TD[(4)]TJ/F5 11.-35 Tf-31 -34 8.Q)-54(eTD[(ρ)]9.2741 8.76 1.r TD[(4)]TJ/F5 11.45 Tf 3.55 1.dr)27(,)]TJ/F2 11.947T27177.43 0 TD[1(B.10)

wherere1
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Lagrangian description of the radiation diffusion equation:

V
∂E

∂t
= Q̇r − 4

3
E

∂V

∂t
, (B.13)

or expanding Q̇r from Eq. B.9:

V
∂E

∂t
=

∂

∂m

(
r–−1V c

1

3σt

∂E

∂r

)
− 4

3
E

∂V

∂t
− cσaE + 4πσeB” + V 4πS. (B.14)

As derived in the Lagrangian reference frame, this equation is applicable to planar,

cylindrical, and spherical coordinates.

Solving Eq. B.14 in BUCKY requires binning the photon energies into groups. This

means making some choice about how to weight the opacities. Typically, this weighting is

done by assuming the plasma to be at near LTE so that the radiation field is well-modeled

as a Planckian distribution. Under this assumption, the three opacities in Eq. B.14 can

be binned into the Planck emission opacity:

σg
P;e =

∫ ”g+1

”g
σeB”dν∫ ”g+1

”g
B”dν

, (B.15)

the Planck absorption opacity:

σg
P;a =

∫ ”g+1

”g
σaB”dν∫ ”g+1

”g
B”dν

, (B.16)

and the Rosseland opacity:

1

σg
R

=

∫ ”g+1

”g

1
¾t

B”dν∫ ”g+1

”g
B”dν

, (B.17)

where νg are the group boundaries (in eV ) for G total radiation groups. Then, the

multi-group radiation diffusion equation is written as:

V
∂Eg

∂t
=

∂

∂m

(
r–−1κg

R

∂Eg

∂r

)
− Eg 4

3

∂V

∂t
− cσg

P;aE
g + 4πσg

P;eB
g
” + V 4πSg, (B.18)

where each term has been integrated from νg to νg+1, κg
R is the radiation conductivity

given by:

κg
R =

cV

3σg
R

= cDg, (B.19)
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Figure B.1: Finite difierence grid in BUCKY for J − 1 zones with J boundaries.

and the multi-group diffusion coefficient, Dg, can be flux-limited by any one of the flux-

limiters listed in §1.4.1.

In BUCKY, the radiation energy densities are stored as zone-centered values. There-

fore, given the finite grid shown in Figure B.1, the finite difference form of Eq. B.18 can

be written as:

V
n+ 1

2

j− 1
2

Eg;n+1

j− 1
2

− Eg;n

j− 1
2

∆tn+ 1
2

=
1

∆mj− 1
2


r–−1n+1

2

j κ
g;n+ 1

2
R;j

∆r
n+ 1

2
j

(
Eg;n+1

j+ 1
2

− Eg;n+1

j− 1
2

)



− 1

∆mj− 1
2


r–−1n+1

2

j−1 κ
g;n+ 1

2
R;j−1

∆r
n+ 1

2
j−1

(
Eg;n+1

j− 1
2

− Eg;n+1

j− 3
2

)



− Eg;n+1

j− 1
2

4

3
V̇

n+ 1
2

j− 1
2

− cσ
g;n+ 1

2
P;a

j− 1
2

Eg;n+1

j− 1
2

+ 4πσ
g;n+ 1

2
P;e

j− 1
2

B
g;n+ 1

2

”;j− 1
2

+ V
n+ 1

2

j− 1
2

4πS
g;n+ 1

2

j− 1
2

,

(B.20)

where n is the time index, and the work term, V̇
n+ 1

2

j− 1
2

, is given by:

V̇
n+ 1

2

j− 1
2

=

(
r

n+ 1
2

j

)–−1

u
n+ 1

2
j −

(
r

n+ 1
2

j−1

)–−1

u
n+ 1

2
j−1

∆mj− 1
2

, (B.21)

for u
n+ 1

2
j the fluid velocity evaluated at time n + 1

2
.

In addition, the radiation conductivity has a different implementation for each of the

various forms of the flux-limiter. The finite-difference equations for each of these limiters
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are given for the SUM-limiter:

κ
g;n+ 1

2
R;j = c


3σ

g;n+ 1
2

R;j− 1
2

V
n+ 1

2

j− 1
2

+ 2
(
Eg;n

j+ 1
2

+ Eg;n

j− 1
2

)−1

∣∣∣∣∣∣
Eg;n

j+ 1
2

− Eg;n

j− 1
2

∆r
n+ 1

2
j

∣∣∣∣∣∣



−1

(B.22)

the MAX-limiter:

κ
g;n+ 1

2
R;j = c


max


3σ

g;n+ 1
2

R;j− 1
2

V
n+ 1

2

j− 1
2

, 2
(
Eg;n

j+ 1
2

+ Eg;n

j− 1
2

)−1

∣∣∣∣∣∣
Eg;n

j+ 1
2

− Eg;n

j− 1
2

∆r
n+ 1

2
j

∣∣∣∣∣∣






−1

(B.23)

the Larsen-limiter:

κ
g;n+ 1

2
R;j = c




(
3σ

g;n+ 1
2

R;j− 1
2

V
n+ 1

2

j− 1
2

)n′

+


2

(
Eg;n

j+ 1
2

+ Eg;n

j− 1
2

)−1

∣∣∣∣∣∣
Eg;n

j+ 1
2

− Eg;n

j− 1
2

∆r
n+ 1

2
j

∣∣∣∣∣∣




n′



− 1
n′

(B.24)

and the approximate simplified Levermore-Pomraning-limiter:

κ
g;n+ 1

2
R;j =c

2 + R
g;n+ 1

2
j

σ
g;n+ 1

2

R;j− 1
2

V
n+ 1

2

j− 1
2

[
6 + 3R

g;n+ 1
2

j +
(
R

g;n+ 1
2

j

)2
]

for R
g;n+ 1

2
j = 2

[
σ

g;n+ 1
2

R;j− 1
2

V
n+ 1

2

j− 1
2

(
Eg;n

j+ 1
2

+ Eg;n

j− 1
2

)]−1

∣∣∣∣∣∣
Eg;n

j+ 1
2

− Eg;n

j− 1
2

∆r
n+ 1

2
j

∣∣∣∣∣∣
.

(B.25)

For convenience, Eq. B.20 can be reduced to [4]:

α
n+ 1

2

j− 1
2

(
Eg;n+1

j− 1
2

− Eg;n

j− 1
2

)
= a

g;n+ 1
2

j

(
Eg;n+1

j+ 1
2

− Eg;n+1

j− 1
2

)
− a

g;n+ 1
2

j−1

(
Eg;n+1

j− 1
2

− Eg;n+1

j− 3
2

)

− γ
n+ 1

2

j− 1
2

Eg;n+1

j− 1
2

− ω
g;n+ 1

2

j− 1
2

Eg;n+1

j− 1
2

+ β
g;n+ 1

2

j− 1
2

,

(B.26)

by definition of the coefficients:

α
n+ 1

2

j− 1
2

= V
n+ 1

2

j− 1
2

∆mj− 1
2

∆tn+ 1
2

(B.27)

a
g;n+ 1

2
j = r–−1n+1

2

j

κ
g;n+ 1

2
R;j

∆r
n+ 1

2
j

(B.28)

γ
n+ 1

2

j− 1
2

=
4

3
V̇

n+ 1
2

j− 1
2

∆mj− 1
2

(B.29)
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ω
g;n+ 1

2

j− 1
2

= cσ
g;n+ 1

2
P;A

j− 1
2

∆mj− 1
2

(B.30)

β
g;n+ 1

2

j− 1
2

= 4πσ
g;n+ 1

2
P;e

j− 1
2

B
g;n+ 1

2

”;j− 1
2

∆mj− 1
2

+ V
n+ 1

2

j− 1
2

4πSg;n+1

j− 1
2

∆mj− 1
2
. (B.31)

Finally, collecting terms in Eq. B.26 gives the tri-diagonal matrix equation for the

radiation energy density at time n + 1:

−A
g;n+ 1

2

j− 1
2

Eg;n+1

j+ 1
2

+ B
g;n+ 1

2

j− 1
2

Eg;n+1

j− 1
2

− C
g;n+ 1

2

j− 1
2

Eg;n+1

j− 3
2

= D
g;n+ 1

2

j− 1
2

, (B.32)

where the matrix coefficients are given by:

A
g;n+ 1

2

j− 1
2

= a
g;n+ 1

2
j (B.33)

B
g;n+ 1

2

j− 1
2

= α
n+ 1

2

j− 1
2

+ a
g;n+ 1

2
j + a

g;n+ 1
2

j−1 + γ
n+ 1

2

j− 1
2

+ ω
g;n+ 1

2

j− 1
2

(B.34)

C
g;n+ 1

2

j− 1
2

= a
g;n+ 1

2
j−1 (B.35)

D
g;n+ 1

2

j− 1
2

= β
g;n+ 1

2

j− 1
2

+ α
n+ 1

2

j− 1
2

Eg;n

j− 1
2

. (B.36)

It should be noted that each of these matrix coefficients are listed as being evaluated at

time n + 1
2
. In reality, these coefficients depend on the energy density, which is not yet

known at time n + 1
2
, so that they are actually evaluated based on the energy density

at time n. This solution to the diffusion equation is therefore semi-implicit. In some

instances, the solution can be made more implicit by iterating over a time step until

these coefficients (or the radiation energy density itself) converge on the value at time

n + 1. However, there is no guarantee that the iteration will converge in every situation,

and may occasionally lead to erroneous solutions. Additionally, because these equations

are derived in a 1-D coordinate system, the constant lagrangian mass term, ∆mj− 1
2
, is

given in units of g
cm2 cm

–−1. Thus, the formulation of the diffusion equation given in

Eq. B.32 is applicable in planar, cylindrical, and spherical coordinates.

