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1. Porosity Reduction of Opacity in a Scattering Medium

Spurred by attempts to model the “crowding effect” in Rich and Dan’s Monte Carlo

sims of porous media, I’ve been developing a somewhat modified model for porous transport.

In contrast to the previous focus on the absorption properties of an isolated blob, this new

approach is based on how the scattering in the medium is modified by the larger path length

associated with space between the ensemble of blob structures. In this way, it is closer in

spirit to the Rosseland mean opacity approach, which defines frequency averages in terms of

the inverse opacity, which scales with the path length.

Another, even simpler analogy would be the nature of current flow through a parallel

circuit, wherein the effective resistance is obtained from the inverse of the inverse sum of

the individual resistors. In this analogy, the opacity can be thought of as analogous to the

resistance, with its inverse, which is proportional to mean path length, analogous to the

conductance.

Instead of the previous focus on the opacity per unit mass, κ, it is more convenient in

this formulation to deal with the opacity per unit volume, κρ, which has units of an inverse

length, namely the inverse of the associated mean-free-path. The new model defines the

mean net path of the effective opacity by adding the mean path for the microscopic opacity,

1/κρ, and the extra mean path, H = 1/nσ, for the assumed clumping of the medium into

an ensemble of blobs with individual cross section σ and overall number density per unit

volume n. This gives
1

κeff ρ
=

1

κρ
+ H . (1)

For blobs of size ℓ and separation L, the blob cross-section scales as σ = ℓ2, while the

blob volume density scales as n = 1/L3. We thus see that in this case the associated blob

mean-free-path is just our usual “porosity length”, H = L3/ℓ2.

Solving for the effective opacity (per unit mass), this now gives for the porosity-related
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scattering reduction in opacity,
κeff

κ
=

1

1 + τb

, (2)

where τb ≡ κρH is again the optical thickness of individual blobs. Figure 1 compares this

against the old, single-blob-absorption bridging law,

κabs
eff

κ
=

1 − e−τb

τb

. (3)

Note that both laws have the same asymptotic forms in the opposing limits of optically

thin and optically thick blobs. Namely, for thin blobs with τb ≪ 1, they simply recover the

microscopic opacity κeff → κ, while for thick blobs with τb ≫ 1, they give a (mass) opacity

set by the ratio of the blob cross section ℓ2 to blob mass mb = ρL3, i.e. κeff → 1/ρH.

However, figure 1 shows that the new scattering form drops somewhat more sharply for

moderately small τb ∼
< 1, with Taylor expansion giving κeff ∼ 1 − τb instead of the κabs

eff ∼

1 − τb/2 of the old absorption form.

While both full bridging forms are quite elementary, the simple ratio character of the

new form, without any exponential function, makes it even more convenient for certain

analyses, for example in deriving the wind optical depth for X-ray absorption, as developed

in my recent email notes to David Cohen. Actually, for that case of bound-free absorption,

the basic absorption model is actually somewhat more appropriate. But in the context of

electron scattering in super-Eddington atmospheres, the new scattering analysis seems closer

to the physics at hand.

2. Accounting for the Crowding Effect

In fact, the focus here on the path-length between the blobs, instead of the absorption

characteristics of individual blobs, can offer us some insight on how to account for “crowd-

ing effect” when the size of the blobs is no longer assumed to be small compared to their

separation.

To see how this can come about, consider the quite artificial, idealized model of cubic

blobs of side ℓ spaced in a perfectly regular cubic lattice with separations L between the

centers of neighboring blobs. The cross section of the blobs is again of order σ ∼ ℓ2 (ignoring

subtleties of different projections). However, in considering the free path between the blobs,

it now seems more appropriate to focus only on the net empty volume V = L3
− l3, for which

the associated path length becomes

H ′

cubes = V/σ = H(1 − f ′) , (4)
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where f ′
≡ (ℓ/L)3 is the blob volume filling ratio. We thus see that in the crowding-case

that ℓ → L, the space between the blobs fills up, giving f ′
→ 1 and so H ′

→ 0. As expected,

this means the porosity effect vanishes for ℓ = L. This special reduction to zero porosity is

thus quite “sharp” as the blobs just fit in the vanishing space between them. But this simple

model cannot readily accommodate overlapping blobs, such as would occur for ℓ > L.

For a somewhat more realistic model of randomly spaced spherical blobs, this overlapping

limit can be expected to consist of both regions of multiple blob density from overlapping

spheres, interspersed perhaps with still some empty gaps between the spheres, at least if the

blob size is not too much bigger than the characteristic separation, i.e. ℓ ∼
> L. Still, one

expects that in the limit ℓ ≫ L the overlapping blobs should resemble more and more a

smooth medium, for which the porosity length should asymptotically vanish. This can be

accommodated, for example, by a simple scaling like

H ′ =
H

1 + f ′
= H(1 − f) =

ℓ

f ′ + f ′2
. (5)

where the second equality introduces the scaling in terms of the blob filling fraction f =

f ′/(1+ f ′), and the last equality recalls the original definition of porosity length as the ratio

of the blob scale to blob filling ratio, H ≡ ℓ/f ′. The resulting crowding-corrected form for

the effective opacity is This now gives for the porosity-related scattering reduction in opacity,

κeff

κ
=

1

1 + τb/(1 + f ′)
. (6)

Figure plots this vs. blob optical thickness τb for various filling ratios ranging from f ′ = 0

to f ′ = 16. Note that the associated scale ratio are given by ℓ/L = f ′1/3.

3. Concluding Remarks

This scaling is still rather ad hoc, and it will be helpful to compare it to results from

Monte Carlo simulations. I suspect these might show a stronger saturation of the porosity

effect as crowding increases, and so I’m still thinking of what scalings could ensure a rapid

approach to the uniform limit κeff = κ for f ′
≫ 1, independent of how big τb gets. But for

now, I think this approach at least gives us a useful way to think about porous scattering in

both the crowded and uncrowded limit.
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Fig. 1.— Absorption (red-dotted curve; eqn. (3) and scattering (black solid curve; eqn. (2))

bridging laws for effective opacity reduction from porosity, κeff/κ, plotted vs. blob optical

thickness, τb.
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Fig. 2.— Crowding corrected effec tive opacity, κeff/κ, vs. blob optical thickness, τb, for

various values of the volume filling ratio, f ′ =0, 1, 2, 4, 8, and 16, increasing from bottom

to top. Note that the associated scale ratios are given by ℓ/L = f ′1/3.


