X-ray Diagnostics and Their Relationship to Magnetic Fields

David Cohen
Swarthmore College

Launched 2000: superior sensitivity, spatial resolution, and spectral resolution

XMM-Newton

Chandra

sub-arcsecond resolution

XMM-Newton

Both have CCD detectors for imaging spectroscopy:

low spectral resolution: $R \sim 20$ to 50

Chandra

And both have grating spectrometers: $R \sim$ few 100 to 1000

Chandra ACIS Orion Nebula Cluster (COUP)

θ^1 Ori C: X-ray lightcurve

σ Ori E: XMM light curve

XMM EPIC spectrum of σ Ori E

Fig. 9. PN spectra of σ Ori E during quiescence and at the peak of the flare. The best-fit model is also shown.

Chandra grating specra: θ^1 Ori C and a non-magnetic O star

Hot plasma emitting thermal x-rays

1 keV $\sim 12 \times 10^6 \text{ K} \sim 12 \text{ Å}$

Shock heating: $\Delta v = 300 \text{ km}$ gives T ~ 10^6 K (and T ~ v^2)

ROSAT 150 eV to 2 keV Chandra, XMM 350 eV to 10 keV

Hot plasma emitting thermal x-rays

 $1 \text{ keV} \sim 12 \times 10^6 \text{ K} \sim 12 \text{ Å}^{-1}$

Shock heating: $\Delta v = 1000 \text{ km}$ gives T ~ 10^7 K (and T ~ v^2)

ROSAT 150 eV to 2 keV Chandra, XMM 350 eV to 10 keV

H-like/He-like ratio is temperature sensitive

The magnetic O star $-\theta^1$ Ori C - is hotter

Differential Emission Measure

(temperature distribution)

θ¹ Ori C is much hotter

Wojdowski & Schulz (2005)

Dipole magnetic field

Rotating tilted dipole

Simulation/visualization courtesy R. Townsend

MHD simulations of magnetically channeled wind

temperature

7.0 7.5 log T (K) $Y_{(R_{\pm})}$ $X(R_*)$

emission measure

simulations by A. ud-Doula; Gagné et al. (2005)

Channeled collision is close to head-on: $\Delta v > 1000 \text{ km s}^{-1} : T > 10^7 \text{ K}$

Differential emission measure

(temperature distribution)

Wojdowski & Schulz (2005)

MHD simulation of θ¹ Ori C reproduces the observed differential emission measure

Chandra broadband count rate vs. rotational phase

Model from MHD simulation

The star itself occults the hot plasma torus

The closer the hot plasma is to the star, the deeper the dip in the x-ray light curve

Emission measure

contour encloses $T > 10^6 \text{ K}$

Helium-like species' forbidden-to-intercombination line ratios - f/i or z/(x+y) - provide information about the *location* of the hot plasma

...not the *density*, as is usually the case.

Helium-like ions (e.g. O⁺⁶, Ne⁺⁸, Mg⁺¹⁰, Si⁺¹², S⁺¹⁴) – schematic energy level diagram

Ultraviolet light from the star's photosphere drives photoexcitation out of the ³S level

The f/i ratio is thus a diagnostic of the local UV mean intensity...

...and thus the distance of the x-ray emitting plasma from the photosphere

He-like f/i ratios and the x-ray light curve both indicate that the hot plasma is somewhat closer to the photosphere of θ^1 Ori C than the MHD models predict.

Some slides showing f/i ratios in zeta Ori, tau Sco... main point: there is NO evidence for a "near star high ion problem"

ζ Pup S XV *Chandra* MEG

Fig. 8. The 4 coadded RGS1+RGS2 spectra in the region of the O VII triplet, with the fit to the 3 lines plus a constant.

More possible topics:

Zeta Ori, HD191612 – magnetic but X-rays look "normal"

Tau Sco – narrow lines but f/i ratios imply plasma far from the photosphere

Sigma Ori E – X-ray DEM well reproduced by Rich's RFHD modeling; flaring too (centrifugal breakout)

Early B stars are mysterious – large x-ray luminosities, soft spectra, narrow lines but no evidence for magnetic fields (theta Car, beta Cru)

Conclusions

Some conclusions...