Because the radiation energy density, E, is a zone-centered quantity in BUCKY, then

the matrix coefficients in Eq. B.32 are only good for 3 ≤ j ≤ J − 1. The matrix values
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on the edges must therefore be evaluated using the boundary conditions from Eq. B.7.

Discretizing the boundary condition at j = 2 and j = J on the finite grid of Figure B.1

gives:

AlE
g;n+1
1 + Bl

1

c
κ

g;n+ 1
2

R;1




Eg;n+1
3
2

− Eg;n
1

∆r
n+ 1

2
1


 = Cn+1

l (B.37)

ArE
g;n+1
J − Br

1

c
κ

g;n+ 1
2

R;J




Eg;n+1
J − Eg;n

J− 1
2

∆r
n+ 1

2
J


 = Cn+1

r , (B.38)

where Eq. B.37 is applied on the left boundary (j = 1) and Eq. B.38 is applied on the

right boundary (j = J). The radiation energy density on these boundaries (E1 and EJ)

are defined on the first and last node (not the zone centers) so that κR;(1;J) and ∆r(1;J)

are defined for:

∆r
n+ 1

2
1 =

1

2

(
r

n+ 1
2

2 − r
n+ 1

2
1

)
(B.39)

∆r
n+ 1

2
J =

1

2

(
r

n+ 1
2

J − r
n+ 1

2
J−1

)
. (B.40)

Then, solving for the boundary values and plugging into Eq. B.32 gives:

−A
g;n+ 1

2
3
2

Eg;n+1
5
2

+

[
B

g;n+ 1
2

3
2

+ a
g;n+ 1

2
1

Bla
g;n+ 1

2
1

cr–−1n+1
2

1 Al − Bla
g;n+ 1

2
1

]
Eg;n+1

3
2

= D
g;n+ 1

2
3
2

+ a
g;n+ 1

2
1

cr–−1n+1
2

1 Cn+1
l

r–−1n+1
2

1 cAl − Bla
g;n+ 1

2
1

(B.41)

[
B

g;n+ 1
2

J− 1
2

+ a
g;n+ 1

2
J

Bra
g;n+ 1

2
J

cr–−1n+1
2

J Ar − Bra
g;n+ 1

2
J

]
Eg;n+1

J− 1
2

− C
g;n+ 1

2

J− 1
2

Eg;n+1

J− 3
2

= D
g;n+ 1

2

J− 1
2

+ a
g;n+ 1

2
J

cr–−1n+1
2

J Cn+1
r

cr–−1n+1
2

J Ar − Bra
g;n+ 1

2
J

,

(B.42)

which implies that the matrix coefficients at j = 2 and j = J are given by:

A
g;n+ 1

2
3
2

= a
g;n+ 1

2
2 (B.43)
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B
g;n+ 1

2
3
2

= α
n+ 1

2
3
2

+ a
g;n+ 1

2
2 + a

g;n+ 1
2

1 + γ
n+ 1

2
3
2

+ ω
g;n+ 1

2
3
2

+
a

g;n+ 1
2

1 Bla
g;n+ 1

2
1

cr–−1n+1
2

1 Al − Bla
g;n+ 1

2
1

(B.44)

C
g;n+ 1

2
3
2

= 0 (B.45)

D
g;n+ 1

2
3
2

= β
g;n+ 1

2
3
2

+ α
n+ 1

2
3
2

Eg;n
3
2

+ a
g;n+ 1

2
1

cr–−1n+1
2

1 Cn+1
l

cr–−1n+1
2

1 Al − Bla
g;n+ 1

2
1

(B.46)

and

A
g;n+ 1

2

J− 1
2

= 0 (B.47)

B
g;n+ 1

2

J− 1
2

= α
n+ 1

2

J− 1
2

+ a
g;n+ 1

2
J + a

g;n+ 1
2

J−1 + γ
n+ 1

2

J− 1
2

+ ω
g;n+ 1

2

J− 1
2

+
a

g;n+ 1
2

J Bra
g;n+ 1

2
J

cr–−1n+1
2

J Ar − Bra
g;n+ 1

2
J

(B.48)

C
g;n+ 1

2

J− 1
2

= a
g;n+ 1

2
J−1 (B.49)

D
g;n+ 1

2

J− 1
2

= β
g;n+ 1

2

J− 1
2

+ α
n+ 1

2

J− 1
2

Eg;n

J− 1
2

+ a
g;n+ 1

2
J

cr–−1n+1
2

J Cn+1
r

cr–−1n+1
2

J Ar − Bra
g;n+ 1

2
J

. (B.50)

The Thomas algorithm [5] can then be used to solve Eq. B.32 by defining the forward-

elimination variables EE and FF as:

EE
g;n+ 1

2
1
2

= FF
g;n+ 1

2
1
2

= 0 (B.51)

EE
g;n+ 1

2

j− 1
2

=
A

g;n+ 1
2

j− 1
2

B
g;n+ 1

2

J− 1
2

− C
g;n+ 1

2

j− 1
2

EE
g;n+ 1

2

j− 3
2

, for 2 ≤ j ≤ J (B.52)

FF
g;n+ 1

2

j− 1
2

=
D

g;n+ 1
2

j− 1
2

+ C
g;n+ 1

2

j− 1
2

FF
g;n+ 1

2

j− 3
2

B
g;n+ 1

2

J− 1
2

− C
g;n+ 1

2

j− 1
2

EE
g;n+ 1

2

j− 3
2

, for 2 ≤ j ≤ J, (B.53)

and then back-substituting to solve for the radiation energy density at time n + 1 using

the equations:

Eg;n+1

J− 1
2

= FF
g;n+ 1

2

J− 1
2

(B.54)

Eg;n+1

j− 1
2

= EE
g;n+ 1

2

j− 1
2

Eg;n+1

j+ 1
2

+ FF
g;n+ 1

2

j− 1
2

, for 2 ≤ j ≤ J − 1. (B.55)
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The mapping of variable names in BUCKY to the various quantities listed throughout

this section is shown in Table B.2. Additionally, a flow-chart of the diffusion subroutines

in BUCKY are shown in Figure B.2, and are described in Table B.3.
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Variable Type Dimensions Units Description
erfd2a R*8 Gmax, Jmax

J
cm3 group

Eg;n+1

j− 1
2

erfd2c R*8 Gmax, Jmax
J

cm3 group
Eg;n

j− 1
2

srfd2b R*8 Gmax, Jmax
J

g s group 4πσ
g;n+ 1

2
P;e

j− 1
2

B
g;n+ 1

2

”;j− 1
2

esfd2b R*8 Gmax, Jmax
J

cm3 s group
4πS

g;n+ 1
2

j− 1
2

sr2b R*8 Gmax, Jmax
cm2

g σ
g;n+ 1

2

R;j− 1
2

sp2b R*8 Gmax, Jmax
cm2

g σ
g;n+ 1

2
P;a

j− 1
2

spe2b R*8 Gmax, Jmax
cm2

g σ
g;n+ 1

2
P;e

j− 1
2

ss2b R*8 Gmax, Jmax
1

cm σ
g;n+ 1

2
x

j− 1
2

hnu1 R*8 Gmax + 1 eV νg

xkrp1b R*8 Jmax + 1 cm2

s κ
g;n+ 1

2
R;j

xkrm1b R*8 Jmax + 1 cm2

s κ
g;n+ 1

2
R;j−1

dmass2 R*8 Jmax
g

cm3−δ ¢mj− 1
2

v2b R*8 Jmax
cm3

g V
n+ 1

2

j− 1
2

vdot2b R*8 Jmax
cm3

g s
_V

n+ 1
2

j− 1
2

rs1b R*8 Jmax + 1 cm–−1

(
r

n+ 1
2

j

)–−1

dr2b R*8 Jmax cm ¢r
n+ 1

2
j

al222b R*8 Jmax
cmδ

s α
n+ 1

2

j− 1
2

aa221b R*8 Jmax + 1 cmδ

s a
g;n+ 1

2
j

gm222b R*8 Jmax
cmδ

s γ
n+ 1

2

j− 1
2

om222b R*8 Jmax
cmδ

s ω
g;n+ 1

2

j− 1
2

bet22b R*8 Jmax
J

cm3−δ s
β

g;n+ 1
2

j− 1
2

a22r R*8 Jmax
cmδ

s A
g;n+ 1

2

j− 1
2

b22 R*8 Jmax
cmδ

s B
g;n+ 1

2

j− 1
2

c22r R*8 Jmax
cmδ

s C
g;n+ 1

2

j− 1
2

d2 R*8 Jmax
J

cm3−δ s
D

g;n+ 1
2

j− 1
2

dtb R*8 1 s ¢tn+ 1
2

Table B.2: Radiation transport variables in BUCKY for °ux-limited difiusion. Jmax is the
maximum allowed number of zones and Gmax is the maximum allowed number of groups.
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Figure B.2: Flow diagram for BUCKY °ux-limited difiusion subroutines.

Subroutine Description
radtr2 Outer frequency loop

Thomas back-substitution
Calculate Eg;n+1

j

emissn Calculate 4πσ
g;n+ 1

2
P;e

j− 1
2

B
g;n+ 1

2

”;j− 1
2

plkint Calculate
∫ ”l+1

”l

x3

ex−1dx

abcrd2 Calculate A
g;n+ 1

2

j− 1
2

, B
g;n+ 1

2

j− 1
2

, C
g;n+ 1

2

j− 1
2

, and D
g;n+ 1

2

j− 1
2

Thomas forward elimination

extsource Calculate 4πS
g;n+ 1

2

j− 1
2

radcof Calculate α
n+ 1

2

j− 1
2

, a
g;n+ 1

2
j , γ

n+ 1
2

j− 1
2

, ω
g;n+ 1

2

j− 1
2

, and β
g;n+ 1

2

j− 1
2

rcond Calculate κ
g;n+ 1

2
R;j

difibc Calculate A
g;n+ 1

2

j− 1
2

, B
g;n+ 1

2

j− 1
2

, C
g;n+ 1

2

j− 1
2

, and D
g;n+ 1

2

j− 1
2

for j=(2,J)

Table B.3: Description of subroutines for BUCKY °ux-limited difiusion.
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Source Vacuum Periodic Albedo

I
±g,n+1

bc;i 2πB
g;n+ 1

2
” (TR) 0 I

∓g,n+1

i; 1
K

fi
N

∑N
i=1 I

∓g,n+1

i; 1
K

Table B.4: Boundary conditions for the partial speciflc intensity in the flnite difierence equa-
tions for multi-angle short-characteristics. α is the albedo, and TR is the radiation temperature
specifled on the boundary.

B.2 Short-Characteristics in BUCKY
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difference equations can be written on the Lagrangian grid in Figure B.1 as:

Eg;n+1

j− 1
2

=
4π

cσ
g;n+ 1

2
P;a

j− 1
2

(
σ

g;n+ 1
2

P;e
j− 1

2

B
g;n+ 1

2

”;j− 1
2

+ S
g;n+ 1

2

j− 1
2

)

−
N∑

i=1

wiµi




(
I

+g,n+1

i;2j−1 − I
+g,n+1

i;2j−3

)
+

(
I
−g,n+1

i;2j−3 − I
−g,n+1

i;2j−1

)

c
(
τ

g;n+ 1
2

2j−1 − τ
g;n+ 1

2
2j−3

)

 , 2 ≤ j ≤ J.

(B.61)

The mapping of variable names in BUCKY to the various quantities listed above is

shown in Table B.5. Additionally, a flow chart of the short-characteristics subroutines in

BUCKY is shown in Figure B.3, where a description of the calculations in each subroutine

is listed in Table B.6.
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Variable Type Dimensions Units Description

erfd2a R*8 Gmax, Jmax
J

cm3 group
Eg;n+1

j− 1
2

srfd2b R*8 Gmax, Jmax
J

g s group
4πσ

g;n+ 1
2

P;e
j− 1

2

B
g;n+ 1

2

”;j− 1
2

esfd2b R*8 Gmax, Jmax
J

cm3 s group
4πS

g;n+ 1
2

j− 1
2

sp2b R*8 Gmax, Jmax
cm2

g
V

n+ 1
2

j− 1
2

σ
g;n+ 1

2
P;a

j− 1
2

spe2b R*8 Gmax, Jmax
cm2

g
V

n+ 1
2

j− 1
2

σ
g;n+ 1

2
P;e

j− 1
2

ss2b R*8 Gmax, Jmax
1

cm
σ

g;n+ 1
2

x
j− 1

2

hnu1 R*8 Gmax + 1 eV νg

sourcefn R*8 2Jmax − 1 J
cm2 s sr group

1
2…

S
g;n+ 1

2
Tk

simins R*8 2Jmax − 1 J
cm2 s sr group

1
2…

I
+g,n+1

i;k

siplus R*8 2Jmax − 1 J
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Figure B.3: Flow diagram for BUCKY multi-angle short-characteristics subroutines.

Subroutine Description

radtr3 Outer frequency loop

opacmg Set-up optical depth grid (Calculate τ
g;n+ 1

2
k − τ

g;n+ 1
2

k−1 )

Calculate 1
2…

S
g;n+ 1

2
Tk

plkint Calculate
∫ ”l+1

”l

x3

ex−1
dx

extsource Calculate 4πS
g;n+ 1

2

j− 1
2

shortc Calculate 1
2…

I
±g,n+1

i;k

Calculate Eg;n+1

j− 1
2

rtangl Define wi and |µi|

Table B.6: Description of subroutines for BUCKY multi-angle short-characteristics.
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B.3 Analytic Solutions for Transport and Diffusion

There are a few simple problems in cartesian coordinates where both the steady-state

transport equation and the steady-state diffusion equation can be solved analytically.

These problems are a good place to start in verifying the finite difference equations

in BUCKY because they are also instructive in comparing diffusive solutions to true

transport solutions.

All of the problems described in this section assume a purely absorbing cold (non-

radiating) slab of thickness x = X in 1-D cartesian coordinates. Under these cir-

cumstances, the steady-state mono-energetic transport equation can be simplified from

Eq. 1.52 to give:

∂

∂x

(
I(x)e

σax
µ

)
=

2π

µ
S(x)e

σax
µ . (B.62)

Breaking the specific intensity into forward and backward propagating rays, and inte-

grating over x gives:

0 < µ ≤ 1: I
+

(x, µ) = I
+

(0, µ)e
−σax

µ +

[
2π

µ

∫ x

0

S(x′)e
σax′

µ dx′
]

e
−σax

µ (B.63)

−1 ≤ µ < 0: I
−
(x, µ) = I

−
(X, µ)e

σa(X−x)
µ +

[
2π

µ

∫ x

X

S(x′)e
σax′

µ dx′
]

e
−σax

µ , (B.64)

where it has been assumed that σa is constant throughout the slab. Furthermore, if it

is assumed that the source function, S, can be described by an N th order polynomial of

the form:

S(x) =
N∑

i=0

cS;ix
i, (B.65)

then the integrals can be evaluated to give:

0 < µ ≤ 1: I
+

(x, µ) = I
+

(0, µ)e
−σax

µ +
2π

σa

N∑
i=0

cS;iγ
+

i (x, µ) (B.66)

−1 ≤ µ < 0: I
−
(x, µ) = I

−
(X,µ)e

σa(X−x)
µ +

2π

σa

N∑
i=0

cS;iγ
−
i (x, µ), (B.67)



303

where the coefficients γ
±
i are given by:

γ
+

0 = [1− e
−σax

µ ]

γ
+

i = [xi − i
µ

σa

γ
+

i−1]

γ
−
0 = [1− e

σa(X−x)
µ ]

γ
−
i = [xi −X ie

σa(X−x)
µ − i

µ

σa

γ
−
i−1].

(B.68)

Finally, if the boundary values, I
+
(0) and I

−
(X), are independent of µ, then integrating

Eq. B.66 and Eq. B.67 over µ gives the radiation energy density as:

E(x) =
1

c

[∫ 0

−1

I
−
(x, µ)dµ +

∫ +1

0

I
+

(x, µ)dµ

]

=
1

c

[
I

+

(0)E2(σax) + I
−
(X)E2(σa(X − x))

]

+
2π

cσa

N∑
i=0

cS;i

[
ε
+

i (x) + ε
−
i (x)

]
,

(B.69)

where the coefficients ε
±
i are given by:

ε
+

i =
i∑

n=0

i!

(i− n)!

1

σn
a

xi−n

n + 1
(−1)n + (−1)i+1 i!

σi
a

Ei+2(σax)

ε
−
i =

i∑
n=0

i!

(i− n)!

1

σn
a

[
xi−n

n + 1
−X i−nEn+2(σa(X − x))

]
,

(B.70)

and the functions En(σax) and En(σa(X − x)) belong to the general family of functions

called the exponential integrals given by:

En(x) = xn−1

∫ ∞

x

1

un
e−udu. (B.71)

If either of the boundary values depend on µ (as in the case of an albedo boundary

condition), then the boundary terms in Eq. B.69 must be integrated independently. In
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this case, the equation for the radiation energy density is given as:

E(x) =
1

c

[∫ 1

0

I
+

(0, µ′)e
−σax

µ′ dµ′ +
∫ 0

−1

I
−
(X,µ′)e

σa(X−x)

µ′ dµ′
]

+
2π

cσa

N∑
i=0

cS;i

[
ε
+

i (x) + ε
−
i (x)

]
.

(B.72)

Therefore, given the boundary conditions at x = (0, X) and the spatial variation in

the external source term, S(x), then either Eq. B.69 or Eq. B.72 provides the general

solution for the steady-state radiation energy density in a cold purely absorbing 1-D slab.

An analytic solution to this same problem can be defined for diffusion by simplifying

Eq. B.1 to give:

∂2E

∂x2
− σa

D
E = − 4π

cD
S. (B.73)

If it is again assumed that the opacities are constant through the slab, and that the

source function, S, can be described by an N th order polynomial as in Eq. B.65, then

Eq. B.73 can be solved by the superposition approach to give:

E(x) = ae‚x + be−‚x +
N∑

i=0

cix
i, (B.74)

where λ is the inverse diffusion length, λ =
√

¾a

D



305

a[Are
‚X − BrDλe‚X ] + b[Are

−‚X + BrDλe−‚X ]

= Cr +

[
N∑

i=1

(iBrD −ArX)ciX
i−1 −Arc0

]
,

(B.77)

where Eq. B.76 is applied at the left boundary (x = 0) and Eq. B.77 is applied at the

right boundary (x = X). Then, solving these for the coefficients a and b gives:

a =
Cl − (Alc0 + BlDc1)− b[Al − BlDλ]

Al + BlDλ
(B.78)

b =

[
Cr +

(∑N
i=1(iBrD −ArX)ciX

i−1 −Arc0

)]
(Al + BlDλ)

(Al + BlDλ) (Ar + BrDλ) e−‚X − (Al − BlDλ) (Ar − BrDλ) e‚X

− [Cl − (Alc0 + BlDc1)] (Ar − BrDλ) e‚X

(Al + BlDλ) (Ar + BrDλ) e−‚X − (Al − BlDλ) (Ar − BrDλ) e‚X
.

(B.79)

Therefore, the analytic solution to the diffusion equation for the steady-state radiation

energy density in a cold purely absorbing 1-D slab is given by Eq. B.74 where the coeffi-

cients are described by Eq. B.75, B.78, and B.79.

B.3.1 Source and Vacuum Boundaries with No External Sources

The simplest case to consider in solving the equations in §B.3 is a cold slab with no

external sources, where a radiation temperature source is applied on one boundary and

a vacuum condition on the other boundary. Under these conditions, Eq. B.69 reduces to:

E(x) =
1

c
I

+

(0)E2(σax) =
4π5

15h3c3
T 4

0 E2(σax), (B.80)

where T0 is the radiation temperature applied at the left boundary. Similarly for diffusion,

Eq. B.74 can be reduced to:

E(x) =
4π5

15h3c3
T 4

0

[(
1
2
−Dλ

)
e‚(x−X) − (

1
2

+ Dλ
)
e‚(X−x)

]
(
Dλ− 1

2

)2
e−‚X − (

Dλ + 1
2

)2
e‚X

. (B.81)
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Figure B.4: Comparison between the analytic transport (Eq. B.80) (black stars) and
diffusion (Eq. B.81) (red stars) solutions to those calculated by BUCKY for short-
characteristics (black line), diffusion (red line), and flux-limited diffusion (blue line).
All calculations are done assuming no external sources, source and vacuum conditions on
the left and right boundaries respectively, and an absorption opacity of (a) 0.5558cm−1

and (b) 5.558cm−1.

For convenience in comparison to BUCKY output, the radiation energy density can then

be converted to an effective radiation temperature,Tr, by:

Tr(x) =

(
c

4

E(x)

σSB

) 1
4

, (B.82)

where σSB is the Stephan-Boltzmann constant.

Figure B.4 shows the solutions of Eq. B.80 and Eq. B.81 in comparison to that

calculated by BUCKY for short-characteristics, diffusion, and flux-limited diffusion. The

values for each of the variables in the equations are shown in Table B.7. This comparison

is done for two different opacities. In Figure B.4(a), one mean free path is approximately

1.8 times the thickness of the slab. In this case, the distribution of radiation as calculated

by the diffusion solution is significantly different than that calculated by the transport

solution, and diffusion over-predicts the amount of radiation everywhere in the slab. This

is not surprising since this problem violates most of the assumptions in the derivation
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X T0 σa σt

Value 1.0cm 100.0eV 0.5558cm−1 or 5.558cm−1 σa

Table B.7: Values used for each variable in comparing BUCKY short-characteristics
and diffusion to the analytic equations.

of the diffusion equation. The average R value (as shown in Figure 1.17) throughout

the slab is 2.17 (calculated from the transport solution). Under these conditions, one

would expect the flux-limited diffusion solution to be a better approximation to the true

transport characteristics (as evidenced by the figure).

In Figure B.4(b), one mean free path is approximately 0.18 times the thickness of the

slab. In this case, the diffusion approximation does a much better job of capturing the

true radiation distribution. The average R value for this radiation field is 1.35, which

is only a modest difference from that in case (a). Surprisingly, Figure B.4(b) indicates

that, for these conditions, the flux-limiter restricts the radiation too much, and actually

looks less like the transport solution than pure diffusion. However, because this problem

is calculated for a purely absorbing, non-radiating slab, it still violates the assumption in

diffusion that requires the radiation field to be nearly isotropic. The primary points are

that; the finite difference equations in BUCKY properly reproduce the analytic results,

diffusion looks much more like transport when the optical depths are small compared

to the size of the slab, and that flux-limited diffusion is not always better than pure

diffusion.

B.3.2 Vacuum Boundaries With a Linear External Source

A slightly more complicated solution to the equations in §B.3 is to consider the case of

a cold slab with vacuum boundaries, and a linearly dependent external source. If the
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source term has the form:

S(x) = S0(1− x

a
), (B.83)

then, Eq. B.69 reduces to:

E(x) =
1

2cσa

S0

[
2
(
1− x

X

)
− E2(σax) +

1

σaX
[E3(σa(X − x))− E3(σax)]

]
, (B.84)

and Eq. B.74 reduces to:

E(x) = ae‚x + be−‚x +
4π

cσa

S0

(
1− x

a

)
, (B.85)

where the coefficients are given by:

a = − 4π

cσa

S0

(
D
X

+ 1
2

) (
1
2
−Dλ)

)
e−‚X + D

X

(
1
2

+ Dλ
)

(
Dλ− 1

2

)2
e−‚X − (

Dλ + 1
2

)2
e‚X

b =
4π

cσa

S0

(
D
X

+ 1
2

) (
1
2

+ Dλ)
)
e‚X + D

X

(
1
2
−Dλ

)
(
Dλ− 1

2

)2
e−‚X − (

Dλ + 1
2

)2
e‚X

.

Assuming that the imposed external source function has a blackbody distribution, then

S0 in Eq. B.83 can be described by:

S0 = σx
2π4

15h3c2
T 4

0 , (B.86)

where σx is an artificial emission opacity a.

The comparisons between BUCKY and the analytic results in Eq. B.84 and Eq. B.85

are shown in Figure B.5 for the same set of values listed in Table B.7. In each case,

there is very good agreement between the BUCKY calculated results and the analytic

solutions. In addition, Figure B.5(b) shows that diffusion is a good approximation to true

transport when one mean free path is much less than the total thickness of the slab. This

is not surprising since the external source function is isotropic, and meets the primary

a In BUCKY, this artiflcial emission opacity is assigned as a zone dependent value of the form:
σx = σa

(
1− x

X

)
, so that the external source function is conveniently deflned as in Eq. B.83
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Figure B.5: Comparison between the analytic transport (Eq. B.84) (black stars) and
diffusion (Eq. B.85) (red stars) solutions to those calculated by BUCKY for short-
characteristics (black line), diffusion (red line), and flux-limited diffusion (blue line).
All calculations are done assuming a linear external source, vacuum conditions on both
boundaries, and an absorption opacity of (a) 0.5558cm−1 and (b) 5.558cm−1.

criteria in the derivation of the diffusion equation (with the exception of the value near

the boundary where radiation is allowed to escape). The agreement between diffusion

and transport is not nearly as good in Figure B.5(a) where one mean free path is 2.2

times the thickness of the slab. Even though the external source function is isotropic,

the low opacity allows the radiation to stream to the boundaries resulting in a significant

non-isotropic component to the radiation flow. It is also worth noting that, in each

of these cases, the flux-limiter provides no significant benefit over pure diffusion. The

calculated R values for Figure B.5(a) and (b) are 2.3 and 0.1 respectively.

B.3.3 An External Source with a Source Boundary Condition

A more realistic case to consider in the comparison between transport and diffusion is

that of a distributed external source function with a source boundary condition applied

on one side. This may be thought of as a model for a sample that is being radiatively
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heated by a nearby source. To identify a realistic source function, Eq. B.69 is iterated

by initially assuming a cold material, and then fitting a polynomial to the resulting

radiation distribution. This polynomial is then applied as the external source function

for the next iteration, and the process is continued until a ’convergence’ of the polynomial

fit is achieved. The result is essentially modeling a sample that has come to equilibrium

with the driving radiation source.

For the optically thin case (σa = 0.5558cm−1), assuming a constant blackbody source

on the left boundary at a temperature of 100eV , the resulting external source function

is represented by a 4th order polynomial of the form:

S(x) = (12.617− 8.4037x + 4.0473x2 − 2.6986x3 + 0.0047624x4) ∗ 1.e11
J

cm3 s sr
.

Likewise for the optically thick case (σa = 5.5558cm−1), the source function is represented

by:

S(x) = (165.44− 163.75x + 37.471x2 − 22.651x3 − 0.50728x4) ∗ 1.e11
J

cm3 s sr
.

These polynomials are then interpolated onto the BUCKY finite difference grid (again

using the artificial emission opacity to distribute the source), and calculated for short-

characteristics, diffusion, and flux-limited diffusion. The results are shown in Figure B.6.

The first thing to notice about this figure is that the diffusion solution looks very

much like true transport. This is especially true in Figure B.6(b) where one mean free

path is much less than the thickness of the slab. This is a good illustration of why

diffusion is such a popular way of computing the radiation transport. In plasmas driven

by a steady state external radiation source, diffusion is a good approximation to true

transport over a wide range of optical depths when the plasma temperature has enough

time to equilibrate with the driving radiation source. The simple reason for this is that,
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Figure B.6: Comparison between the analytic transport (Eq. B.84) (black stars) and
diffusion (Eq. B.85) (red stars) solutions to those calculated by BUCKY for short-
characteristics (black line), diffusion (red line), and flux-limited diffusion (blue line). All
calculations assume an external source function given by (a) Eq. B.3.3 and (b) Eq. B.3.3,
source and vacuum conditions on the left and right boundaries respectively, and an ab-
sorption/emission opacity of (a) 0.5558cm−1 and (b) 5.558cm−1.

at any particular point in the slab, the plasma is isotropically radiating at the same

intensity as the anisotropic component of the radiation field that is contributed from

the source applied at the boundary. Thus, the total radiation field has only a weakly

anisotropic component, and therefore satisfies the primary assumptions in the derivation

of the diffusion equation.

B.3.4 A Boundary Source and an Albedo Boundary Condition

One final problem that can be applied to both short-characteristics and diffusion is in-

tended to test the implementation of the albedo boundary condition. In this simple

problem, a cold slab with no external source term has a source condition applied on the

left boundary and an albedo condition applied to the right boundary.
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very much like those from §B.3.1 except that the radiation temperature is elevated due

to the radiation energy that is reflected at the right boundary.

B.4 Solutions Specific to the Diffusion Equation

The problems in §B.3 provide nearly a complete benchmarking of the steady-state diffu-

sion equations as implemented in BUCKY. However, because Eq. B.14 contains a term

that is dependent on the coordinate system, the diffusion equations in BUCKY must also

be verified in cylindrical and spherical coordinates.

B.4.1 Steady-State Diffusion in Cylindrical Coordinates

Assuming that there are no external source functions, Eq. B.73 can be rewritten in

cylindrical coordinates as:

ρ
∂2E(ρ)

∂ρ2
+

∂E(ρ)

∂ρ
= ρ

σa

D
E(ρ), (B.89)

where ρ is the radial coordinate (ρ =
√

x2 + y2). The solution to this equation is given

by [6]:

E(ρ) = b′ I0(λρ), (B.90)

where I0 is the modified Bessel function of the first kind. Plugging this into the general

boundary condition in Eq. B.7 at ρ = ρmax and solving for b′ then gives:

E(ρ) =
C

A I0(λρmax)− BDλ I1(λρmax)
I0(λρ). (B.91)

In the case of a source boundary condition applied at ρ = ρmax, then Eq. B.91 can be

written as:

E(ρ) =
4π5

15h3c3
T 4

0

I0(λρ)
1
2
I0(λρmax) + Dλ I1(λρmax)

. (B.92)
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Figure B.8: Comparison between BUCKY calculated diffusion (solid line) and the
steady state analytic result for cylindrical coordinates in Eq. B.92 (red stars) where the
absorption and scattering opacities are given by σa = 0.5558cm−1 and σs = 5.558cm−1

respectively.

Figure B.8 shows the comparison between this analytic result and BUCKY calculated

diffusion for a boundary temperature of T0 = 100eV applied at a maximum radius of

ρmax = 0.5643cm. The material is assumed to both absorb and scatter radiation with

opacities of σa = 0.5558cm−1 and σs = 5.558cm−1 respectively (σt = σa + σs). As

evidenced by the figure, the BUCKY calculated result compares well with the analytic

solution.

B.4.2 Steady-State Diffusion in Spherical Coordinates

Again assuming that there are no external source functions, Eq. B.73 can be rewritten

in spherical coordinates as:

r2 ∂2E(r)

∂r2
+ 2r

∂E(r)

∂r
= r2 σa

D
E(r), (B.93)

where r is the radial coordinate (r =
√

x2 + y2 + z2). The solution to this equation is

given by [6]:

E(ρ) = b′
sinh(λr)

r
, (B.94)
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Figure B.9: Comparison between BUCKY calculated diffusion (solid line) and the
steady state analytic result for spherical coordinates in Eq. B.96 (red stars) where the
absorption and scattering opacities are given by σa = 0.5558cm−1 and σs = 5.558cm−1

respectively.

Plugging this into the general boundary condition in Eq. B.7 at r = rmax and solving for

b′ then gives:

E(r) =


 Crmax

A sinh(λrmax)− BD
[
λ cosh(λrmax)− sinh(‚rmax)

rmax

]

 sinh(λr)

r
. (B.95)

In the case of a source boundary condition applied at r = rmax, then Eq. B.95 can be

written as:

E(ρ) =
4π5

15h3c3
T 4

0


 rmax

1
2
sinh(λrmax)D

[
λ cosh(λrmax)− sinh(‚rmax)

rmax

]

 sinh(λr)

r
. (B.96)

Figure B.9 shows the comparison between this analytic result and BUCKY calculated

diffusion for a boundary temperature of T0 = 100eV applied at a maximum radius of

rmax = 0.6204cm. The material is assumed to both absorb and scatter radiation with

opacities of σa = 0.5558cm−1 and σs = 5.558cm−1 respectively (σt = σa + σs). As

evidenced by the figure, the BUCKY calculated result again compares well with the

analytic solution.
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B.4.3 Flux-Limiters

As was demonstrated in §B.3, the flux-limiter in the diffusion coefficient can significantly

alter the radiation profile calculated by diffusion. Thus, it is important to benchmark

the implementation of each flux-limiter. However, because the flux-limiter makes the

diffusion equation non-linear, this is somewhat difficult to accomplish by attempting

a direct analytic solution to the flux-limited diffusion equation(s). Instead, one can

manufacture a solution for the radiation energy density distribution, and then plug the

solution into Eq. B.73 to determine the external source function that will produce that

radiation distribution. This initial source function can then be input into BUCKY as

an initial condition, and the resulting radiation energy density checked to verify the

reproduction of the manufactured solution.

Assuming for simplicity that the test slab is cold, then the flux-limited diffusion

equation can be written as:

∂

∂x
D(x)

∂E(x)

∂x
= σaE(x)− 4π

c
S(x). (B.97)

Furthermore, assuming that the solution for some source function S(x) has a linear

distribution of the form:

E(x) = ax + b, (B.98)

then the coefficients a and b are dictated by the conditions of the radiation field at the

boundaries. Thus, plugging Eq. B.98 into Eq. B.7 assuming Dirichlet conditions at the

left and right boundary gives:

b =
4π

c
B”(TL)

a =
1

X

4π

c
[B”(TR)−B”(TL)],

(B.99)

where TL and TR are the radiation temperatures at the left and right boundaries respec-

tively, and X is the total thickness of the slab.
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Solving Eq. B.97 for each of the flux-limiters in §1.4.1 gives different source functions

for:

the Sum Limiter:

S(x) =

[
σa(ax + b)− |a|a2

(3σt(ax + b) + |a|)2

]
c

4π
, (B.100)

the Max Limiter:

S(x) =
σa(ax + b) c

4…
, 3σt > |a|

ax+b[
σa(ax + b)− a2

|a|

]
c

4…
, 3σt < |a|

ax+b

(B.101)

the Larsen Limiter:

S(x) =


σa(ax + b)− |a|na2

[
(3σt)n +

(
|a|

ax+b

)n] 1
n

+1

(ax + b)n+1


 c

4π
, (B.102)

and the Simplified Levermore-Pomraning Limiter:

S(x) =

[
σa(ax + b)− a4 (a + 4σt(ax + b))

(a2 + 3σta(ax + b) + 6σ2
t (ax + b)2)

2

]
c

4π
. (B.103)

Figure B.10(a) shows the range of R values throughout a 1.0cm thick slab for a total

opacity of 0.5558cm−1, and a fixed temperature on the left and right boundaries of 100eV

and 141.42eV respectively. According to Figure 1.17, this range is within the region

where all the flux-limiters have a significant influence on the diffusion coefficient, and

is therefore an acceptable place to test the implementation of the various flux-limiters.

Figure B.10(b) shows the plots of the calculated source functions for each of these limiters.

In addition to the parameters listed above, these calculations assume an absorption

opacity of 5.558cm−1 (a factor of 10 higher than the total opacity) in order to keep

the source function positive.

The relative errors between the BUCKY solutions and the linear radiation energy

density in Eq. B.98 are shown in Figures B.11(a) and (b). In each case, the BUCKY
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Figure B.10: (a)Calculated R values for an assumed energy density of E = B”(100eV )+
B”(131.61eV )x and a total opacity of 0.5558cm−1. (b)External source functions for the
SUM-limiter (black), the Levermore-Pomraning-limiter (red), the Larsen-limiter (blue),
and the MAX-limiter (green).

calculated solution is taken after 100 cycles. The solutions using the SUM-, Larsen-,

and Levermore-Pomraning-limiters as shown in B.11(a) all agree to better than 0.04%.

However, the MAX-limiter shown in B.11(b) has maximum errors up to 1%. This is

an artifact of the discontinuity that exists in the form of the MAX-limited diffusion

coefficient, and is a good reason to avoid this form of the flux-limiter.

While BUCKY reproduces the expected solutions rather well, these cases only test

the implementation of the numerics in the interior of the slab. Because the test cases

assumed Dirichlet conditions on each boundary, the value of the radiation energy density

on the left and right boundaries are well fixed and therefore not very demanding on the
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Figure B.11: Relative errors between the assumed radiation energy density in Eq. B.98
and that calculated by BUCKY for the (a) SUM (black), Larsen n=2 (red), and
Levermore-Pomraning-limiters (blue), and (b) that calculated for the MAX-limiter.

for these boundary conditions then gives the values of the coefficients in Eq. B.98 as:

b =
4π

c
B”(TL)

1 + 3σT X

3(1 + σT X)

a = −b/X.

(B.104)

The comparison between the BUCKY calculated results (using the SUM-limiter) and

the assumed form of the radiation energy density (using the coefficients in Eq. B.104) is

shown in Figure B.12 (where σa = σT = 0.5558cm−1 and TL = 100eV ). In this case, the

BUCKY calculation never settles on a single solution, but rather oscillates between 10

different distributions (5 of which are shown in the figure). This numerical periodicity

occurs because the gradients at each edge are calculated based on the result of the

calculation from the previous cycle. However, the boundary value of the energy density

is calculated based on the gradient at each edge on the current cycle. Because the diffusion

equation is elliptical, the values at each boundary effect the values throughout the entire

sample thereby changing the gradient at each boundary (and thus the calculation of the

boundary value). This leads to a periodic solution which, in this case, has a period of 10.
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Figure B.12: Comparison between the BUCKY calculated radiation energy density for
the SUM-limiter (solid lines) and the assumed value using the coefficients in Eq. B.104
(stars). The calculations assume a source condition on the left boundary and a vacuum
condition on the right boundary.

According to Figure B.12, these solutions oscillate around the assumed solution, but have

relative errors up to 35%. This is a problem inherent with the first order implementation

of the finite-differencing scheme, and may only be fixed by using a higher order (nonlinear)

solver.

B.4.4 Time Dependent Solutions

In addition to (all) the analytic steady state solutions presented up to this point, the

implementation of the time-dependency of the diffusion equation in BUCKY also requires

verification. Because of the difficulty in solving Eq. B.1 for real geometries, these solutions

are all calculated for an infinite medium (thereby permitting the application of Fourier

transform methods).
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Planar Geometry

In the case of an infinitesimally thin, steady state planar source in a medium with constant

opacities, the diffusion equation can be written as:

∂E(x, t)

∂t
− c

3σt

∂2E(x, t)

∂x2
= −σaE(x, t), (B.105)

under the initial condition:

E(x, t0) = E0δ(x− x0), (B.106)

where x0 is the position of the radiation source, t0 is the time when the source is turned

on (and off), and E0 is the total energy (in J
cm2 ). Eq. B.105 can be solved in E(k, s)

space by taking the Laplace (t → s) and Fourier (x → k) transforms to give [6]:

E(k, s) =
E0√

2π
(
s + ck2

3¾t
+ cσa

) . (B.107)

The inverse transforms then yield the analytic, time-dependent radiation energy density

distribution as:

E(x, t) = E0

√
3σt

4πct
e−c¾a(t−t0)e−

3σt(x−x0)2

4ct . (B.108)

Figure B.13 shows the comparison between the BUCKY calculated results and the

solution to Eq. B.108 at times of 1ps, 10ps, 20ps, and 30ps. Each calculation assumes

σa = σt = 5.558cm−1, t0 = 0s, and E0 = 13751.9 J
cm2 . In BUCKY, the source is seeded

with the analytical distribution at a time of 1ps, and is centered on an initial source

position of x0 = 50.0cm. The source input is done this way to avoid complications

associated with trying to model a delta function in time and space as a finite value in

BUCKY. According to Figure B.13, the BUCKY calculation compares well to the analytic

results at each time.
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Figure B.13: Time-dependent radiation temperature in planar geometry as calculated
by BUCKY (solid lines) and the analytic result in Eq. B.108 (stars) at times of 1ps
(black), 10ps (red), 20ps (green), and 30ps (blue).

Spherical Geometry

Following the analysis by Brunner [6], the solution to the infinite planar source solution

in Eq. B.108 can be transformed to a point source solution by:

Epoint(r, t) = − 1

2πr

∂Eplane

∂x
|x=r. (B.109)

The resulting equation for the time-dependent radiation energy density in spherical ge-

ometry can be written as:

E(r, t) = E0

[
3σt

4πct

]3=2

e−c¾a(t−t0)e−
3σtr2

4ct , (B.110)

where E0 is now given in units of J , and it has been assumed that the initial source

location is r0 = 0.

Figure B.14 shows the comparison between the BUCKY calculated results and the

solution to Eq. B.110 at times of 1ps, 10ps, 20ps, and 30ps. The BUCKY calculation is

again seeded with the analytical energy density at a time of 1ps, for a total initial energy

of E0 = 13751.9J .
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Figure B.14: Time-dependent radiation temperature in spherical geometry as calcu-
lated by BUCKY (solid lines) and the analytic result in Eq. B.110 (stars) at times of 1ps
(black), 10ps (red), 20ps (green), and 30ps (blue).

Cylindrical Geometry

Finally, verifying the time-dependence in cylindrical geometry simply requires defining

an infinite line source. This can be done by integrating Eq. B.110 over the line as:

Eline(ρ, t) =

∫ ∞

−∞
Epoint(

√
ρ2 + z2, t)dz. (B.111)

Then, the solution for the case of an infinite line source in cylindrical geometry can be

written as:

E(ρ, t) = E0
3σt

4πct
e−c¾a(t−t0)e−

3σtρ2

4ct , (B.112)

for E0 the total initial energy now given units of J
cm

.

Figure B.15 shows the comparison between the BUCKY calculated results and the

solution to Eq. B.112 at times of 1ps, 10ps, 20ps, and 30ps. The BUCKY calculation

is again seeded with the analytical energy density at a time of 1ps, for a total initial

energy of E0 = 13751.9 J
cm

. As in each of the comparisons above, the solutions calculated

in BUCKY compare very well with the analytic results.
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Figure B.15: Time-dependent radiation temperature in cylindrical geometry as calcu-
lated by BUCKY (solid lines) and the analytic result in Eq. B.112 (stars) at times of 1ps
(black), 10ps (red), 20ps (green), and 30ps (blue).

B.5 Radiatively Heated Plasmas

One final class of problems which requires proper verification is the case of a radiatively

heated plasma. Any transport code which is intended to model the radiation condi-

tions inside a plasma with real temperature dependent material properties must include

an energy conservation equation which couples the plasma conditions to the radiation

field. This coupling is accomplished through the radiative emission and absorption terms

that appear in each equation. In BUCKY, the conservation of energy is expressed as a

temperature diffusion equation, and is written in Lagrangian coordinates as [4]:

cv
∂Tp

∂t
=

∂

∂m

(
r–−1κp

∂Tp

∂r

)
−

[
∂Ep

∂V
+ P

]
∂V

∂t
Tp + A− J + Sp, (B.113)

where Tp is the plasma temperature, cv is the heat capacity, κp is the plasma thermal

conductivity, P is the plasma pressure, Sp is an external source term, and A and J are

the radiation absorption and emission terms respectively. As in the radiation transport

equation, the radiation absorption and emission are given by:

A = cσP;aE (B.114)
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J = 4πσP;e

∫ ∞

0

B”(Tp)dν. (B.115)

In order to calculate an analytic solution to the coupled set of equations (between

the radiation transport and the energy conservation equations), Eq. B.113 is typically

simplified by assuming that thermal conductivity is negligible (κp = 0), the plasma is

static (∂V/∂t = 0), and there are no external sources (Sp = 0). Then, if it is assumed

that the heat capacity is proportional to the plasma temperature to the third power by:

cv = αT 3, (B.116)

then Eq. B.113 can be written as:

∂Tp(r, t)

∂t
=

1

αT 3

(
cσP;aE(r, t)− σP;eσSBT 4

p

)
, (B.117)

where σSB is the Stephan-Boltzmann constant (= 1.02825∗105J/cm2/s/eV 4), and E(r, t)

is the radiation energy density given by either Eq. B.1 or Eq. B.61. These equations are

solved by Su and Olson for both a Marshak wave in a semi-infinite slab [7] and a time-

dependent finite source in an infinite slab [8].

B.5.1 The Marshak Wave Problem

The Marshak wave problem is a classic benchmark for radiation-hydrodynamics codes.

The premise is very simple; An isotropic radiation source condition is placed on the

boundary of an initially cold, semi-infinite slab. The radiation from the boundary source

penetrates and heats the material, which itself radiates isotropically at the local plasma

temperature. The result is two well-defined, propagating wavefronts corresponding to

the penetrating radiation and thermal energy. These wavefronts eventually coalesce, and

the total energy wave propagates deep into the plasma.
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This problem has been solved analytically in the single group radiation diffusion

approximation by Su and Olson [98]. Their solution is expressed as a function of 4

dimensionless variables given in the nomenclature of this document as:

x =
√

3σ′r (B.118)

τ =

(
16σSBσ′

α

)
t (B.119)

u(x, τ) =
( c

4

) [
E(r, t)

σSBT 4
0

]
(B.120)

v(x, τ) =

[
Tp

T0

]4

, (B.121)

where σ′/ρ = σR = σP;e = σP;a, T0 is the radiation temperature of the boundary source,

and E(r, t) is given by Eq. B.1. After a great deal of mathematics, their solutions for the

dependent variables, u and v, are expressed as:

u(x, τ) =1− 2
√

3

π

∫ 1

0

e−¿·2

[
sin[xγ1(η) + θ1(η)]

η
√

3 + 4γ2
1(η)

]
dη

−
√

3

π
e−¿

∫ 1

0

e−¿=†·

√
ε +

1

1− η2

[
sin[xγ2(η) + θ2(η)]

η(1 + εη)
√

3 + 4γ2
2(η)

]
dη

(B.122)

v(x, τ) =

∫ ¿

0

e−(¿−¿ ′)u(x, τ ′)dτ ′, (B.123)

where;

γ1(η) = η

√
ε +

1

1− η2
(B.124)

γ2(η) =

√
(1− η)

(
ε +

1

η

)
(B.125)

θn(η) = cos−1

√
3

3 + 4γ2
n(η)

, n = 1, 2 (B.126)

for the transport parameter ε = 16σSB/αc. These integrals must then be solved numer-

ically for some value of ε. Table B.8 lists the calculated values of Eq. B.122 and B.123

for ε = 0.1 , (α = 160σSB/c).
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x τ=0.01 0.1 1 10

0 0.23997 0.43876 055182 0.79720

0.1 0.17979 0.39240 0.51412 0.77644

0.25 0.11006 0.33075 0.46198 0.75004

0.5 0.04104 0.24629 0.38541 0.70679

0.75 0.01214 0.18087 0.32046 0.66458

1 0.00268 0.13089 0.26564 0.62353

2.5 0.01274 0.08147 0.40703

5 0.00961 0.17142

7.5 0.00097 0.06123

10 0.01909

15 0.00135

u(x, τ)

x τ=0.01 0.1 1 10

0 0.00170 0.03446 0.32030 0.78318

0.1 0.00110 0.02955 0.29429 0.76448

0.25 0.00055 0.02339 0.25915 0.73676

0.5 0.00012 0.01566 0.20925 0.69139

0.75 0.01030 0.16862 0.64730

1 0.00672 0.13563 0.60461

2.5 0.00035 0.03539 0.38320

5 0.00334 0.15285

7.5 0.00028 0.05166

10 0.01527

15 0.00098

v(x, τ)

Table B.8: Analytic solutions to the Su and Olson Marshak wave problem for ε = 0.1 [98]

Figure B.16(a) and (b) show the comparison between the analytic calculations and the

conditions simulated by BUCKY. As evidenced by the figure, the BUCKY calculations

compare very well to the analytic results at the plotted times of τ = 0.1, 1, and 10.

B.5.2 Non-Equilibrium Transport in an Infinite Medium

Su and Olson have defined a second benchmark problem for non-equilibrium radiative

transfer where they have constructed analytic solutions for both radiation diffusion and

true transport [99]. In this problem, a finite radiation source in a region −x0 ≤ x ≤ x0

is active for a time 0 ≤ τ ≤ τ0 within an infinite slab. The solutions are expressed in

the same dimensionless variables given in Eq. B.118-B.121 except that T0 is now the

temperature of the isotropic blackbody source. These problems are rather complex,
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Figure B.16: Comparison between a BUCKY simulation (lines) and the analytic cal-
culations (stars) of the scaled (a) radiation energy, u, and (b) plasma energy, v, for the
Su and Olson Marshak wave problem [98] at times of τ = 0.1 (black), 1 (red), and 10
(blue).

and the reader is directed to the reference for the derivation and final expression of the

solutions. Table B.9 and B.10 list the analytic evaluations of the diffusion and transport

solutions respectively for a source with ε = 1, τ0 = 10, and x0 = 0.5.

The comparison between the analytic solutions and those calculated by BUCKY for

the radiation diffusion case are shown in Figure B.17(a) and (b). As evidenced by the

figure, BUCKY compares well at each time. Because Su and Olson have also provided

solutions for the case of true radiation transport, this problem provides a unique op-

portunity to investigate the accuracy of flux-limited diffusion. Figure B.18(a) shows the

comparison between the analytic solutions for the transport case, and those calculated

by flux-limited diffusion (Levermore-Pomraning limiter). Figure B.18(b) shows the com-

parison between the analytic solution at a time of τ = 1.0, and the flux-limited diffusion

solution for each flux-limiter. Clearly, flux-limited diffusion does a decent job of approx-

imating the analytic result. Also plotted in Figure B.18(b) is the short-characteristics

solution to this problem at a time of τ = 1.0. Under these circumstances, the short-
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characteristics solution transports radiation far too quickly. This is not surprising since

the Su and Olson benchmark is intentionally a time-dependent problem, and the imple-

mentation of short-characteristics in BUCKY is time-independent. However, this serves

as a reminder that, although short-characteristics is a much better approximation to true

transport in problems with slowly varying radiation fields, there are some instances when

flux-limited diffusion will provide a more accurate result.
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u(x, τ)

x τ=0.1 1 10 100

0.01000 0.09403 0.50359 1.86585 0.35365

0.10000 0.09326 0.49716 1.85424 0.35360

0.31623 0.08230 0.43743 1.74866 0.35309

0.50000 0.04766 0.33271 1.57237 0.35225

0.75000 0.00755 0.18879 1.29758 0.35051

1.00000 0.00064 0.10150 1.06011 0.34809

1.33352 0.04060 0.79696 0.34382

1.77828 0.01011 0.52980 0.33636

3.16228 0.00003 0.12187 0.30185

5.62341 0.00445 0.21453

10.0000 0.07351

v(x, τ)

x τ=0.1 1 10 100

0.01000 0.00466 0.21859 1.75359 0.35554

0.10000 0.00464 0.21565 1.74218 0.35548

0.31623 0.00424 0.18765 1.63837 0.35497

0.50000 0.00234 0.13590 1.46494 0.35411

0.75000 0.00023 0.06746 1.19584 0.35235

1.00000 0.03173 0.96571 0.34988

1.33352 0.01063 0.71412 0.34555

1.77828 0.00210 0.46369 0.33797

3.16228 0.09834 0.30294

5.62341 0.00306 0.21452

10.0000 0.07269

Table B.9: Analytic radiation diffusion solutions to the Su and Olson non-equilibrium
transport problem in an infinite medium for ε = 1, τ0 = 10, and x0 = 0.5 [99]
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u(x, τ)

x τ=0.1 1 10 100

0.01000 0.09531 0.64308 2.23575 0.35720

0.10000 0.09531 0.63585 2.21944 0.35714

0.31623 0.09529 0.56187 2.06448 0.35664

0.50000 0.04765 0.35801 1.73178 0.35574

0.75000 0.11430 1.27398 0.35393

1.00000 0.03648 0.98782 0.35141

1.33352 0.00291 0.70822 0.34697

1.77828 0.45016 0.33924

3.16228 0.09673 0.30346

5.62341 0.00375 0.21382

10.0000 0.07200

v(x, τ)

x τ=0.1 1 10 100

0.01000 0.00468 0.27126 2.11186 0.35914

0.10000 0.00468 0.26839 2.09585 0.35908

0.31623 0.00468 0.23978 1.94365 0.35854

0.50000 0.00234 0.14187 1.61536 0.35766

0.75000 0.03014 1.16591 0.35581

1.00000 0.00625 0.88992 0.35326

1.33352 0.00017 0.62521 0.34875

1.77828 0.38688 0.34086

3.16228 0.07642 0.30517

5.62341 0.00253 0.21377

10.0000 0.07122

Table B.10: Analytic radiation transport solutions to the Su and Olson non-equilibrium
transport problem in an infinite medium for ε = 1, τ0 = 10, and x0 = 0.5



332

0.01 0.10 1.00 10.00
x (unitless)

0.001

0.010

0.100

1.000

10.000

u(
x)

 (
un

itl
es

s)

(a)

0.01 0.10 1.00 10.00
x (unitless)

0.001

0.010

0.100

1.000

10.000

v(
x)

 (
un

itl
es

s)

(b)

Figure B.17: Comparison between a BUCKY simulation (lines) and the analytic cal-
culations (stars) of the scaled (a) radiation energy, u, and (b) plasma energy, v, for the
diffusion solution to the Su and Olson non-equilibrium transport problem at times of
τ = 0.1 (black), 1 (red),10 (green), and 100 (blue).
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Figure B.18: (a) Comparison between a BUCKY simulation using the Levermore-
Pomraning version of flux-limited diffusion (lines) and the analytic calculations (stars)
of the scaled radiation energy, u, for the transport solution to the Su and Olson non-
equilibrium transport problem at times of τ = 0.1 (black), 1 (red),10 (green), and 100
(blue). (b) Comparison between the analytic calculation (stars) and a BUCKY simulation
using the (a) SUM-limiter, (b) Levermore-Pomraning-limiter, (c) Larsen-limiter (n=2),
and (d) MAX-limiter at a time of τ = 1. Also shown is a BUCKY calculation using
short-characteristics (dashed).
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Appendix C

Counting Statistics on Kodak

RAR2497 X-ray Film

Conducting a detailed χ2 analysis between experimental data and a model fit to that data

requires a good understanding of the statistical fluctuations (the standard deviation).

That is, it is difficult to determine the quality of a fit without knowing the possible

error in the data. In photon-counting, the statistical distribution of measured counts is

represented to good approximation by the Poisson probability distribution [1], which is

mathematically defined as:

P (x) =
< x >x e−<x>

x!
, (C.1)

for x the number of counts recorded in any given measurement, and < x > the average

number of counts recorded over all measurements. It can be shown that the standard

deviation in the recorded counts, σ, for the Poisson distribution is given by:

σ =
√

< x >. (C.2)
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Thus, if one can determine that a distribution of recorded counts follows a Poisson

distribution, then the standard deviation can be determined directly from the mean

value.

In x-ray spectroscopy, Kodak RAR2497 x-ray film is a standard detector for many

time-integrated spectrometers (although it is no longer made). The active elements in

the emulsion of RAR2497 film are grains of AgBr, and darkening on the film comes from

‘activation’ of these grains when they absorb a photon. How many grains are activated

is sensitive to the absorption coefficient (the opacity) of the AgBr, and is therefore a

function of the size of the grains, their packing fraction, the thickness of the emulsion,

and the intensity and energy of the incident x-rays. As discussed in Appendix A, this film

has been calibrated by Henke et al. [2–4] to relate film density to incident photon intensity

(in photons/µm2) as a function of x-ray energy. The mean number of incident photons

can be found by multiplying the average corrected photon intensity by the observed area

of the film. However, this is not the value that determines the statistical fluctuations in

the recorded data. The observed fluctuations could be caused by any number of issues;

the number of photons actually absorbed, random distributions in the packing fractions

of the AgBr grains, random processes that occur during film developing, and so on.

Conducting a rigorous statistical analysis of data recorded on RAR2497 film requires

that the distribution function be measured as a function of the incident photon intensity

(and perhaps the photon energy). If a number of measurements can be made at the

same incident photon intensity, then a probability histogram that describes the obser-

vations can be constructed. If this recorded histogram has the same shape as a Poisson

distribution, then a ‘rescale factor’ can be determined that quantifies the measured dis-

tribution and defines the associated uncertainty. This Appendix describes some basic

experiments and the associated statistical analysis conducted to determine the rescale
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Figure C.1: Schematic of the experimental apparatus for the experiments on the sta-
tistical distribution of photon counting with RAR2497 x-ray film.

factors for RAR2497 film over a range of photon intensities.

C.1 Experimental Method

Figure C.1 shows a schematic diagram of the apparatus for these experiments. The x-rays

come from a Manson source, an electron-beam device that excites or ionizes the various

atoms in materials placed in the beam path (at the location of the anode). As these

excited atoms decay, they give off isotropically distributed x-rays. These experiments

used a magnesium-fluoride (MgF2) anode, a beam energy of ≈ 8keV , and a beam current

of ≈ 3mA. The spectral line of primary interest for these experiments is Mg K-α

fluorescence at 9.890Å (1.2536keV ). To block visible light and isolate this line from

the other components of the anode emission, a 6µm thick aluminum filter was placed

between the source and film plane at a distance of 132.4cm from the film. The film was

placed at a distance of 179.1cm from the Manson source anode, and was exposed over a
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Figure C.2: X-ray spectrum at the location of the film plane with a MgF2 anode and
a 6.0µm Al filter.

4cm× 2.8cm area.

To measure the spectral distribution of the x-ray source hitting the film, a convex

crystal spectrometer (with a 5.08cm radius potassium-acid-pthalate crystal) was placed

at the film plane. Figure C.2 shows the recorded spectrum from a 3h exposure. There

are 2 spectral features present. The most intense line is the Mg K-α fluorescence line at

9.890Å. The second line is from a contaminant on the MgF2 anode. This line is likely to

be from a first order reflection, which has a reflectivity that is over a factor of 30 higher

than the second or third order. The 8.343Å wavelength is very close to that of the Al K-α

fluorescence line, which lies at the peak of the Al filter transmission curve (above 4Å).

The Henke density-to-intensity conversion factors for 8.34Å and 9.89Å are very similar

so that, if this line is indeed from a first order reflection, it should have little bearing on

the experiments.

The measurement procedure for the statistic calibration experiments was as follows:
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Vacuum was pulled from both sides of the Al filter to a final pressure of ≈ 1× 10−5Torr.

The Manson source voltage and emission current were turned up to their respective

operating values to effectively ‘turn-on’ the x-ray emission. A 0.159cm thick Al cover

slide was pulled from the front of the film to begin the exposure. At the end of the

desired exposure time, the cover slide was moved back in front of the film, the Manson

source current and voltage were turned off, and the system was vented. The film pack

was then removed from the apparatus and brought to a dark-room for developing. The

film was developed using the procedure outlined by Henke et al. [3] as used for the film

density calibration experiments. This measurement procedure was repeated for exposure

times of; 30s, 60s, 180s, 300s, 420s, 600s, 900s, and 1800s. At the beginning and end

of each day of operation, a ≈ 3600s light-leak test was conducted by running through

the entire procedure without turning on the x-ray source. After the exposures were all

complete, the developed film was digitized on a Perkin-Elmer microdensitometer using a

14µm scan-box with a 0.1 numerical aperture for both the illumination and transmission

beam cones.

C.2 Data and Analysis

As an example of the digitized exposures, Figures C.3(a) and (b) show the scanned image

of the 300s exposure and a 250µm wide horizontal lineout across the image. As evidenced

by the lineout, the exposure is quite uniform. The low exposure on the far right side

of the image is from an area of the film that remained covered by the Al cover slide

during the exposure. This part of the film is useful for determining the average chemical

fog left on the film from the developing process. The fog must be subtracted from the

measured film density to determine the net density required to apply the Henke intensity
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Figure C.3: (a) Portion of the digitized film density from the 300s exposure test. (b)
250µm wide lineout of the exposure shown in (a).

corrections.

The analysis procedure for determining the probability distribution of each digitized

exposure was as follows: A lineout was taken over the uniformly exposed portion of

the digitized exposure. The mean density of the film fog was determined by averaging

over a large area of the unexposed portion. The film fog was then subtracted from the

lineout to determine the net film density. The net film density was then converted into

photon intensity using the Henke correction tables for RAR2497 film assuming a photon

wavelength of 9.890Å (1253.6eV ). Table C.1 lists the resulting mean film density and

intensity values determined for each exposure.

Each point in the corrected lineouts were considered as an independent measurement

of the same incident photon intensity. These points were then binned into a histogram

of the frequency of occurrence versus photon intensity. The histograms were constructed

by 50 uniformly sized bins covering the range from the minimum to maximum photon

intensity in the lineout. This procedure was repeated for each exposure using lineout

widths of 14µm (1 pixel), 100µm, 250µm, 500µm, 1000µm, and 2000µm. As an example
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Exposure Time Film Fog Mean Net Density Mean Intensity (photons/µm2)

30s 0.493 0.223 1.02

60s 0.462 0.413 2.06

180s 0.442 0.940 6.10

300s 0.432 1.258 9.79

420s 0.438 1.466 12.9

600s 0.548 1.685 17.3

900s 0.442 1.958 24.6

1800s 0.440 2.284 37.8

Table C.1: Resulting film density and corresponding mean intensity from the uniform
exposures on RAR2497 film.

of the resulting distribution, Figure C.4 shows the 50 point histogram from the single

pixel (14µm) wide lineout of the 300s exposure shown in Figure C.3(a). The quality of

the histogram indicates that the distribution is well sampled.

Once the distributions had been determined for all exposure times and lineout widths,

an automated fitting routine was used to determine the rescale factor that produced the

best fit between each histogram and an analytic probability distribution. In all but one

case, the Gaussian distribution was used for this fit rather than the Poisson. This was

done because each is a good approximation of the other at high mean count values, and

the factorial in the Poisson distribution makes it difficult to compute at high counts.

The Poisson distribution was only used in the case of the 14µm wide lineout of the 30s

exposure. In this case, both the measured and rescaled count values were low enough to

allow a complete solution of the Poisson distribution.

The best-fit rescale factor of each histogram was determined using the following pro-

cedure: The abscissa of the histogram (the recorded photon intensity) was multiplied by
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Figure C.4: Histogram of the distribution of photon intensities from a 14µm wide
lineout taken on the 300s exposure shown in Figure C.3(a). Overlaid on the figure is the
best-fit Gaussian distribution (red) at a rescale factor of 5.8. The χ2 between these two
distribution was determined to be 1.47.

a test rescale factor. The probability distribution was then computed using the average

value of this ‘rescaled’ photon intensity. Since a probability distribution is a normal-

ized function, the distribution was uniformly multiplied by the area under the rescaled

histogram to put each distribution on the same axis. The χ2 between the experimental

histogram and the analytic probability distribution was then computeda. This procedure

was then repeated for a large number of test rescale factors. Once a satisfactory range of

χ2 values was computed, a fifth order polynomial was fit to the χ2 values as a function of

rescale factor. The location of the minimum in this curve was considered as the best-fit

rescale factor, and a final χ2 and 1σ uncertainty between the histogram and the resulting

distribution function was computed.

aTo make this comparison, the data was assumed to follow Poisson statistics by deflning the uncer-
tainty in each bin height as the square root of the number of counts in the bin. If a flt can be found
where the χ2 is close to 1, then this prescribed uncertainty is at least consistent with the distribution.
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Figure C.5: χ2 statistic as a function of test rescale factor between the data histogram
and the Gaussian distribution function shown in Figure C.4. The symbols correspond
to computed test points and the line is a fifth order polynomial fit to the symbols. The
intersection of the solid line with the dotted lines marks the best-fit and 1σ confidence
levels for the fit.

As an example, Figure C.5 shows the computed χ2 as a function of rescale factor

for the distribution of the 300s exposure shown in Figure C.4. The minimum χ2 in this

figure is 1.47 at a rescale factor of 5.8 with 1σ confidence levels at factors of 7.1 and

4.8. An overlay of the Gaussian distribution at the best-fit rescale factor is shown on the

histogram in Figure C.4. The abscissa of the Gaussian has been divided by the rescale

factor to put it on the same range as the data histogram. The standard deviation of

the Gaussian is given by the square root of the average ‘rescaled counts.’ In the original

units of the data, this standard deviation is given by:

σ =

√
R < I >

R
=

√
< I >

R
, (C.3)

where R is the best-fit rescale factor and < I > is the mean value of the data histogram

(the photon intensity in photons/µm2). Therefore, if the rescale factor is known for
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some measured photon intensity, Eq. C.3 can be used to determine the uncertainty in

the measurement.

Table C.2 shows the best-fit rescale factors as a function of the lineout width for

each incident photon intensity recorded in the experiments. These rescale factors and

the associated standard deviations in the incident photon intensity are plotted in Fig-

ure C.6 for the 14µm (single pixel) wide lineouts. The analysis suggests that there is a

complex dependence of the statistical distribution on the incident photon intensity. At

any given lineout width, the rescale factor increases for incident intensities between 1.02

and 2.05µm−2, and then decreases for I ≥ 6.1µm−2. The resulting standard deviation

steadily increases as a function of incident photon intensity, but does not have a square

root dependence. It is unclear what should cause such a complicated structure in the

counting statistics. A few of the exposures were repeated and similar results were found.

It is possible that the first two points in the data are below the linear region of the

film response and the last point is above it. However, the rescale factors still show no

constant dependence on the photon intensities in between. Regardless, the χ2 between

the histograms and analytic distribution functions were all very reasonable, which indi-

cates that the measured distribution functions can be well represented by a Gaussian.

Irrespective of what causes the complex relationship between the counting statistics and

the incident intensity, the data in Table C.2 can be used to prescribe an uncertainty to

the incident photon intensity for measurements made on RAR2497 film.
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Figure C.6: (a) Rescale factors and (b) standard deviation for the statistical distribu-
tion of the recorded photon intensity on Kodak RAR2497 film. This data is shown for
14µm (single pixel) wide lineouts.
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